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Abstract: Positively charged ion species and charged lipids play specific roles in biochemical processes,
especially those involving cell membranes. The cell membrane and phase separation domains are
attractive research targets to study signal transduction. The phase separation structure and functions of
cell-sized liposomes containing charged lipids and cholesterol have been investigated earlier, and the
domain structure has also been studied in a membrane model, containing the yeast sterol ergosterol.
The present study investigates phase-separated domain structure alterations in membranes containing
charged lipids when cholesterol is substituted with ergosterol. This study finds that ergosterol increases
the homogeneity of membranes containing charged lipids. Cholesterol-containing membranes are more
sensitive to a charged state, and ergosterol-containing liposomes show lower responses to charged
lipids. These findings may improve our understanding of the differences in both yeast and mammalian
cells, as well as the interactions of proteins with lipids during signal transduction.

Keywords: ergosterol; cholesterol; signal transduction; liposomes; charged lipids

1. Introduction

Minerals are one of the most important nutrient groups. Previously, the authors extracted
mineral elements from cultivated oysters and measured their concentrations [1,2]. At that
time, calcium, sodium, zinc, magnesium, and potassium were measured. Minerals such as
calcium and sodium exist as ions in cells. Calcium ions are known as signal transduction
messengers and display increased levels when the signal is “on”, and reduced levels when
the signal is “off”. Mineral species often exist as positive ions under physiological conditions.
Each positive ion species, such as sodium or potassium, has specific roles to play in order
to activate motor proteins in microorganisms [3]. The cell membranes are composed of a
phospholipid bilayer [4], containing various proteins, together with unsaturated and saturated
phospholipids and sterols. The cell membrane not only separates the outside from the inside
of the cells, but is also involved in the transmission of signals. The raft model [5,6] has
been proposed to explain the emergence of a domain structure from the phase separation of
membrane lipids. The sterols present in the membrane bilayer are mainly cholesterol and
ergosterol in animal and fungal cells, respectively.

It has been reported that calcium ion concentration-dependent signal transduction
and the assembly and dispersion of a domain rich in cholesterol and saturated lipids,
i.e., the raft domain [5,6], exists in the cell membrane and is linked to the switching of
signal transduction [7]. Cell membranes contain charged lipids [8] and the phase sepa-
ration structures and functions of cell membranes containing charged lipids have been
studied using cell-sized liposomes [9,10]. The domain structure has also been observed in a
model membrane containing ergosterol from yeast cells, suggesting that the raft structure
could be reproduced [11]. Conversely, in experiments using actual yeast cells, fluorescence
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localization was observed in membranes of the cells labeled with the sterol-binding flu-
orescent reagent filipin, suggesting the presence of ergosterol in membranes [12]. It has
been reported that membrane proteins display a conformational change when liposomes
contain ergosterol instead of cholesterol [13]. Therefore, the mechanism underlying mem-
brane changes during sterol presence has been investigated. It has been shown earlier that
the liquid-ordered (Lo) phase is easily formed in presence of ergosterol in nanoscale lipo-
somes [14–16]. Furthermore, ergosterol reportedly alters liposome morphology in cell-sized
liposomes [17] and affects domain structure with temperature fluctuations [18,19].

Herein, we investigate the effects on the phase-separated domain structure in mem-
branes containing charged lipids when cholesterol is substituted with ergosterol. This
study provides important information on differences in cellular processes, such as protein
function and regulation, during protein–lipid interactions in membranes.

2. Materials and Methods
2.1. Materials

All lipids (Figure 1) and sterols (Figure 2) used in this study are shown respec-
tively. 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC), cholesterol (Chol), and ergosterol (Erg) were purchased from
Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan). Further, 1,2-dipalmitoyl-sn-glycero-3-
phosphoglycerol (DPPG) was purchased from Cayman Chemical Company (Ann Arbor, MI,
USA). The red fluorophore-labeled lipid, Lissamine™ Rhodamine B 1,2-dihexadecanoyl-sn-
glycero-3-phosphoethanolamine, triethylammonium salt (Rhodamine DHPE) was obtained
from Invitrogen (Carlsbad, CA, USA). The blue fluorescence-labeled dye for sterol detection,
BODIPY-cholesterol, was purchased from Cayman Chemical Company. Ultrapure water
obtained from the RFD240NC purification system (ADVANTEC, Tokyo, Japan) was used
for reagent preparation and glassware cleaning. Acetone was purchased from Wako Pure
Chemical (Osaka, Japan). Chloroform was purchased from Kanto-chemical (Tokyo, Japan).
Sodium chloride (NaCl) was purchased from Fujifilm Wako Pure Chemical (Osaka, Japan).
Finally, pH test paper 073200 was purchased from Whatman (Whatman, Maidstone, UK).
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Figure 1. The structures of three lipids: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, A); 1,2di-
palmitoyl-sn-glycero-3-phosphocholine (DPPC, B); and 1,2-dipalmitoyl-sn-glycero-3-phosphoglyc-
erol (DPPG, C). 
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phosphoglycerol (DPPG, C).



Membranes 2022, 12, 1121 3 of 10

Membranes 2022, 12, 1121 4 of 11 
 

 

 

 
Figure 2. The structures of cholesterol (Chol, A), and ergosterol (Erg, B). 

2.2. Liposome Preparation Protocol 
Several different types of liposomes were prepared, including giant unilamellar ves-

icles (GUV) and model membranes/liposomes. A slightly modified version of the method 
of natural swelling from dry lipid films was used as outlined in previous studies [9,20–
34]. Since unilamellar vesicle formation is highly sensitive to the preparation conditions, 
samples were prepared under well-controlled physical conditions, as described below. 
Glass test tubes were thoroughly washed with acetone and air-dried. Further, mixtures of 
lipids and Rhodamine DHPE were dissolved in chloroform, in these glass test tubes under 
argon gas. The tubes were then dried under vacuum for 3 h to form thin lipid films. Next, 
some of the films were hydrated overnight with ultrapure water at room temperature (20 
± 2.0 °C) to reach the final concentration of 0.2 mM total lipid, 0.1 μM Rhodamine DHPE, 
and 0.2 μM BODIPY-cholesterol in the hydrated film. Another batch of films was hydrated 
with ultrapure water or 10 mM NaCl solution at 50 °C for over 3 h using a drying oven 
(DV 41, Yamato Scientific Co., Ltd., Tokyo, Japan) for GUV formation. The lipids should 
appear in a fluid state where swelling occurs at T > Tm (melting temperature) of DPPC at 
41 °C [35,36]. During hydration, the test tubes were double wrapped with parafilm and 
aluminum foil to prevent oxidation and to preserve fluorescence. After hydration, the test 
tubes were stored in a drawer at a constant room temperature in the dark until the time 
of observation, which would take place within a week. 

2.3. Microscopic Observation 
A 6 μL sample of each liposome solution, prepared as described above, was placed 

in a silicon well (0.2 mm depth) on a glass slide, and covered with a small cover slip. All 
solutions of liposomes had pH values around 7.0. Domain liposomes were then observed 
using a fluorescence microscope (BX51; Olympus, Tokyo, Japan) at room temperature, 
which was maintained using a thermal plate (TPi-X; Tokai-Hit, Fujinomiya, Japan). Im-
ages of phase-separated liposomes were obtained using a microscope-attached digital 
camera (WRAYCAM-VEX830; Wraymer, Osaka, Japan). At least 60 liposomes were ob-
served for each type of lipid mixture. Samples were chosen randomly from cell-sized lip-
osomes (~10 μm diameter). Observations made on the prepared liposomes, at least three 
different times, confirmed that the preparation was highly reproduceable. 
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The data of the phase separation ratios of liposomes are expressed in terms of the 
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2.2. Liposome Preparation Protocol

Several different types of liposomes were prepared, including giant unilamellar vesi-
cles (GUV) and model membranes/liposomes. A slightly modified version of the method
of natural swelling from dry lipid films was used as outlined in previous studies [9,20–34].
Since unilamellar vesicle formation is highly sensitive to the preparation conditions, sam-
ples were prepared under well-controlled physical conditions, as described below. Glass
test tubes were thoroughly washed with acetone and air-dried. Further, mixtures of lipids
and Rhodamine DHPE were dissolved in chloroform, in these glass test tubes under argon
gas. The tubes were then dried under vacuum for 3 h to form thin lipid films. Next, some of
the films were hydrated overnight with ultrapure water at room temperature (20 ± 2.0 ◦C)
to reach the final concentration of 0.2 mM total lipid, 0.1 µM Rhodamine DHPE, and
0.2 µM BODIPY-cholesterol in the hydrated film. Another batch of films was hydrated
with ultrapure water or 10 mM NaCl solution at 50 ◦C for over 3 h using a drying oven
(DV 41, Yamato Scientific Co., Ltd., Tokyo, Japan) for GUV formation. The lipids should
appear in a fluid state where swelling occurs at T > Tm (melting temperature) of DPPC at
41 ◦C [35,36]. During hydration, the test tubes were double wrapped with parafilm and
aluminum foil to prevent oxidation and to preserve fluorescence. After hydration, the test
tubes were stored in a drawer at a constant room temperature in the dark until the time of
observation, which would take place within a week.

2.3. Microscopic Observation

A 6 µL sample of each liposome solution, prepared as described above, was placed
in a silicon well (0.2 mm depth) on a glass slide, and covered with a small cover slip. All
solutions of liposomes had pH values around 7.0. Domain liposomes were then observed
using a fluorescence microscope (BX51; Olympus, Tokyo, Japan) at room temperature,
which was maintained using a thermal plate (TPi-X; Tokai-Hit, Fujinomiya, Japan). Images
of phase-separated liposomes were obtained using a microscope-attached digital camera
(WRAYCAM-VEX830; Wraymer, Osaka, Japan). At least 60 liposomes were observed for
each type of lipid mixture. Samples were chosen randomly from cell-sized liposomes
(~10 µm diameter). Observations made on the prepared liposomes, at least three different
times, confirmed that the preparation was highly reproduceable.

2.4. Statistical Analysis

The data of the phase separation ratios of liposomes are expressed in terms of the
mean and standard error; the data were analyzed using Microsoft Excel. One-way ANOVA
in Excel was used to assess the differences, for comparison of the phase separation ratio of
liposomes in each condition.

3. Results and Discussion

There are three kinds of phase-separated liposomes. First, the homogeneous phase
(Figure 3A), second, liquid-ordered (Lo)/liquid-disordered (Ld) phase separation (Figure 3B),
and third, solid-ordered (So) and Ld phase separation (Figure 3C). The lipid compositions
of both, homogenous and Lo/Ld was DPPC:DOPC:Chol, 40:40:20; and that of So/Ld was
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DPPG:DPPC:DOPC:Chol, 25:15:40:20, respectively. According to previous studies, phase
separation is influenced the mixing fraction of lipids [37]. A wide variation in the mixed
fraction of lipids compartment during the liposome preparation has been reported earlier [38].
Therefore, the same condition (DPPC:DOPC:Chol, 40:40:20) produce two different phase-
separated domains (Figure 3). These liposomes were observed in previous studies [9].
Previous reports have indicated that three-phase coexistence can be produced [9,18,37,39].
Sample observation identified more than 60 vesicles in each condition, and results are shown
as an average of three observations with error bars as standard errors. All experiments were
performed in triplicates to confirm replication of the results. Based on the phase diagram
for DOPC/DPPC/Chol, it is near the region in which all three phases coexist in a single
liposome [40,41]. Some studies have reported that the three phases co-exist in a single
liposome made by charged lipids [9,42]. Since this observation may present limitations for
the staining of a single phase using Rhodamine DHPE, we attempted to observe three co-
existing phases by staining with BODIPY-cholesterol dye; however, microscopic conditions
in our institute could not detect three coexisting phases within a single liposome, since
liposome positions varied with changing irradiation wavelength. This was caused during
changing of the filter, which in turn caused some vibrations that changed the position of
liposome. This can be avoided by using confocal microscope, or liposome can be fixed
using coating material, which we plan to do in future. This study considered only the
homogenous, Lo/Ld, and Ld/So domains.
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DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; DPPG, 1,2-dipalmitoyl-sn-glycero-3-phospho-
glycerol; Chol, cholesterol; Lo/Ld, liquid-ordered/liquid-disordered; So/Ld, solid-ordered/liquid-
disordered. 

The effects of charged lipids on Lo/Ld membranes containing cholesterol and ergos-
terol were initially investigated under cholesterol conditions. As in a previous report by 
Himeno et al. [9], the DOPC/DPPC/Chol (40/40/20) liposome was used as a control for the 
Lo/Ld phase separation (Figure 4, bright grey). In the present study, the ratios for homog-
enous, Lo/Ld, and So/Ld were, 10.6%, 86.7%, and 2.7%, respectively; these results are in 
agreement with a previous study [37]. To investigate the interaction of charged lipids, 
DPPG was used instead of DPPC (DPPG:DPPC:DOPC:Chol, 15:25:40:20), which increased 
the formation of So/Ld domains (Figure 4, grey). The ratio of Lo/Ld decreased (Figure 4). 
Thereafter, the charge was screened using NaCl. Liposomes made from 
DPPG:DPPC:DOPC:Chol (15:25:40:20) in a NaCl solution were observed. The ratio of the 

Figure 3. Representative microscopic images of multicomponent liposomes made with choles-
terol as the sterol component, featuring three different phase-separated lipid domains. (A) Ho-
mogenous (DPPC:DOPC:Chol, 40:40:20), (B) Lo/Ld (DPPC:DOPC:Chol, 40:40:20), and (C) So/Ld
(DPPG:DPPC:DOPC:Chol, 15:25:40:20). All experiments were performed at 20.0 ◦C. The images were
recorded by the author. Abbreviations: DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DOPC,
1,2-dioleoyl-sn-glycero-3-phosphocholine; DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol;
Chol, cholesterol; Lo/Ld, liquid-ordered/liquid-disordered; So/Ld, solid-ordered/liquid-disordered.

The effects of charged lipids on Lo/Ld membranes containing cholesterol and er-
gosterol were initially investigated under cholesterol conditions. As in a previous report
by Himeno et al. [9], the DOPC/DPPC/Chol (40/40/20) liposome was used as a control
for the Lo/Ld phase separation (Figure 4, bright grey). In the present study, the ratios
for homogenous, Lo/Ld, and So/Ld were, 10.6%, 86.7%, and 2.7%, respectively; these
results are in agreement with a previous study [37]. To investigate the interaction of
charged lipids, DPPG was used instead of DPPC (DPPG:DPPC:DOPC:Chol, 15:25:40:20),
which increased the formation of So/Ld domains (Figure 4, grey). The ratio of Lo/Ld
decreased (Figure 4). Thereafter, the charge was screened using NaCl. Liposomes made
from DPPG:DPPC:DOPC:Chol (15:25:40:20) in a NaCl solution were observed. The ratio of
the homogenous phase increased (Figure 4, dark grey), that of the Lo/Ld phase increased,
and that of the So/Ld phase decreased. The differences in the ratio of phase-separated lipo-
somes containing charged lipids were statistically significant in each condition (one-way
ANOVA, p < 0.05). Such trends show that the neutral lipid state is favored after screening
with NaCl. These phenomena are consistent with previous results [9].
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pure water (PW, grey)); and DPPG:DPPC:DOPC:Chol (15:25:40:20) made in a 10 mM sodium chloride
solution (NaCl, dark grey), respectively, performed at 20.0 ◦C. Condition PW means the number ratio
of homogeneous, Lo/Ld, So/Ld liposomes observed in pure water, and condition NaCl means those
observed in a 10 mM NaCl solution. Each bar represents the average value of three samples; standard
errors are shown as error bars. Abbreviations: DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine;
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Next, the effects of charged lipids on Lo/Ld membranes containing ergosterol were
investigated. The DOPC:DPPC:Erg (40/40/20) liposome was used as a control for Lo/Ld
phase separation (Figure 5, bright grey). Using DOPC:DPPC:Chol (40:40:20) liposomes,
Lo/Ld phase separation could be observed. Our finding agrees with previous results,
indicating that Erg-containing cell-sized liposomes have Lo/Ld membranes, despite the
slightly different lipid composition [14–16]. The finding is consistent with the nano-scale
results of Bui et al. [14–16], who had reported that the Lo phase could be determined
in 100 nm sized liposomes containing DOPC:DPPC:Erg (45:45:10) and DOPC:DPPC:Erg
(35:35:30). Next, charged lipid DPPG was applied, instead of DPPC, and Erg-containing
liposomes were observed (Figure 5, grey). The DPPG:DPPC:DOPC:Erg (15:25:40:20) lipo-
some increased the formation of homogenous and So/Ld domains, and the ratio of Lo/Ld
decreased (Figure 5). Next, the charge was screened using NaCl, and liposomes made
from DPPG:DPPC:DOPC:Erg (15:25:40:20) in a NaCl solution were observed. The ratio of
the homogenous phase increased (Figure 4, dark grey), the ratio of the Lo/Ld phase did
not change significantly, and the ratio of the So/Ld phase decreased. Difference in ratio
of phase-separated liposomes containing ergosterol were statistically significant in each
condition (one-way ANOVA, p < 0.05). The influence of charged lipids and, a return to the
neutral state were observed, since So/Ld decreased, despite the liposome change.

Comparing the charged lipid-dependent phase separation domain effects of the two
sterols, the most important outcome is that Erg increases homogeneity in the charged lipid
condition. The phenomenon of Erg increasing the homogeneity in the charged lipid indicates
that Erg tends to support the mixing of each lipid component of the membrane. An increase
in the homogeneous state would indicate that it is more energetically favorable than the
phase-separated state. Although, in this case, we used negatively charged saturated lipids,
unsaturated lipids, and Erg, and similar phenomena of an increase in homogenous liposomes
compared to neutral lipid systems was reported earlier with negatively charged unsaturated
lipids, saturated lipids, and Chol [10]. This study [10] indicated that phase separation was
low for the charged membrane, due to the large energy loss caused by the high concentration
of negatively charged lipids, even when the temperature was below the phase separation
temperature. We assume that same molecular interaction is responsible for making Erg
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increase the homogeneity in the charged lipid condition in the present study. Recently, we
have reported a similar result for phase separated membranes in cell-sized liposomes made
from neutral lipids containing Erg, in which it was observed that Erg tended to increase
the homogeneity, more so than when cholesterol was used as the sterol component [43].
Homogenous liposomes were increased after screening charged lipids using the NaCl so-
lution. So/Ld, and Lo/Ld liposomes were reduced in liposomes containing charged lipids
compared to liposomes without charged lipids in both, Chol- and Erg-containing liposomes,
respectively (Figures 4 and 5). The ratio of the So/Ld phase in Chol-containing liposomes
with charged lipids was greater than that observed in Erg-containing liposomes with charged
lipids. Taken together, Chol-containing membranes are more sensitive to the corresponding
charged condition in liposomes containing charged lipids. The Lo/Ld phase ratio decreased,
while that of the So/Ld phase increased, and these ratios had changed significantly after
screening the charge. In contrast, the ratio of Lo/Ld and So/Ld phases in Erg-containing
liposomes showed a mild response to charged lipids and screening.
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mogenous, Lo/Ld, and So/Ld) in DPPC:DOPC:Erg; 40:40:20, (Control, bright grey); 
DPPG:DPPC:DOPC:Erg (15:25:40:20) made in pure water (PW, grey), and DPPG:DPPC:DOPC:Erg 
(15:25:40:20) made in a NaCl solution (NaCl, dark grey), respectively, at 20.0 °C. Condition PW 
means the number ratio of homogeneous, Lo/Ld, So/Ld liposomes observed in pure water and con-
dition NaCl means those of observed in a 10 mM of NaCl solution. Each bar represents the average 
value of three samples; standard errors are shown as error bars. Abbreviations: DPPC, 1,2-dipal-
mitoyl-sn-glycero-3-phosphocholine; DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine; DPPG, 1,2-
dipalmitoyl-sn-glycero-3-phosphoglycerol; Chol, cholesterol; Lo/Ld, liquid-ordered/liquid-disor-
dered; So/Ld, solid-ordered/liquid-disordered. 

Comparing the charged lipid-dependent phase separation domain effects of the two 
sterols, the most important outcome is that Erg increases homogeneity in the charged lipid 
condition. The phenomenon of Erg increasing the homogeneity in the charged lipid indi-
cates that Erg tends to support the mixing of each lipid component of the membrane. An 
increase in the homogeneous state would indicate that it is more energetically favorable 
than the phase-separated state. Although, in this case, we used negatively charged satu-
rated lipids, unsaturated lipids, and Erg, and similar phenomena of an increase in homog-
enous liposomes compared to neutral lipid systems was reported earlier with negatively 
charged unsaturated lipids, saturated lipids, and Chol [10]. This study [10] indicated that 
phase separation was low for the charged membrane, due to the large energy loss caused 
by the high concentration of negatively charged lipids, even when the temperature was 

Figure 5. Representative microscopic images of multicomponent liposomes made with ergosterol as
the sterol component, featuring three different phase-separated lipid domains (A,B), and percentages
of phase-separated structures (D). (A) Homogenous (DPPG:DPPC:DOPC:Erg), 15:25:40:20 made in
pure water (PW); (B) Lo/Ld (DPPC:DOPC:Erg), 40:40:20 made in pure water (Control), and (C) So/Ld
(DPPG:DPPC:DOPC:Chol), 15:25:40:20 made in a sodium chloride (NaCl) solution at 20 ◦C. These images
were taken by the author. (D) The percentages of phase-separated structures (homogenous, Lo/Ld,
and So/Ld) in DPPC:DOPC:Erg; 40:40:20, (Control, bright grey); DPPG:DPPC:DOPC:Erg (15:25:40:20)
made in pure water (PW, grey), and DPPG:DPPC:DOPC:Erg (15:25:40:20) made in a NaCl solution
(NaCl, dark grey), respectively, at 20.0 ◦C. Condition PW means the number ratio of homogeneous,
Lo/Ld, So/Ld liposomes observed in pure water and condition NaCl means those of observed in
a 10 mM of NaCl solution. Each bar represents the average value of three samples; standard errors
are shown as error bars. Abbreviations: DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DOPC,
1,2-dioleoyl-sn-glycero-3-phosphocholine; DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol; Chol,
cholesterol; Lo/Ld, liquid-ordered/liquid-disordered; So/Ld, solid-ordered/liquid-disordered.
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Himeno et al. discussed that charged proteins and charged domains may play an impor-
tant role in the selective adsorption of charged biomolecules [9]. Further, the phase separation
behaviors of cell-sized liposomes containing charged lipids have been studied [44,45]. Kub-
sch et al. [44] reported that phase separation in liposomes containing charged lipids could be
observed when liposomes are exposed to a NaCl solution, either in their inner or their outer
region [44]. In the present study, although the outer and inner solutions both contained NaCl,
similar results were obtained. Pataraia et al. reported apoptosis-related protein cytochrome
C induced membrane phase separation in liposomes containing charged lipids [45]. The
finding was useful to reveal mechanism of signal transduction, such as apoptosis based on
molecular interaction between protein and the charged lipids at membrane phase separation.
In actual cell, phase separated raft domains exist, and their clustering state is linked to the
switching on and/or off of various signal pathways [7,46]. Previous studies have reported
that cholesterol’s presence has an important role on raft clustering [7,47]. The present study
may contribute to such research areas, because the sterol types influenced phase separation
with changing ionic condition (Figures 4 and 5) in the present study. Recently, it was found
that two types of channels function in the process of lipid transfer in yeast, where one is
calcium-dependent while the other is not [48]. The present study has found that changes in
phase separation in membranes containing Erg, a yeast sterol, occur at a lower rate than that
of membranes containing Chol, a mammalian sterol. These findings suggest that when the
type of sterol changes, the phase separation, and signal transduction may also change signif-
icantly. However, there are regulatory mechanisms controlling protein functions, based on
the interaction between proteins and lipids in presence of ions and charges [3,49]. Charged
lipids and proteins and the presence of ions is fundamental to many biological processes.
This study provides important insights into the effects of various sterol structures on charged
lipids. However, a possible limitation may arise, since we used NaCl at a concentration of
10 mM, which is lower than that of physiological concentrations in living cells (approxi-
mately 140 mM). From the obtained results, we believe that screening using 10 mM NaCl
was sufficient for Chol-containing membranes [9,10], but this concentration may be too low
for Erg-containing membranes, and further research on the subject is warranted. In the
cell membrane, charged lipids are distributed asymmetrically between the inner leaflet and
outer leaflet [8,50,51]. In present study, lipids were distributed on the lipid bilayer almost
symmetrically because the liposomes were made via natural swelling methods [51]. Hamada
et al. reported the construction of asymmetric phase-separated cell-sized liposomes [52]. As
asymmetric structures in cell-sized model membranes with vesicular structures would be of
profound value in studies on the biologically physicochemical functions of lipid organization
structures [52,53], we plan to conduct further research with asymmetrical phase-separated
membranes, containing both charged lipids and several kinds of sterols in the future.

4. Conclusions

In the present study, changes in phase separation induced by charged lipids in mem-
branes containing two types of sterols have been investigated, namely, cholesterol and
ergosterol. Ergosterol increased the homogeneous phase in membranes containing charged
lipids when compared to those containing cholesterol. Membranes containing cholesterol
are more sensitive in charged conditions, and liposomes containing ergosterol showed low
responses to charged lipids and NaCl screening. These findings show that certain mem-
branes can alter their sterol structure and may further our understanding of the differences
and similarities between yeast and mammalian cells, in order to improve our knowledge
regarding protein and lipid interactions during signal transduction.
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