Table 4.
Performances of logistic regression and deep neural network models for MI and stroke.
Variable | MI | Stroke | ||||||
---|---|---|---|---|---|---|---|---|
Missing Value (+) | Missing Value (−) | Missing Value (+) | Missing Value (−) | |||||
LR | DNN | LR | DNN | LR | DNN | LR | DNN | |
Accuracy | 0.686 | 0.911 | 0.727 | 0.917 | 0.681 | 0.883 | 0.682 | 0.897 |
F1 score | 0.696 | 0.908 | 0.734 | 0.916 | 0.687 | 0.874 | 0.690 | 0.889 |
Precision | 0.675 | 0.939 | 0.715 | 0.927 | 0.674 | 0.935 | 0.674 | 0.956 |
Recall | 0.718 | 0.879 | 0.754 | 0.907 | 0.700 | 0.824 | 0.707 | 0.832 |
AUC | 0.686 | 0.968 | 0.727 | 0.972 | 0.681 | 0.948 | 0.682 | 0.951 |
AUC: Area under the curve, DNN: deep neural network, LR: logistic regression, MI: myocardial infarction. p < 0.0001 for all two groups.