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Abstract: Cancer is one of the most important causes of death worldwide. Several studies have
shown the efficacy of apricot kernel seed as a cancer therapy due to the presence of amygdalin. These
studies have demonstrated amygdalin’s cytotoxicity, antioxidant activity, and apoptosis in vitro using
human cancer cell lines. However, no studies have demonstrated their cancer activity in vivo. The
aim of this study is to develop an amygdalin-loaded niosomes (ALN) gel formulation as a drug
delivery system in order to investigate the selectivity, efficacy, and toxicity of amygdalin as a cancer
therapy in vivo using the 7,12-dimethylbenz (a) anthracene (DMBA) carcinoma rat model. Based
on pre-formulation studies, the ALN formulation composed of Tween 60: cholesterol: dihexadecyl
phosphate in a molar ratio of 1:2:0.1 was chosen as an optimum formulation because it has a percent
of EE of 66.52% with a particle size of 269.3 nm and a reflux of 3.54 µg.cm−2.h−1. The ALN gel
formulation was integrated into carbopol gel to be evaluated in vivo. Compared to DMBA control,
treatment with ALN gel showed a reduction in the carcinoma volume and in the hyperplasia of the
epidermis with no signs of edema. In conclusion, the ALN gel formulation could be an efficient
cancer therapy.

Keywords: cancer; herbal medicine; amygdalin; niosomes; DMBA

1. Introduction

“Cancer” is a group of diseases characterized by the uncontrolled growth and metas-
tasis of malignant cells throughout the body [1,2]. Throughout the 20th and 21st centuries,
cancer has been one of the most important causes of death [3–5]. Numerous cancer treat-
ment options, such as radiation, chemotherapy, and surgery, have been established [6,7].
However, herbal medicine is seen as a possible future cancer therapy due to its low side
effects, high pharmacological efficacy, and ability to be obtained at low prices [8,9]. Natu-
ral products are a promising resource for chemo-preventive and chemo-therapeutic drug
development [10–18]. Approximately 80% of all medications approved by the FDA in the
last three decades have been derived from natural sources [19,20]. Thus, it is crucial to
develop chemo-preventive and chemo-therapeutic drugs derived from nature. Apricot
kernel seed has been employed as a model herbal medicine. Several studies have shown the
efficacy of using apricot kernel in cancer therapy [1,8,21–26]. These studies suggest that the
presence of amygdalin in apricot kernels is responsible for their anti-proliferative properties.
Amygdalin induces apoptosis, which inhibits cancer cell proliferation and survival [1,8,21].
Amygdalin has cyanogenic glycosides that are broken down by the beta-glucosidase en-
zyme into hydrogen cyanide and benzaldehyde, which synergistically destroy and kill
cancer cells [23,25]. It also has antioxidant properties that reduce oxidative stress in cancer
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cells [26]. Numerous studies have demonstrated amygdalin’s cytotoxicity and apoptosis in
human cancer cell lines [24,27–30]. However, to the best of our knowledge, no studies have
been conducted to demonstrate the efficacy and toxicity of amygdalin in vivo using the 7,
12-dimethylbenz(a) anthracene (DMBA) carcinoma rat model.

Despite the fact that amygdalin has been shown to be effective as a cancer therapy,
it can cause cyanide poisoning if taken orally in tablet form [31,32]. Transdermal drug
delivery is a promising route for cancer treatment compared with the oral route due to its
low side effects and improved efficacy and selectivity [33,34]. No first-pass metabolism or
plasma drug level fluctuation is associated with transdermal drug delivery [35,36]. How-
ever, the presence of the stratum corneum prevents drugs from being delivered deeply
into and across the skin. The inclusion of permeation enhancers can enhance skin per-
meability and facilitate drug absorption [37,38]. Nano-particles, such as liposomes and
niosomes, are created from penetration enhancers that have diffusion properties and could
be used to deliver drugs in a targeted and controlled manner [37,38]. Niosomes are bet-
ter than liposomes because they do not have phospholipids, which can be oxidized and
hydrolyzed [37,38]. Noisomes are targeted drug delivery systems that use non-ionic surfac-
tants and cholesterol to increase transdermal transport and efficacy of water-soluble drugs,
such as amygdalin [37–40]. Non-ionic surfactants diminish stratum corneum’s barrier
characteristics by altering its partitioning potential and emulsifying the sebum’s compo-
sition [37,38]. Noisomes improve the bioavailability and efficacy of drugs in neoplastic
cells [37,41]. As a solubilizing matrix, niosomes have been shown to increase drug stability
and reduce drug toxicity [37–39]. The aim of this study is to develop an amygdalin-loaded
niosome (ALN) gel formulation as an efficient drug delivery system for amygdalin in an
attempt to study the efficacy and toxicity of amygdalin as a cancer therapy in vivo using
the DMBA carcinoma rat model. The design and evaluation of different ALN formulations
were set up so that the optimum formulation could be chosen based on criteria, such
as enhancing delivery and permeation. Then, the optimum formulation was put into a
carbopol gel to investigate the efficacy and toxicity of the ALN gel formulation compared
to oral tamoxifen in vivo using the DMBA carcinoma rat model.

2. Results and Discussion
2.1. Preparation and In Vitro Characterization of Optimum ALN Formulation
2.1.1. Optimization of ALN Formulations

Different ALN formulations were successfully prepared. The standard calibration
curve as described by Sohail et al. was obtained and found to be reliable to quantify
amygdalin with a coefficient of determination (R2) of 0.999, indicating linearity [29]. Pre-
formulation studies were carried out to identify the ability of independent variables to
form amygdalin-loaded niosomes [38,41–43]. HLB expresses proportionally the strength of
polarity of surfactants and allows for the selection of appropriate surfactants to produce
physically stable niosomes [39,40,44]. Span 60 and Tween 60 were used as non-ionic
surfactants because their lengthy alkyl chains allowed for the production of niosomes with
a high percent of EE and rigid vesicular membranes [37,40,43,45]. The percent of EE and
particle size of different ALN formulations were determined and found to range from
5.97 ± 1.05% to 66.52 ± 0.57% and from 175.5 ± 17.12 nm to 393.33 ± 8.60 nm, respectively.
As shown in Table 1, a rise in HLB values was associated with a statistically significant
(p < 0.05) increase in the percent of EE, particle size, and PDI. The formulations composed
of Tween 60 gave better encapsulation of amygdalin and the highest particle size and
PDI due to the hydrophilicity of amygdalin, high HLB, and high surface free energy of
Tween 60, allowing for the formation of stiff large vesicles [37,39,40,43]. As the value
of HLB was reduced, the percent of EE, PDI, and size of the vesicles decreased due to
the high hydrophobicity of Span 60 [43]. These findings were consistent with those of
Waddad et al. and Nowroozi et al. [39,43]. Cholesterol is a stiff molecule that increases
the bilayer’s rigidity and, consequently, its physical stability [37,39,43,44]. The results
of pre-formulation studies revealed that a rise in cholesterol content of the formulations
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composed of Tween 60 was associated with a statistically significant (p < 0.05) increase in the
percent of EE and a decrease in particle size and PDI. These results were obtained because
cholesterol decreases the surface free energy and enhances the bilayer hydrophobicity
and rigidity, leading to fewer leaky and stable vesicles [37,39,43,44]. These findings were
consistent with those of Chaw et al. and Waddad et al. [41,43]. DDP is a charge inducer
used in the preparation of niosomes to give them a high negative zeta-potential value
and, thus, repulsive forces with the skin surface, which is beneficial for stability and
transdermal drug delivery [40,43]. All ALN formulations containing DDP exhibited a
higher percent of EE and smaller particle size and PDI than those that did not have DDP
at the molar ratio investigated. However, by increasing the amount of DDP beyond the
limit, a significant (p < 0.05) decrease in the percent of EE and a significant (p < 0.05)
increase in the particle size and PDI were observed because DDP increases the surface free
energy and the bilayer hydrophilicity [40,41,43,46,47]. These findings were consistent with
those of Waddad et al. [43]. According to these outcomes, the formulation composed of
Tween 60: cholesterol: DDP in a molar ratio of 1:2:0.1 was considered the formulation of
choice because it had a high percent of EE of 66.52 ± 0.57% with a small particle size of
269.3 ± 9.58 nm and a low PDI of 0.331 ± 0.01.

Table 1. In vitro characterization of ALN gel formulations.

Formulation Code X1 X2 X3 Y1 (%) (Mean ± SD) Y2 (nm) (Mean ± SD) Y3 (Mean ± SD)

F1 14.9 2:1 1:0.1 22.32 ± 0.84 349.80 ± 4.51 0.710 ± 0.01
F2 14.9 1:1 1:0.1 28.82 ± 4.30 330.23 ± 10.05 0.610 ± 0.02
F3 14.9 1:2 0 17.53 ± 1.10 395.33 ± 8.60 0.730 ± 0.02
F4 4.7 1:2 1:0.1 5.97 ± 1.05 175.50 ± 17.12 0.253 ± 0.03
F5 9.8 1:2 1:0.1 46.32 ± 0.84 192.43 ± 2.52 0.303 ± 0.02
F6 14.9 1:2 1:0.1 66.52 ± 0.57 269.30 ± 9.58 0.331 ± 0.01
F7 14.9 1:2 1:0.2 48.76 ± 0.45 343.07 ± 16.07 0.523 ± 0.01

X1: HLB; X2: non-ionic surfactant: cholesterol molar ratios; X3: dihexadecyl phosphate: non-ionic surfactant molar
ratios. Y1: % EE; Y2: vesicle size; Y3: Poly Dispersity Index. SD: standard deviation.

2.1.2. Differential Scanning Calorimetry (DSC)

Thermograms of pure amygdalin, a lyophilized optimum ALN formulation, Tween 60,
cholesterol, and DDP, are shown in Figure 1. The DSC curves of amygdalin, Tween 60,
DDP, and cholesterol revealed sharp endothermic peaks at 227 ◦C, 25 ◦C, 79 ◦C, and
149 ◦C, respectively, corresponding to their melting points. The DSC thermogram of the
optimum ALN formulation manifested the shifting of the endotherms of Tween 60 and the
disappearance of the characteristic peaks of amygdalin, DDP, and cholesterol. The DSC
was used to highlight the impact of the niosomal formulation on their ingredients and
amygdalin by altering their thermodynamic characteristics [48,49]. Shifting the thermal
peak of Tween 60 indicated an alteration of the transition peak of Tween 60 [41,48,49]. The
high percentage of EE of ALN and complete solubility of amygdalin could explain the
absence of the amygdalin thermal peak.

2.1.3. Transmission Electron Microscopy (TEM)

The morphology of the optimum ALN formulation was investigated in Figure 2. The
vesicles showed spherical vesicular structures existing in a dispersed pattern.

2.1.4. Zeta Potential

The PDI and zeta potential of the optimum ALN formulation were investigated in
Figure 3. The optimum ALN formulation had a low PDI value, indicating a consistent size
distribution, low interfacial tension, a homogeneous noisome, and fewer tendencies for
aggregation [39,40,43]. It is crucial to measure the electrostatic charge of the optimum ALN
formulation to assess its stability and potential for transdermal drug administration [40,41]. The
zeta potential of the optimum ALN formulation was found to be −4.88 ± 0.65. The value
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of the zeta potential indicated a negative surface charge, which is considered advantageous
for transdermal drug delivery and for electrostatic stabilization due to the electrostatic
repulsions between vesicles [40,41,50,51].
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2.1.5. In Vitro Amygdalin Release Kinetics Study

Based on the pre-formulation study, 20 mL of PB (pH 7.4) was used as a release
medium because it was greater than the saturation solubility of amygdalin and could be
used in the sink condition of the release and permeation studies. These findings were
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consistent with those of Sohail et al. [29]. It was obtained from the release profile (Figure 4A)
that amygdalin was released from the optimum ALN formulation at a lower rate (p < 0.05)
compared with free amygdalin due to the high cholesterol content and the presence of
DDP [38,43]. These findings were consistent with those of Waddad et al. [43]. In Table 2, the
kinetics of the release of amygdalin from the optimum ALN formulation were compared
with free amygdalin. The data of the optimum ALN formulation best fitted the Weibull
model, while the data of free amygdalin best fitted the Korsmeyer–Peppas model because
they had minimum AIC and maximum R2 and MSC. Non-fickian diffusion was shown to
be the mechanism of release for both the optimum ALN formulation (n = 0.704) and the
amygdalin solution (n = 0.565). Dissolution profiles of both the optimum ALN formulation
and the amygdalin solution were also observed to differ significantly (p < 0.05), with f 2
being 42.46.
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Table 2. Release Kinetics of optimum ALN formulation.

Models
Formulation Code

Free Amygdalin Solution Optimum ALN Free Amygdalin Gel Optimum ALN Gel

Zero-order

R2 0.8306 0.8931 0.8301 0.9813

AIC 74.16 68.9844 70.5037 43.3294

MSC 1.1574 1.7850 1.1545 3.5498

First-order

R2 0.9810 0.9778 0.9719 0.9666

AIC 52.6823 53.2812 52.5032 49.1558

MSC 3.3502 3.3553 2.9546 2.9672

Higuchi

R2 0.9944 0.9099 0.9939 0.8702

AIC 40.2658 67.2772 36.825 62.7321

MSC 4.5919 1.9557 4.5224 1.6095

Korsmeyer–Peppas

R2 0.999 0.9521 0.9985 0.9830

AIC 24.6978 62.9484 24.4751 44.3785

MSC 6.1487 2.3886 5.7574 3.4449

Weibull

R2 0.9843 0.997 0.9920 0.9873

AIC 54.7420 36.8968 43.4813 43.5044

MSC 3.1442 4.9938 3.8568 3.5323

Hixson–Crowell

R2 0.9709 0.9720 0.9477 0.9750

AIC 57.0082 55.5794 58.7300 46.2607

MSC 2.9176 3.1255 2.3319 3.2567
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2.2. Preparation and In Vitro Characterization of Optimum ALN Gel Formulation
2.2.1. Viscosity Coefficient Measurement of Optimum ALN Gel Formulation

Successfully, optimum ALN formulation and free amygdalin gel formulations were
prepared. Carbopol® is a crosslinked anionic synthetic polymer with high viscosity and
bio-adhesive properties [48,50,52]. Triethanolamine was used as a neutralizing agent [52].
The optimum ALN gel formulation had a viscosity that was statistically (p < 0.05) higher
than that of the free amygdalin gel. Viscosity coefficient measurement (Table 3) showed
that the viscous characters of the optimum ALN formulation were increased due to the
crosslinking of carbopol polymer and niosome alignment as a function of shear stress [48].

Table 3. In vitro characterization of optimum ALN gel formulation.

Formulation Code Viscosity Coefficient (cP) Release (%) Flux (µg.cm−2.h−1)

Free amygdalin solution 98.24 ± 1.36
Optimum ALN 74.36 ± 1.07

Free amygdalin gel 137.43 ± 1.46 80.17 ± 1.78 1.76 ± 0.04
Optimum ALN gel 169.04 ± 1.06 60.45 ± 1.11 3.54 ± 0.03

2.2.2. Release and Permeation Studies of Optimum ALN Gel Formulation

It was obtained from the permeation profile (Figure 4B) that amygdalin was permeated
from the optimum ALN gel at a higher rate (p < 0.05) compared with free amygdalin gel.
Table 3 displays the release and flux of the optimum ALN gel formulation compared to
that of the free amygdalin gel. The crosslinking and high viscosity of carbopol polymer
explain the slow release of the prepared gels [48,50]. The presence of a non-ionic surfactant
(tween 60) in the structure of niosomes was correlated with improved permeation due to
its ability to be adsorbed at interfaces and its ability to modify the lipid membranes by
disrupting the stratum corneum barrier [48,53]. These findings were consistent with those
of Arafa et al. [48]. The kinetics of release of amygdalin from the optimum ALN gel best
fitted the zero model, while data of free amygdalin gel best fitted the Korsmeyer–Peppas
model because they had minimum AIC and maximum R2 and MSC. Non-fickian diffusion
was shown to be the mechanism of release for both the optimum ALN gel (n = 0.940) and
the amygdalin gel (n = 0.553).
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2.3. In Vivo Characterization of Optimum ALN Gel Formulation
2.3.1. Treatment Efficiency of Optimum ALN Gel Formulation

It was obtained from Figure 5 that the optimum ALN gel formulation reduced mean
relative carcinoma volume (MCV) compared with the DMBA control. The efficiency
of treatment (Figure 6) was in the following arrangement: optimum ALN gel > oral
amygdalin > oral tamoxifen > plain niosomes gel. The optimum ALN gel formulation
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reduced mean relative carcinoma volume (MCV) at a higher rate (p < 0.05) compared
with free amygdalin solution and free tamoxifene suspension. The group treated with
plain niosomes gel showed MCV nearly similar to that of the DMBA control group. After
completing the experiment, the carcinoma growth inhibition (%CGI) of oral tamoxifen,
oral amygdalin, and optimum ALN gel was calculated and found to be 54.57, 78.56, and
91.26%, respectively. The group treated with the optimum ALN gel formulation showed
the lowest MCV and the highest percent of CGI because niosomes enhanced the permeation
of amygdalin and specifically targeted and accumulated it in a solid tumor, creating a drug
depot at the site of application and allowing for a controlled release for an extended period
of time.
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2.3.2. Anti-Tumor Activity of Optimum ALN Gel Formulation

Histological examination of the DMBA control group (Figure 7B) revealed the pres-
ence of neoplastic cells, dermal granulation, sub-cutaneous edema, hyperkeratosis, and
inflammatory cell infiltrations. Histological examination of the plain niosomes gel treated
group (Figure 7E) revealed the presence of all toxicity signs in the skin layers. Histologi-
cal examination of the oral tamoxifen suspension treated group (Figure 7C) revealed the
presence of hyperkeratosis and acanthosis in the surface epithelium of the epidermis with
signs of a diffuse inflammatory response and edema in the dermis and sub-cutaneous
tissue. Histological examination of the oral amygdalin solution treated group (Figure 7D)
observed a reduction in the hyperplasia and acanthosis in the surface epithelium of the
epidermis with low signs of a diffuse inflammatory response and edema in the dermis
and subcutaneous tissue. Histological examination of the optimum ALN gel treated group
(Figure 7F) showed clearly healed skin with normal covering epithelium and marked
improvement in all signs of the epidermis and dermis that were better than those of the
oral amygdalin solution. These results confirmed the effectiveness of amygdalin loaded
niosomes gel as a cancer therapy in vivo.

2.3.3. Toxicity of Optimum ALN Gel Formulation

Histological examination of the control negative (non-infected or treated rats) group
(Figure 8A) showed that the dermal and epidermal layers of the skin were completely
normal, and there were no signs of a diffuse inflammatory response or swelling in the
dermis and subcutaneous tissue. Histological examination of the optimum ALN gel-treated
group (Figure 8B) showed clearly healed skin with normal covering epithelium. A decrease
in the surface epithelium and appendages was markedly observed with the appearance of
the normal skin structure, which indicated the safety of optimum ALN gel treatment.
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3. Materials and Methods
3.1. Materials

Amygdalin was attained from Nature’s Only Choice Company (Tbilisi, GA, USA).
Sigma Aldrich (Agitech Company, Cairo, Egypt) provided Tween 60, Span 60, cholesterol,
7, 12-dimethylbenz[a] anthracene (DMBA), triethanolamine, and dihexadecyl phosphate.
Carbopol 934, methanol, acetone, and chloroform were attained from Corner-Lab Company
(Cairo, Egypt).
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3.2. Preparation and In Vitro Characterization of Optimum Amygdalin-Loaded Niosomes
(ALN) Formulation
3.2.1. Preparation of ALN Formulations

Pre-formulation studies were carried out to select the optimum ALN formulation for
in vitro and in vivo characterization. Different ALN formulations (Table 1) were prepared
to study the effects of hydrophilic-lipophilic balance (HLB) values (4.7–14.9), non-ionic
surfactant: cholesterol molar ratios (0.5–2), and dihexadecyl phosphate (DDP): non-ionic
surfactant molar ratios (0–0.4) as independent variables [38,41–43]. HLB expresses propor-
tionally the strength of polarity of surfactants and allows for the selection of appropriate
surfactants to produce physically stable niosomes [39,40,44]. Span 60 (HLB = 4.7) and
Tween 60 (HLB = 1 4.9) were used as non-ionic surfactants [37,40,43,45]. The particle size
and entrapment efficiency (percent of EE) were used as dependent variables. Using the
criteria of maximum percent of EE and minimal particle size, optimization was achieved.

Using the thin film hydration method, various ALN formulations were prepared [38].
An organic solution (10 mL) of chloroform and methanol (3:1) was used to dissolve the
calculated amounts of non-ionic surfactant, cholesterol, and DDP. This solution was then
poured into a round-bottom flask and evaporated under vacuum using a Stuart rotary
evaporator (RE300, UK) at 100 rpm and 40 ◦C. After evaporation of the organic solution,
a thin film of niosomes was formed inside the flask. Amygdalin (10 mg) was dissolved
in phosphate buffer (PB, 10 mL) and added to the resultant film at 60 ◦C for 2 h to ob-
tain the ALN formulation. The prepared formulation was sonicated for 30 min with an
ultrasonicator (Sonix, IL, USA) and kept at 4 ◦C.

3.2.2. Determination of Entrapment Efficiency

Using a UV/Vis spectrophotometer at 255 nm, a standard calibration curve was
created to measure the amount of amygdalin in an unknown sample. The content of
amygdalin entrapped in each ALN formulation was computed by measuring the per-
cent of EE (Equation (1)) [54]. A centrifuge (SIGMA, Steinheim, Germany) was used to
isolate ALN pellets from the supernatant at 15,000 rpm for 1 h. The amount of amyg-
dalin in the supernatant was measured using a UV/Vis spectrophotometer at 255 nm in
three replicates.

%EE =
(Initial amygdalin amount − The amount of amygdalin in the supernatant)

Initial amygdalin amount
× 100 (1)

3.2.3. Particle Size and Poly Dispersity Index Determination

The particle size and polydispersity index (PDI) are important noisome properties
that affect the particle’s dispersion, homogeneity, distribution and subsequent ability to be
targeted [39]. Each ALN formulation (1 mL) was diluted with distilled water (9 mL) and
measured three times using dynamic light scattering (DLS, Malvern, Germany) to estimate
its particle size and PDI.

3.2.4. Differential Scanning Calorimetry (DSC)

Thermal behavior and compatibility of the optimum ALN formulation with its indi-
vidual constituents were observed by DSC (60F3, Maia, Germany) [55]. Samples (3–5 mg) of
amygdalin, optimum ALN formulation, Tween 60, cholesterol, and DDP were put into DSC
aluminium pans (50 µL) with a 0.1 mm thickness. DSC thermograms were performed at a
heating rate of 5 ◦C/min, a 25 mL/min flow rate of nitrogen gas, and over a temperature
range of 20–300 ◦C.

3.2.5. Transmission Electron Microscopy (TEM)

The morphology of the optimum ALN formulation and its surface characteristics were
observed by TEM (Carl Zeiss, Germany) [50]. A sample (20 µL) of the optimum ALN
formulation was applied to a carbon-coated copper grid and stained with phosphotungstic
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dye. The sample was left to dry and was figured at different magnifications using TEM
(70 kV voltages).

3.2.6. Zeta Potential Determination

The zeta potential was determined to measure the electrostatic charge and stability
of the optimum ALN formulation [40,41]. The optimum ALN formulation (1 mL) was
diluted with distilled water (9 mL) and measured three times using DLS to estimate its zeta
potential [50].

3.2.7. In Vitro Amygdalin Release Kinetics Study

The amount of amygdalin released from the optimum ALN formulation was computed
by measuring the percent of release compared to free amygdalin (Equation (2)) [29]. Three
samples (equivalent to 2 mg of amygdalin) of the optimum ALN formulation were placed
in a glass tube with dialysis bags (diffusion membrane with a molecular weight cut-off of
12,000–14,000 Da) covering their lower end. The glass tube was hung up in the Hanson
dissolution apparatus and immersed in PB (20 mL, pH 7.4) as a release medium. The
experiment was carried out at 100 rpm and 37 ± 0.5 ◦C to maintain sink conditions. At
different times, 2 mL samples were taken and analyzed with a UV/Vis spectrophotometer
at 255 nm. The samples were then replaced with the same volume of PB.

% Release =
Concentration of amygdalin at each time interval

Initial concentration of amygdalin
× 100 (2)

The kinetics of amygdalin’s release from the optimum ALN formulation compared
to free amygdalin were determined using DDSolver program software [56]. The release
data of the optimum ALN formulation and free amygdalin were analyzed to select the
best-fitted model attaining the lowest Akaike information criterion (AIC), the highest
model selection criterion (MSC), and the coefficient of determination (R2). According to
the Korsmeyer–Peppas equation, the mechanism of amygdalin’s release from the optimum
ALN formulation compared to free amygdalin was assessed [43]. If the value of n is less
than 0.5, the release mechanism is fickian; if n is between 0.5 and 1, the release mechanism is
non-fickian. According to a similarity factor “f2”, the significance of the difference between
the optimum ALN formulation and free amygdalin was assessed.

3.3. Preparation and In Vitro Characterization of Optimum ALN Gel Formulation
3.3.1. Preparation of Optimum ALN Gel Formulation

The optimum ALN gel formulation was prepared using carbopol 934 gel base. The
gel was attained by slowly adding 2 gm of carbopol 934–100 mL of water with continuous
swirling. The resultant gel was neutralized by triethanolamine [48]. Free amygdalin gel
was prepared by slowly stirring free amygdalin into carbopol gel. The optimum ALN
gel formulation was prepared by slowly stirring the optimum ALN formulation into
carbopol gel.

3.3.2. Viscosity Coefficient Measurement

The viscosity coefficient of the optimum ALN gel formulation compared to free
amygdalin gel was measured using a Brookfield viscometer (DV-III ULTRA, USA) [48].
Samples (1 gram) of free amygdalin and ALN gel formulations were placed in a viscometer
plate and examined at 37 ◦C in three replicates. Each run of the Brookfield viscometer
involved changing the speed from 5 to 50 rpm, and then the speed was reversed. In order
to calculate the viscosity coefficient, the following formula was used:

Log (shear stress) = N log (shear rate) − log (viscosity coefficient) (3)
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3.3.3. Ex-Vivo Permeation Study

The amount of amygdalin permeated from the optimum ALN gel formulation was
compared to free amygdalin gel by measuring the percent of permeation (Equation (4)) [48].
Three samples (equivalent to 2 mg of amygdalin) of the optimum ALN gel formulation
were placed in a glass tube with excised skin of rats (diffusion membrane with surface area
of 5 cm2) covering their lower end. The glass tube was hung up in the Hanson dissolution
apparatus and immersed in PB (20 mL, pH 7.4) as a receptor medium. The experiment
was carried out at 100 rpm and 37 ± 0.5 ◦C to maintain sink conditions. At different
times, 2 mL samples were taken and analyzed with a UV/Vis spectrophotometer at 255
nm. The samples were then replaced with the same volume of PB. The steady-state flux
was determined in triplicate as follows [48]:

% Permeation =
Concentration of amygdalin at each time interval

Initial concentration of amygdalin
× 100 (4)

Steady-state flux = the permeation rate/the skin area (5)

3.4. In Vivo Characterization of Optimum ALN Gel Formulation
3.4.1. Tumor Induction

In different cages, thirty adult male Swiss albino rats (200–300 g) were maintained at
standard conditions of temperature (22 ± 2 ºC), humidity (50 ± 5%), food, and water. After
7 days of adaptation, the hair on each rat’s back was removed (3 × 3 cm2 surface area). Two
days later, DMBA (1 mg in 200 µL acetone) was administered to each rat subcutaneously
to induce the carcinoma [57]. DMBA is a highly effective carcinogen, capable of causing
mammary carcinoma in rats [58–60]. In accordance with Beni-Suef University’s animal
ethics committee, this method was approved (BSU-IACUC 022-283).

3.4.2. Study Plan

Thirty rats (6 rats/each group) were distributed at random as follows:
A: DMBA control (no treatments were given)
B: Aqueous dispersion of tamoxifen (10 mg/kg body weight [61]) was administered

orally to rats.
C: An aqueous solution of amygdalin (10 mg/kg body weight) was administered

orally to rats.
D: Plain niosomal gel was topically applied to rats.
E: The optimum ALN gel formulation (10 mg/kg body weight) was topically applied

to rats.

3.4.3. Treatment Efficiency of Optimum ALN Gel Formulation

Measuring the mean relative carcinoma volume (MCV) and percentage carcinoma
growth inhibition (%CGI) was the standard method to estimate the effectiveness of the
optimum ALN gel formulation as a cancer therapy [54]. The width and length of the
carcinoma mass of each rat were measured twice weekly with a digital caliber till the end
of the experiment. MCV and %CGI were measured as follows:

Carcinoma volume =
[(Width of carcinoma mass) 2̂ x length of carcinoma mass]

2
(6)

MCV =
Carcinoma volume at the end o f the experiment

Carcinoma volume at f irst day o f treatment
(7)

%CGI = 100 –
(

100 × Treated groups MCV
DMBA control MCV

)
(8)
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3.4.4. Histopathological Examination of Optimum ALN Gel Formulation

The effectiveness and toxicity of the optimum ALN gel formulation as a cancer therapy
were confirmed using histopathological examination [62]. At the end of the study, each
rat (6 rats/each group) was sacrificed by cervical dislocation after IP injection of a mixture
(0.1 mg/100 gm) of ketamine (90 mg/kg) and xylazine (5 mg/kg) at a ratio of 1:1 for
anesthesia. A carcinoma from each rat was taken and preserved in buffered formalin.
Sections (4–6 µm) of carcinoma were cut and mounted on clear and dry glass slides. The
obtained slides were stained with hematoxylin and eosin (H and E) for histopathological
examination by LEICA (DFC290 HD system digital camera, Heerbrugg, Switzerland)
connected to the light microscope [62]. All signs observed in the layers of skin (epidermis,
dermis, and subcutaneous tissue) were recorded as parameters of treatment efficiency
and toxicity.

3.5. Statistical Analysis

In order to determine statistical significance, the student t-test or ANOVA was used
via SPSS with p < 0.05.

4. Conclusions

Pre-formulation studies were carried out to identify the ability of independent vari-
ables to form the novel amygdalin-loaded niosomes (ALN) formulation. The results of
pre-formulation studies revealed that a formulation composed of Tween 60: cholesterol:
dihexadecyl phosphate in a molar ratio of 1:2:0.1 was considered the formulation of choice
because it had the highest %EE with a consistent size distribution. The optimum ALN
formulation was integrated into carbapol gel to evaluate the efficacy and toxicity of the
optimum ALN gel as a cancer therapy in vivo using the DMBA carcinoma rat model.
The optimum ALN gel enhanced the permeation of amygdalin into deep skin layers and
showed significant anti-tumor activity compared with oral tamoxifen. In conclusion, the
optimum ALN gel formulation is an efficient drug delivery system for amygdalin and an
efficient cancer therapy.
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