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Abstract: The manual categorization of behavior from sensory observation data to facilitate further
analyses is a very expensive process. To overcome the inherent subjectivity of this process, typically,
multiple domain experts are involved, resulting in increased efforts for the labeling. In this work,
we investigate whether social behavior and environments can automatically be coded based on
uncontrolled everyday audio recordings by applying deep learning. Recordings of daily living
were obtained from healthy young and older adults at randomly selected times during the day
by using a wearable device, resulting in a dataset of uncontrolled everyday audio recordings. For
classification, a transfer learning approach based on a publicly available pretrained neural network
and subsequent fine-tuning was implemented. The results suggest that certain aspects of social
behavior and environments can be automatically classified. The ambient noise of uncontrolled audio
recordings, however, poses a hard challenge for automatic behavior assessment, in particular, when
coupled with data sparsity.

Keywords: social behavior analysis; uncontrolled audio recording; deep learning; wearable device

1. Introduction

Being able to live an active and meaningful social life well into old age is a significant
predictor of psychological well-being and longevity [1,2]. Having few social relationships
and infrequent social interactions has been associated with unfavorable health outcomes [3].
The quantity and quality of people’s daily interactions with others have a significant
impact on their well-being [4]. In order to accurately gain information on human social
behavior and its relation to well-being, it is necessary to measure individuals’ overall social
activity participation, and how they engage in social activities in everyday life across time
and contexts. It is not optimal to use the traditional survey method or self-report-based
ambulatory assessments due to their limitations, such as memory bias, response styles,
demand characteristics, social desirability, and limitations to introspection [5]. A method
that operates with unobtrusive observation of individuals and the objective coding of
their real-life behavior would be desirable for social behavior analysis. For observation,
audio data could be recorded during the daily life of the participants as, for instance, done
by the EAR system [6]. Coding of the behavior is typically done in a manual process by
multiple domain experts to prevent subjective ratings, resulting in an expensive process.
By supporting this process with automatic behavior classification from audio recordings,
these costs could be reduced while maintaining a certain degree of objectivity. Moreover, by
employing light-weight classification methods, parts of the automatic coding could directly
be done on the recording device, eventually enabling real-time analysis and intervention
while satisfying privacy constraints at the same time.
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In this article, a classification pipeline, based on pretrained representations and multi-
head attention is proposed to address the problem of social behavior classification from
uncontrolled audio recordings. In contrast to controlled audio recordings, where different
factors, such as background noise and distance to the microphone, are fixed and known,
uncontrolled audio recordings provide differences in all aspects, posing a hard challenge for
automatic audio classification. The proposed approach is evaluated on a dataset consisting
of 30 s audio snippets randomly recorded during the daily life of 93 participants. Typical
problems contained in the dataset are, for instance, that the recording device was not in
close proximity or the voice was covered by friction or other background noise. Moreover,
the dataset is imbalanced by orders of magnitude. The results suggest that information
about social behavior can indeed be inferred from uncontrolled audio recordings. The
Activity, for instance, could be recognized with an F-Score of 0.68.

The contribution of this article is two-fold:

1. The problem of classifying social behavior and environment from uncontrolled audio
recordings is introduced. The major challenge in the explored setting results from the
mode of recording and annotation which is further explored in Section 3.1.

2. An initial solution to the problem is proposed by use of pretrained audio representa-
tions in combination with an attention mechanism.

The article is structured as follows. Section 2 gives an overview of related work.
Section 3 outlines the used dataset, provides further details on the given problem, and
describes the proposed classification pipeline, including methods for optimization and
evaluation. Evaluation results are presented in Section 4 and discussed in Section 5. Finally,
Section 6 concludes and provides an overview of future work.

2. Related Work

Yordanova et al. [7] investigated how social behavior and environment coding can be
performed based on human generated, textual transcriptions of audio recordings based
on the same dataset as used in this work (see Section 3.1). A bag-of-words model showed
promising results for automatic coding when combined with data augmentation. However,
the approach has the drawback of being dependent on a given transcription including a
speaker identification. Due to the uncontrolled recording, speech recognition is difficult
(see Section 3.1.1) and a manual transcription of the audio files is not feasible for intended
applications. Moreover, speech is not present in a majority of samples with only ≈20% of
recordings having a transcription (see Section 3.1.1). This work explores automatic coding
based directly on uncontrolled audio recordings.

2.1. Audio Analysis

With respect to the automatic classification of audio samples, Convolutional Neu-
ral Networks (CNNs) are often employed. They are adapted from computer vision [8],
where CNNs consistently outperform other methods on benchmarks such as ImageNet [9].
CNNs for audio classification are typically applied to spectral representations of audio
signals [8,10,11], such as the Mel-spectrogram based on the Mel-Scale [12], created to cap-
ture human audio perception. Different tasks relate to the automatic analysis of audio
recordings and to the task at hand.

Audio Event Detection (AED) addresses the identification of particular events within
audio sequences [13–15]. It is related to the problem at hand as all considered classes (see
Section 3.1) are characterized by audio events. AudioSet [16] is the largest available dataset
for AED with 2 M samples of 30 s, collected from Youtube, but has the drawback of requiring
data to be downloaded from Youtube which leads to samples gradually disappearing as
well as usage right issues [17]. The AudioSet Ontology covers 632 different sound classes and
structures them hierarchically. Spectrogram-based CNNs currently achieve state-of-the-art
performance on AudioSet AED [11]. Most recently, FSD50K [17] was introduced as an open
data corpus based on 200 classes from the AudioSet Ontology to overcome the usability
issues of AudioSet. It contains 51 k samples with sample lengths ranging from 0.3–30 s.
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Speech Emotion Recognition (SER) is concerned with classifying the emotion conveyed
by a speaker. It is related to the given task in certain aspects, for instance, for inferring
the mood or the conversation type of a person from their voice (see Section 3.1.1). SER is
typically applied in controlled laboratory settings with trained speakers and pre-selected
utterances [18,19]. The dataset at hand, however, consists of uncontrolled audio recordings
where only ≈20% of the samples contain speech. Thus, approaches for SER cannot directly
be applied.

Automatic Speech Recognition (ASR) deals with the automatic decoding of speakers’
utterances into text. In the given setting, ASR could be beneficial to the task by allowing a
semantic interpretation of speech, e.g., for determining the conversation type mentioned
above (see also Section 3.1.1). However, the spoken language in this context is Swiss
German, a low-resource language for ASR [20], for which pretrained models are not
available. Therefore, ASR is not considered in this work.

2.2. Transfer and Representation Learning

The idea of representation and transfer learning is that training data and test (or
application) data do not have to be identically distributed [21], instead general represen-
tations are learned on large databases and then transferred to related problems with few
data available. For computer vision, a common approach is to pretrain models on Ima-
geNet and fine-tune them to other computer vision tasks. In Natural Language Processing
(NLP), language models such as BERT [22] are pretrained with self-supervision on large
corpora in order to learn a suitable representation to be applied for multiple different
downstream tasks.

The idea of representation and transfer learning for audio has recently gained inter-
est in the scientific community. Wav2Vec, for instance, is an embedding method where
self-supervision is used for training a CNN on raw audio input with the objective of
distinguishing the true future audio from false samples [23]. The embedding features
generated by Wav2Vec can replace spectral representations as input for downstream tasks
and have been reported to improve performance [23]. It was further improved in Wav2Vec
2.0 [24] by replacing the convolutional architecture by one initial temporal convolution
followed by a transformer [25]. Moreover, the objective is changed from predicting a future
sequence to partially masking a given sequence and distinguishing the masked snippet
from distractors. Liu et al. [26] proposed learning speech representations with bidirectional
transformer encoders based on predicting masked frames in mel-spectrograms based on
left and right context. The work is extended by Chi et al. [27] who adapted ALBERT—a
transformer-based model known from the NLP domain—that reduces the number of re-
quired parameters. While the methods described above are potentially applicable to audio
data in general, they are speech-specific and were only evaluated on ASR, e.g., Wall Street
Journal [28], LibriSpeech [29].

Other work has focused on generating general audio representations not primarily
focused on speech. Pretrained Audio Neural Networks (PANNs) adapt and develop CNN
architectures for AED on AudioSet and achieve competitive performance [11]. They map
10 s audio samples down to an embedding vector that can be used for transfer learning.
Most of the proposed PANNs use only Mel-spectrogram representations of a given input
while one proposed architecture learns features directly from the given audio sequence
as well as the Mel-spectrogram. Since the pretraining is performed on labeled AudioSet
data, it is performed in a supervised manner. Recently, there have been further studies
investigating the generation of general audio representations with unlabeled data by
utilizing self-supervision. Saeed et al. [30] used contrastive learning by assigning high
similarity to audio segments extracted from the same recording while assigning lower
similarity to segments from different recordings. Niizumi et al. [31], in contrast, did not
use negative samples, but instead employed a method named Bootstrap Your Own Latent,
which directly minimizes the mean squared error of embeddings originating from the same
input with contrasts created by data augmentation. Further, Wang et al. [32] proposed an
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evaluation suite for Audio Representations covering 12 tasks set in the domains of general
audio, speech, and music.

2.3. Mobile Networks

Mobile networks aim at reducing the size and execution complexity of neural networks
in order to make them applicable in real world settings where computational resources are
limited or a timely computation is required [33]. For the task at hand, this is relevant since
the target application could be integrated with the data recording directly on participants’
mobile devices. Two different network architectures with reduced complexity have been
adapted to audio classification as PANNs [11]:

1. MobileNet that uses depth-wise separable convolutions to reduce complexity [33], and
2. MobileNetV2 that extends MobileNet by an inverted residual structure with shortcut

connections [34].

3. Materials and Methods
3.1. Dataset

The dataset was recorded with an Electronically Activated Recorder (EAR) [6] and
captures 30-s audio recordings collected during the daily life of participants. The EAR is
implemented as a smartphone app and is thus able to unobtrusively track real-world be-
havior by periodically recording ambient sounds [35] from the respective devices’ standard
microphones. Audio data were recorded for two groups of healthy participants:

1. Young adults (n = 61, 23 m, 38 f, average age 25), and
2. Older adults (n = 32, 12 m, 20 f, average age 72).

The dataset is intended for comparative psychology studies and, therefore, comprises
both age groups. Social behavior for these groups is, in general, different, but only within
the limits of the classes of interest, as described below. For instance, “watching TV” is ex-
pected to be similar between both groups, while more variance is anticipated in “walking”.
We argue that this variance is essential for generalization of our approach as it leads to a
broader range of data, preventing the classifier from overfitting.

Participants of both groups live in Switzerland and their mother tongue is Swiss
German. All participants wore the EAR system for a period of 4 days for which it randomly
recorded 286 samples per participant on average. During the recording period participants
were asked to keep a diary that was later used to support annotation. The original data
collection resulted in 26,885 audio files, 18,039 for the young adults and 8846 for the
older adults. Some participants later withdrew their consent reducing the final number of
available samples to 22,439 (14,398 and 8041) corresponding to 187 h of recordings.

For performance evaluation, the dataset was divided into three sets:

1. Training;
2. Development;
3. Test.

Both sets, young as well as older adults, were split separately in approximately a 3:1:1
ratio resulting in a combined count of 14,124:4501:3814 samples for train, development, and
test set. The sets were split based on persons by assigning all available samples for a single
person to one of the datasets in order to guarantee generalization in the evaluation.

3.1.1. Annotation

Recorded audio samples were coded by domain experts with a background in psychol-
ogy, after receiving detailed annotation instructions and training on this task. Recordings
were coded with respect to multiple categories capturing social behavior and the partici-
pants’ environment. The categories as well as the respective codes were identified by the 3rd
author who is an expert psychologist researching healthy aging [36]. Each recording was
handled by two annotators responsible for different coding categories. For both participant
groups, the inter-rater reliability was above 80%, indicating almost perfect agreement.
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The coding categories considered for automatic coding including their classes are
summarized in Figure 1:

Figure 1. Overview of the sample sizes per surrounding-based coding category split into train,
development, and test set. Additionally to the categories, problems existing in samples are also coded.
Sizes are depicted on a logarithmic scale.

• How? Setting captures the social setting by determining whether other people are
present;

• Talking with whom? identifies the current conversation partner of the participant;
• Conversation Type identifies the type of conversation between the participant and the

conversation partner;
• Activity describes the participant’s current activity;
• Mood captures the current mood of the participant.

Moreover, Problem is included as an additional category, even so it does not correspond
to a psychological category, because knowledge about annotation problems can add value
to the automatic coding by identifying samples with insufficient audio quality.

In this work, we focus on categories that can be classified based on ambient sounds or
voice-based features such as pitch, intonation, talking speed, and length of speech intervals.
We exclude further annotated categories that would require the semantic interpretation of
spoken words. While the category Conversation Type was also annotated based on semantic
interpretation of words, it is included because we argue that some distinctions between
the given classes could be made based on voice features only, for instance, distinguishing
small talk from a deep conversation.

Classes

The classes corresponding to all coding categories are not mutually exclusive. For
each class, assigning no code to a sample is a valid option, and it is also important to
automatically recognize those cases. Therefore, an additional No-match class is added for
each category as illustrated in Figure 1. The coding scheme has no claim to be exhaustive
for any of the categories and annotators were instructed to only annotate classes when they
are certain. For instance, annotators were instructed to make no annotation if they hear a
radio or cannot distinguish between the given class Activity:TV and a radio. Further, small
indicators are sufficient for class annotation, e.g., for the class Mood:Laugh, the annotation
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instruction states: “This can be one short laugh”. Due to the long duration of a single sample,
this makes coding a complex problem that is closer illustrated in Figure 2.

Figure 2. Illustration of a potential sample. There is a continuously present background noise in
form of a TV, a short singing period, two isolated laughs as well as eating. The goal is to correctly
assign the Activity labels TV and Eat/Drink as well as the Mood labels Laugh and Sing. Further, all
other labels have to be correctly identified as negative. A potential danger is to mistake the TV for a
second person in the room assigning a wrong Setting.

Background Knowledge

Annotation was supported by a diary that participants have kept throughout their
recording period. It is particularly important for the category Talking to whom? and classes
such as Activity:Sleep. Annotators were instructed to prioritize sound over diary if they find
contradicting indications. Further, annotators were aware of participants’ demographics
and their living situation, and encouraged to make use of this information for annotation.
To a certain degree, temporal dependencies between recordings are also considered, e.g.,
given that a participant is watching TV in a recording at 8.30 p.m. and at 8.35 p.m., an
annotator will assume an ongoing activity at 8.33 p.m. if no different indication is found in
the recording.

Issues from Uncontrolled Audio Recordings

Issues in understanding are explicitly coded as illustrated in Figure 1. If problems
are present, annotators are encouraged to only code classes they can code with absolute
certainty regardless of the indicated problem. Typical issues include muffled voices, friction
or dampened sound in general. Those issues exist because participants do not continuously
carry their phones, or have them placed in purses, pockets or backpacks. Another common
occurrence is background noise, e.g., caused if participants are out in public. In total, audio
problems were annotated 2764 times in the given 22,439 samples (≈12%). Samples that
were not explicitly annotated to contain an acoustic problem can, however, still contain a
less intense version of such problems. All described problems directly hamper classification
as they influence audio quality.

Annotators also performed a speech transcription as part of the annotation. Quantify-
ing problems they encountered performing the speech transcription gives further insights
into audio data quality. In total, only 4490 (≈20%) samples have a transcription; however,
background chatter can still be present in the remaining samples as only conversations
of the participant are transcribed due to ethical restrictions. For the remaining samples,
classification can only be based on ambient sounds. Utterances within speech transcrip-
tions cannot always be clearly understood. Within a total of 2141 (≈48%) transcriptions, a
problem is indicated. At least one word was not understood in 1581 (≈35%) transcriptions
while an entire sub-sentence was not understood in 909 (≈20%). Overall, 3140 words and
1360 sub-sentences could not be transcribed.
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3.2. Problem Statement

The objective of this work is to investigate whether an automatic coding as outlined in
Section 3.1.1 can be established. The class Activity serves as main classification target, as it
mainly reflects the participants’ behavior. Further, the resulting application is intended as a
real-time application on mobile devices with limited computational resources. Therefore,
a main aspect of this work is to investigate how its complexity can be reduced and how
strongly performance will be influenced.

Input is an audio sample x of 30 s length represented in a waveform. For each category
Ci ∈ C1, . . . , CN , all classes cj ∈ c1, . . . , clen(Ci)

are classified between no-match (=0) and
match (=1). The classification of each category is considered as a separate multi-label
problem because the coding is not mutually exclusive. Codes are assigned to the entire
30 s audio snippet x because for the target application, it is not relevant to find the precise
onset of audio events but to indicate their existence. In addition to the original codes, the
category Problems was introduced to reflect the different problem types.

3.3. Automatic Coding

The objective of this work is the automatic coding of audio recordings based on the
categories described in Section 3.1.1. As described, labels are assigned to entire sequences
of 30 s and all problems are multi-label classifications.

3.3.1. Preprocessing

Audio samples are preprocessed to conform with the pretraining procedure of PANNs
used for feature extraction. In a first step, all audio samples are resampled from 44 kHz
to 32 kHz. This step reduces the range of covered frequencies but still covers the average
range of human hearing. Then, audio samples are transformed into logmel spectrograms
with a window size of 1024 samples (32 ms), a hop length of 320 samples (10 ms), and
64 mel-bins are used, which has been shown as a good trade-off between complexity and
performance [11].

3.3.2. Data Augmentation

The number of available data samples is massively imbalanced between the classes of
the individual categories, see Figure 1. For the underrepresented classes, there are often
only few samples available and they are, therefore, hard to learn and distinguish for a
classifier. Data augmentation is a method to artificially increase the number of available
samples by automatically generating new samples from given ones [8]. Different methods
for data augmentation of both, audio samples and spectral representations are applied here:

• Pitch shifting raises or lowers the pitch of samples while keeping length unchanged [8].
• Time stretching slows down or speeds up a sample while keeping the pitch un-

changed [8].
• Noise injection adds white noise. Salamon et al. [8] proposed adding background

noises such as urban sounds. However, for the given problem, background sounds
are important features for the classification.

• Spectrogram masking randomly masks continuous spans in time and frequency domains
of generated logmel spectrograms and is included in the training of PANNs [11,37].

The first three are collectively applied on the raw audio signal, while the latter is em-
ployed individually on the spectral representation. In this work, raw audio augmentation
is implemented dynamically with random initialization based on Gaussian distributions
in order to vary the strength of the augmentation on sample basis during the entire train-
ing process.

3.3.3. Classification Pipeline

The pipeline for audio classification consists of:

1. Splitting into overlapping sub-sequences;
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2. Feature extraction for each sub-sequence;
3. Merging of feature representations;
4. Classification based on combined feature representation.

It is illustrated in Figure 3.

Sequence Splitting

The dimension of the spectral representation of the audio samples is given by the
number of mel-bins (e.g., 64, see Section 3.3.1), but—assuming a fixed window size—the
time domain depends on the length of the input sequence. As described in Section 2, the
available pretrained PANNs employ audio sequences of 10 s length. To this end, audio
sequences are split into a length of 10 s, to achieve consistency with AudioSet (see Section 2).
A 50% overlap of 5 s is used for splitting to make sure all audio events are represented
and not accidentally split. The process results in 5 × 10 s for each 30 s recording and is
illustrated in Figure 3 (1. Input Splitting).

Sequence Feature Extraction

PANNs [11] are used to extract features from the split audio sequences, see Figure 3 (2.
PANN). The networks contain valuable feature representations for the given task because
they were pretrained on AudioSet and achieve state-of-the-art performance [16]. AudioSet
is currently the largest supervised pretraining basis for audio events with over 2M samples.
Moreover, many AudioSet ontology classes are related to the given coding classes (see
Section 2). For instance, the class Mood:Laugh can be well related to the AudioSet class
Laughter, represented as: Human Sound → Human voice → Laughter with subcategories:
Baby laughter, Giggle, Snicker, Belly laugh, and Chuckle, chortle. Other categories and classes
such as Conversation Type:Deep Talk cannot directly be related. PANNs are selected over
other general audio representations described in Section 2 because there is a range of
different models available that allow to test the effect of parameter reduction for mobile
applications. However, it is necessary to further explore the influence of the quality of
audio representation on the classification in future work.

PANNs are convolutional neural networks and are available pretrained with different
layer architectures and complexities. Some are adapted from well performing computer
vision architectures while others were newly established. The ones considered here are
summarized in Table 1.

Table 1. Overview of used pretrained PANN architectures with number of trainable parameters and
Precision on AudioSet.

Name Features Parameters AudioSet

Cnn10 logmel-spec ≈5.2 M 0.380

Wavegram-Logmel Cnn14 Wavegram, logmel-spec ≈81.1 M 0.439

MobileNetV2 logmel-spec ≈4.1 M 0.383

They were chosen based on two aspects:

1. Pretraining performance on AudioSet;
2. Model complexity with respect to the number of parameters.

The main focus was set to PANN MobileNets, as they are optimized to work with a
low number of parameters and to reduce execution complexity [11,33,34], which makes
them particularly interesting due to their mobile application capabilities. Other PANN con-
figurations were considered to estimate the influence of the reduced number of parameters.

Since the weights in PANNs are pretrained and do, therefore, contain valuable repre-
sentations for input samples, the influence of those weights is investigated. To this end, the
following three options were considered:
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Figure 3. Classification example for a single 30 s audio sample. Initially, it is split in overlapping 10 s
segments. Next, a logmel-spectrogram is generated from the sample which is processed by a PANN
(see Section 2). Merging of PANN feature representations is illustrated by an attention mechanism.
Attention outputs are averaged and the final feature representation is classified by fully connected
layers. The attention mechanism is illustrated for the first feature representation, but is calculated the
same way for each feature.
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1. Freeze pretrained weights and perform no updates to the PANNs based on the EAR
data;

2. Fine-tune weights based on new data;
3. Gradually unfreeze weights from the top to the bottom layer in order to first ad-

just most complex operations and simple filters last, as proposed by Howard and
Ruder [38].

Feature Merging

Individual feature representation for the 10 s splits have to be combined to classify
the entire audio sequence of 30 s, see Figure 3 (3. Attention). Three different strategies for
merging the features are investigated here:

1. Concatenation of feature representations;
2. Averaging of feature representations;
3. Weighting feature combinations by attention.

While concatenation and averaging are basic mechanisms to combine features, an at-
tention mechanism has the ability to assign higher weights to relevant parts of the sequence
that contain the best acoustic clues for certain classes. The used attention mechanism is
based on the attention principle proposed by Bahdanau et al. [39] and implemented with
multiple attention heads as in Vaswani et al. [25]. The mechanism for a single attention
head is illustrated in Figure 3, and the number of used attention heads is optimized. Eight
attention heads are used as default as reported for the Transformer [25]. The number is
not further increased because each attention head greatly increases the computational
complexity and a value of eight already results in ≈1.6 M trainable model parameters.

Classification

Additionally to the PANN-generated features, information on time and weekday of
the recording is added for classification. They are encoded in a standard approach for
representing circular features according to Equation (1) in order to ensure correct closeness
between times such as 11 p.m. and 1 a.m.

v1 = sin
(

πt
tmax

)
, v2 = cos

(
πt

tmax

)
(1)

The information on time and day is also available in the target application and is
assumed to have a positive effect on specific classes where time influences the prior proba-
bility, e.g., Sleep.

Finally, classification on merged features is performed by applying fully connected
layers which map the feature representations down to the number of output classes per
category, see Figure 3 (4. Classification). A sigmoid activation function is used to map
the output for each class to a range between 0–1. Therefore, a threshold for classifying
samples needs to be determined that influences the trade-off between recall and precision.
For evaluation during optimization, the threshold is set to a fixed value of 0.5. To evaluate
the final performance, the threshold is determined individually for each class based on the
optimal setting from the development set.

Multi-Task Learning

The given automatic coding problem covers multiple categories (see Figure 1), which
can either be handled individually by training a separate classifier for each task or handled
in parallel as a multi-task learning problem by sharing layers and weights between tasks. A
multi-task model has the advantage of reducing the overall execution cost because shared
layers only have to be calculated once for all tasks. Moreover, multi-task learning can
improve recognition performance and help learn better representations if the given tasks
are related, as it implicitly increases the sample size [40]. Therefore, the representations
learned by a model might generalize better because the influence of task-specific noise is
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reduced. If there is no relation between problems, the overall number of parameters has to
be split between unrelated tasks and performance is likely to decay. We assume that the
given tasks are related as, for instance, information from Activity recognition can be useful
for each other task. Moreover, all tasks are—to varying extends—related to human speech.

The proposed model architecture shares all weights for the feature extraction which
corresponds to sharing the entire employed PANN. Since the features trained in the PANNs
are successful in classifying according to the broad AudioSet ontology, it is assumed that
the different classes of the given problem can also be represented through shared weights.
A separate attention layer for each task is employed for merging because acoustic events
for different categories can be contained in different sub-sequences. The other merge
methods described under Feature Merging are static and equal for all categories, therefore,
they are inherently shared. The remaining fully connected layers for classification are
category-specific and do not share weights.

The weights in a neural network are updated based on a loss function evaluating
the network output against a target output. For the given multi-label categories, Binary
Cross Entropy loss is applied. In multi-task learning, every individual task has its own loss
function, and the combination of individual losses needs to be considered for optimization.
Plain addition of weights might bias the optimization by giving high weights to classes
for which the loss is high due to structural problems, e.g., classes cannot be distinguished
because a used method is not suited to represent the problem. Weighting the losses can
counteract this influence, but it is challenging to manually assign meaningful weights. Loss
weights for different tasks are learned during training as proposed by Kendall et al. [41].

Training and Optimization

To train the classification model, Adam [42] and Adagrad [43] optimizers are tested.
Adam was used to pretrain PANNs, and both optimizers offer advantages for training
imbalanced problems with small classes [44]. Dropouts [45] and Batch Normalization [46]
have been shown to work well for regularization in neural networks. Both mechanisms are
included in training PANNs and also used in fine-tuning. PANN dropouts are optimized
and an additional dropout layer is applied on the generated PANN feature representation.
Early-stopping is performed to prevent the model from overfitting when both macro binary
F-Score and weighted binary F-Score on the development set did not improve for at least
9 consecutive epochs. The value was chosen empirically. In case macro and weighted
average were found to be contrary, training is ended when their average did not improve
or maximum epochs are reached. As Activity was selected as main classification target (see
Section 3.2), it was also selected as optimization target for multi-task learning.

All implementations were performed in PyTorch [47] 1.5.1 and the code is made
publicly available upon acceptance.

3.3.4. Evaluation

Four evaluation, scores are considered for the multi-label classification categories.
Correctly classified samples: samples are counted as correctly classified for one

category if all class labels are assigned correctly. This allows a basic performance estimation,
but is susceptible to class imbalances.

Hamming score [48,49]: calculates the binary distance between given target labels T
and assigned predictions P for a given sample. It can be considered as a score for multi-label
accuracy. It is susceptible to class imbalance.

H =
1
n

n

∑
i=1

|Ti ∩ Pi|
|Ti ∪ Pi|
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Multi-label precision, recall [48,49]: calculates precision and recall between the target
labels of a sample T and its predicted labels P. The score is average across all samples. This
score is also susceptible to imbalance.

p =
1
n

n

∑
i=1

|Ti ∩ Pi|
|Ti|

, r =
1
n

n

∑
i=1

|Ti ∩ Pi|
|Pi|

Class-based binary evaluation: every class in a sigmoid multi-label problem can be
analyzed as a binary problem for which standard metrics can be calculated. Those metrics
allow to assess how well each individual class can be recognized. For each class, precision,
recall, f-score, sensitivity, receiver operating characteristics (ROC), and precision-recall curve are
provided. Individual class scores are summarized by macro and weighted average for
each category to evaluate the performance for an entire category. Through this score, the
influence of class imbalance can be evaluated.

4. Results

In the following, the classification results are reported and influences of different
hyper-parameters compared. The default parameter configuration—referred to as base
model—is summarized in Table 2.

Table 2. Hyper-parameters with corresponding default values referred to as the base model.

Name Value

Optimizer Adagrad
Dropout 0.0
Weight Freezing fine-tuned
Feature Merging attention
Attention Heads 8
PANN MobileNetV2
Augmentation No
Task single

4.1. Optimization

In Section 3.3, different network architectures and optimization options for the given
task were described. To make a sound decision for the best design option, every aspect was
systematically evaluated based on the development set. Due to the high time complexity,
every design option was evaluated individually rather than performing an exhaustive grid
search. Activity was chosen as a representative task and optimized with a selected base
configuration. The configurations and results are summarized in Table 3. Note that the
F-Score for Intoxicated was counted as zero in the binary macro average because no samples
are present in the development set.

4.1.1. Pretraining

The results showed that, overall, usage of pretrained models has a positive effect on
recognition performance (see Table 3 Base Model: pretrained and untrained). The number of
overall correct classifications notably improved. Moreover, there is also an improvement
in the weighted binary F-Score. It was further found that pretraining leads to a notable
decrease in required training time, but also leads to earlier and stronger overfitting.
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Table 3. Optimization result summary for different optimization targets on category Activity against
the base model. Ep: Epoch, Cor: Correct Samples, H: Hamming Score, F1: F-Score, M: Macro average,
W: weighted average.

Category Scores Binary F1
Test Config Ep Cor Ham F1 M-∅∅∅ W-∅∅∅

pretrained 17 0.644 0.657 0.660 0.334 0.635Base Model untrained 46 0.600 0.608 0.611 0.334 0.620

Optimizer Adam 26 0.644 0.653 0.656 0.350 0.637

0.25 20 0.623 0.635 0.639 0.339 0.629Dropouts 0.5 26 0.610 0.624 0.628 0.356 0.636

frozen 11 0.615 0.627 0.631 0.338 0.631Weight Freezing gradual 47 0.588 0.599 0.603 0.326 0.605

concatenation 47 0.581 0.592 0.596 0.323 0.602Feature Merging average 17 0.621 0.632 0.635 0.347 0.633

1 47 0.626 0.634 0.636 0.308 0.612Attention Heads 4 20 0.611 0.624 0.629 0.339 0.624

Cnn10 47 0.622 0.633 0.637 0.334 0.634PANN Model Wave-Cnn14 26 0.632 0.640 0.643 0.348 0.642

audio 17 0.649 0.664 0.668 0.340 0.650Augmentation spectrogram 32 0.598 0.611 0.616 0.366 0.623

Adagrad 29 0.598 0.611 0.615 0.333 0.618Multi-task Adam 27 0.630 0.640 0.644 0.366 0.645

Selected Adam+Aug 13 0.630 0.639 0.642 0.315 0.640

4.1.2. Optimizer

In general, both Adam and Adagrad showed similar results with the exception of
binary macro F-score where Adam performed better (see Table 3, Base Model and Optimizer).
Moreover, Adam was found to reduce overfitting in combination with pretrained models
as compared to Adagrad, and is, therefore, selected as the preferred choice. For multi-task
learning, Adam was found to perform better across all scores compared to Adagrad (see
Table 3, Multi-task and Base Model).

4.1.3. Dropout

A higher dropout value was found to reduce the overall number of correct classifica-
tions while recognition of classes with a low number of samples (see Table 3, Base Model and
Dropout) improved, which led to a better binary macro score. Moreover, higher dropout
values were observed to slightly reduce overfitting. In the selected model setup, dropouts
are not applied because of the decrease in overall classification performance.

4.1.4. Freezing

Freezing the pretrained weights of PANNs requires less training time but also leads
to faster overfitting. Additionally, freezing has a negative influence on category scores
compared to fine-tuning (see Table 3, Weight Freezing and Base Model). Gradual unfreezing
was found to notably reduce all scores.

4.1.5. Feature Merging

Concatenation of PANN feature representations was found to reduce performance
across all scores while averaging feature representations leads to a reduction in category
scores. Therefore, attention is chosen as the preferable way to combine feature representa-
tions (see Table 3, Feature Merging and Base Model).
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4.1.6. Attention Heads

With a lower number of attention head, and a corresponding reduction in model
parameters, overfitting is reduced. However, fewer attention heads also lead to an overall
decrease in performance (see Table 3, Attention Heads and Base Model). Therefore, 4 attention
heads were chosen as a trade-off.

4.1.7. PANNs

Application of PANN Cnn10 was found to reduce category scores while binary F-
Scores were almost identical, even so the Cnn10 architecture has more trainable parameters
than the MobileNetV2 architecture. Through the Wavegram-Logmel-Cnn14 architecture, both
binary scores were improved while category scores showed a performance decrease. A
larger parameter space for feature generation was not found to improve overall results,
making MobileNetV2 the preferable choice (see Table 3, PANN Model and Base Model).

4.1.8. Data Augmentation

Audio augmentation was found to benefit performance across all tasks and to reduce
overfitting. Spectrogram augmentation was found to improve the binary macro F-Score
but, at the same time, to reduce all category scores (see Table 3, Augmentation and Base
Model). Therefore, data augmentation was performed directly on audio samples.

4.1.9. Multi-Task Learning

The application of multi-task learning in combination with the Adagrad optimizer was
found to decrease performance across all scores (see Table 3, Multi-task and Base Model). For
multi-task learning with Adam, increased performance for binary scores was found (see
Table 3, Multi-task and Optimizer). These findings support the choice of the Adam optimizer
and show that multi-task learning can be applied without decreasing performance.

4.2. Final Classification Model

Based on the optimization findings, the base classification pipeline was adapted
as follows:

• Adam is used as optimizer instead of Adagrad;
• Four attention heads were chosen instead of eight;
• Audio data augmentation is performed.

As positive performance effects are not necessarily additive, the selected architecture
was also tested on the development set. It was found that for multi-task learning, audio
augmentation decreases performance compared to plain optimization by Adam (see Table 3,
Multi-task and Selected). A possible reason why the positive effect of audio augmentation is
mitigated could be the implicit increases of sample size resulting from multi-task learning.
Therefore, audio data augmentation is not performed and the final model is defined as the
base model adapted to multi-task learning, employing the Adam optimizer for training.

4.3. Performance Estimation

The final classification model was trained on the train set and evaluated on the
development set to perform early-stopping and to select class-specific thresholds (see
Section 3.3.3). Early-stopping was applied after 31 training epochs. The model architecture
was then trained again on the combined train and development set for 31 epochs and its
performance estimated on the test set. Performance scores per category are given in Table 4
and class-specific binary results in Figures 4–9. In difference to the scores given in Table 3,
all scores are calculated based on optimized thresholds. In comparison, this leads to a
notable decrease in correct samples for Activity and a notable increase in hamming score as
well as sample-based F-Score which is due to most thresholds being shifted towards higher
recall. In summary, the threshold adjustment has a positive influence, as it leads to a higher
number of correctly classified labels. Performance on the development set is, in general,
better than for the test set with the exception of the category Problem.
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Table 4. Performance evaluation for the selected model architecture on the test (development) set for
each category (see Figure 1).

Category Scores Binary F1
Test (Epoch 31) Cor H F1 M W

How? (Setting)
0.442

(0.466)
0.596

(0.624)
0.648

(0.677)
0.518

(0.526)
0.637

(0.656)

Talking with Whom?
0.722

(0.741)
0.769

(0.784)
0.789

(0.804)
0.241

(0.252)
0.790

(0.790)

Conversation Type
0.776

(0.768)
0.826

(0.826)
0.847

(0.849)
0.332

(0.335)
0.885

(0.884)

Activity
0.502

(0.539)
0.647

(0.671)
0.697

(0.716)
0.373

(0.364)
0.679

(0.686)

Mood
0.896

(0.906)
0.932

(0.934)
0.945

(0.945)
0.274

(0.278)
0.958

(0.954)

Problems
0.726

(0.667)
0.834

(0.793)
0.872

(0.836)
0.259

(0.296)
0.897

(0.865)

Figure 4. Receiver-operating characteristics and precision-recall curves for all binary classification
targets of How? Setting (see Figure 1).
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Figure 5. Receiver-operating characteristics and precision-recall curves for all binary classification
targets of Talking with whom? (see Figure 1).

Figure 6. Receiver-operating characteristics and precision-recall curves for all binary classification
targets of Conversation Type (see Figure 1).
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Figure 7. Receiver-operating characteristics and precision-recall curves for all binary classification
targets of Activity (see Figure 1).

Figure 8. Receiver-operating characteristics and precision-recall curves for all binary classification
targets of Mood (see Figure 1).
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Figure 9. Receiver-operating characteristics and precision-recall curves for all binary classification
targets of Problem (see Figure 1).

The percentage of correctly classified samples, the hamming score and the sample-
based F-Score given in Table 4 show that a large number of samples and labels per category
are classified correctly. However, most category scores—except the binary macro average—
are biased by class imbalances. An overview of the class-specific performance can best be
gained from ROC and precision-recall curves given in Figures 4–9. Here, it was found that
performance varies notably between categories. For Activity and “How? Setting”, multiple
classes can be recognized with a good recognition performance while for Conversation Type
and “Talking with whom?”, only single classes can be recognized well. For Mood and Problem,
performance is unsatisfactory.

• For How? Setting (Figure 4), the classes Talk can be recognized with high performance.
With multiple people, With one person, and Alone can be recognized well. Similar to
Activity, No-match shows a high F-Score but also a high fpr. Phone and Talking in noise
can be recognized to a small extent.

• For Talking with whom? (Figure 5), No-match can be recognized excellently while Friend
can be recognized well. Self and Partner could be recognized to a small degree while
the performance is bad for all remaining classes.

• Conversation Type (Figure 6) shows excellent performance for No-match and good
performance for Deep conversation both in terms of ROC and F-Score. Performance
is low for Small and Practical talk while Personal disclosure and Gossip could not be
recognized.

• For Activity (Figure 7), good performance was found for classes Sleep, In transit, and
Exercising and Socializing. No-match is recognized with a high F-Score, but the ROC
shows that the associated false positive rate (fpr) is also high. Eat/Drink, Housework,
and Intoxicated can be recognized to a small degree. Working and Hygiene could not
be recognized.

• Mood (Figure 8) was found to be the most challenging target. Only Mood:Laugh can be
recognized with acceptable performance. No-match has a high F-Score, but high fpr;
Sing can be recognized to a small degree; Sigh and Mad/Argue cannot be recognized
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at all; Cry is not included in the figure because there were no samples to test on (see
Figure 1).

• For Problem (Figure 9), only Friction can be recognized well. No-problem has a high
recall, but suffers from a high fpr. Background noise could be recognized to a small
degree while performance for Not wearing the EAR and Muffled voice was unsatisfactory.
Different language and Ear across the room could not be recognized.

5. Discussion

Applicability of the proposed pipeline could be demonstrated based on the categories
Activity and “How? Setting”. In general, it could also be shown that the method is applicable
when sufficient data support is available. Data availability has proven to be a central
issue for the proposed method. For all categories, there is a high correlation (Spearman’s
ρ = 0.85, p < 0.001) between sample number and recognition performance. This was an
expected finding because due to uncontrolled recording, the given data contain a lot of
noise hampering classification. Multi-task learning and data augmentation—both known
for artificially increasing sample size—did not help overcome this issue.

Notable gaps in classification performance exist between the given categories. While
a satisfactory performance could be achieved for multiple classes of Activity and “How?
Setting”, mediocre results were found for “Talking with whom?” and “Conversation Type”.
For Mood and Problem, performance was unsatisfactory for most classes. Aside data
availability, this is caused by structural reasons. For Activity and How, acoustic clues are
broader and present for a longer time. In both cases, information can be gathered from
background noise as well as speech as a general target. In comparison, the recognition of
a conversation partner (Whom?) requires interpretation of voice, pitch, topic, etc., while
the acoustic clues for Mood are often very short (Laugh, Sigh). A related problem is the
selectivity for categories and classes, as, for instance, Problems appear in many samples, but
are only annotated above a certain (subjective) threshold. Other classes such as Sleep and
No-match or Talking and Talking in noise are also very hard to distinguish. As annotators
were instructed to annotate with certainty, acoustic clues might be overlooked.

It could be shown that the proposed method can be used with limited computational
resources, and could, therefore, be integrated with the data recording on a mobile device.
However, based on the current performance, a fully automatic coding is not yet possible.
Since the proposed method allows tuning the results for precision and a number of classes
can be recognized well, the method could be employed to support coding.

6. Conclusions

In this work, we propose a deep neural network for the new problem of automatic
coding of social behavior and environment from uncontrolled audio recordings. The major
challenge is the bad quality of audio recordings resulting from the mode of recording
which also poses a significant challenge to human annotators. Further, multiple classes
can be true for each sample where acoustic clues for a single class might only present
less than a single second in recordings of 30 s duration. To overcome those challenges, a
pretrained audio classification model encoding features from a broad range of acoustic
events was incorporated in the proposed model and an attention mechanism was used to
effectively summarize long audio sequences. Based on the results, it was demonstrated
that social behavior and environments can be automatically classified from uncontrolled
audio recordings when sufficient training data are available. In particular, the categories
social Activity and Setting can be well predicted. Further, it was demonstrated that the
classification pipeline can be based on a low-resource deep learning model without a
significant loss in performance enabling an application on mobile devices.

However, the results showed that automatic analysis of uncontrolled audio recordings
is a difficult task, which is hampered by ambient noise and misplaced recording devices.
Moreover, selectivity between certain problems in the annotation is quite low and hampers
classification. Therefore, data sparsity for individual classes—and even entire coding
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categories—remains an issue for the creation of a fully automatic coding pipeline. As a
next step, the current pipeline could be used to support annotation and integrated with an
active learning approach [50] to increase the number of currently underrepresented classes.
Furthermore, temporal relations between different audio samples could be employed,
enabling the estimation of most likely sequences of social behavior rather than punctual
estimates. Finally, it has to be investigated whether multi-modal data analysis could
improve the classification performance. This includes the transcript but also other sensor
data, typically available from mobile devices.
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