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Abstract: This work examines the possibility of applying non-modified nanocellulose and nanocel-
lulose functionalized with 3-aminopropyltriethoxysilane (APTES) as a formaldehyde scavenger for
commonly used urea-formaldehyde (UF) adhesive. The effect of silanization was determined with the
use of Fourier transform infrared spectroscopy (FTIR), flame atomic absorption spectrometry (FAAS),
and elemental analysis. Moreover, the ability of cellulosic nanoparticles to absorb the formaldehyde
from an aqueous solution was investigated. After homogenization, cured UF adhesives were exam-
ined with the use of FTIR, energy-dispersive spectroscopy (SEM-EDS), and the perforator method to
determine the content of formaldehyde. Manufactured boards made of rape straw particles and wood
particles were tested in terms of their physico-mechanical properties and formaldehyde emission.
Studies have shown that the applied method of silanization was effective. Furthermore, in the case
of non-modified nanocellulose, no sign of formaldehyde scavenging ability was found. However,
the functionalization of cellulosic nanoparticles with APTES containing an amino group led to the
significant reduction of formaldehyde content in both the aqueous solution and the UF adhesive. The
mechanical properties of both strawboards and particleboards were improved due to the nanocel-
lulose reinforcement; however, no effect of silanization was found. Nevertheless, functionalization
with APTES contributed to a decrease in formaldehyde emission from boards, which was not found
in the case of the introduction of non-modified cellulosic nanoparticles.

Keywords: nanocellulose; silanization; urea-formaldehyde adhesive; strawboard; particleboard

1. Introduction

Formaldehyde-containing adhesives account for approximately 95% of all wood ad-
hesives used in the production of wood-containing composites and 85% of them are UF
resins [1]. They owe their popularity to a number of advantageous properties, such as high
reactivity, lack of color, competitive price, and good performance in indoor environments.
However, one of the greatest disadvantages of UF resins is the hazardous emission of
formaldehyde. Their application may cause indoor air pollution and potential health issues
because of the free formaldehyde emitted from the UF-bonded wood-based panels [2,3].
Substances such as formaldehyde, acetone, acetaldehyde, and ethyl-1-hexanol were found
to be the main pollutants detected in indoor residential environments. These substances
were also closely related to the occurrence of mucosal symptoms among the examined
occupants [4,5]. Many studies, performed both in vitro and in vivo, confirmed the toxic
effects on various human or animal cells and organs such as the lung, upper respiratory
tract, brain, and bone marrow in cases of formaldehyde occupational exposure [6,7]. Taking
into account the emerging reports on health hazards, the International Agency for Research
on Cancer (IARC) re-classified formaldehyde from a “probable human carcinogen” to a
“known human carcinogen” in 2004 [8,9]. Its emission from UF resins is mostly sourced
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from the unreacted formaldehyde, hydrolytic degradation of bond lines under moisture con-
ditions, and the reversibility of aminomethylene link in the cured adhesive network [10–12].
One of the methods contributing to the reduction of formaldehyde emission from wood-
based products is the introduction of proper additives, so-called formaldehyde scavengers,
to the resins. These can be various types of substances such as chemicals, mineral particles,
particles rich in phenolic substances, particles with high protein content, nanoparticles, etc.

Formaldehyde scavengers in general can be defined as substances characterized by
the ability to bond free formaldehyde, which can be used in both post-treatment and as
a modifier added to the resin during homogenization [8,13]. In the case of UF resins,
efforts are still being made to find such additives that reduce harmful emissions and, at
the same time, do not deteriorate the mechanical and physical properties of the resultant
wood-based boards. An interesting example of an additive applied for UF resins to improve
their strength properties is cellulose derivatives. Among them, microcellulose (MC) and
nanocellulose (NC) are the most commonly studied as reinforcing agents for amino resins
(Table 1). The reasons for such scientific attention focused on NC in recent years are
its unique properties such as low density, high-energy conversion capacity, exceptional
mechanical strength, tremendous surface area, and chemical compatibility [14–16].

Table 1. Examples of studies concerning UF resin modification with cellulosic particles.

Type of Wood-Based Panel Cellulose
Modification

Effect on
Formaldehyde Additional Effects References

Plywood - No clear effect

Improved bonding quality and
mechanical properties

Reduced adhesive
consumption

[17,18]

Laminated veneer lumber
(LVL) - No clear effect

Reduced VOC
emission

Improved bonding quality
[19,20]

Particleboard - Decreased emission Improved mechanical properties
Reduced water uptake [21]

Fiberboard - Decreased emission Improved mechanical properties [22]

Plywood Silanization Decreased emission Improved bonding quality [23]

Plywood Silanization Decreased emission Improved bonding quality [24]

Fiberboard Silanization Decreased emission Improved mechanical properties [24]

Fiberboard Silanization Decreased emission Improved mechanical properties
Reduced water uptake [25]

In general, it is difficult to analyze and compare the results of formaldehyde emission
from wood-based panels because it depends strongly on the pressing parameters, the type
of adhesive applied, and the test method [26]. Therefore, based on the previously conducted
studies, it cannot be determined whether the reduction of formaldehyde emission resulted
from the addition of nanocellulose itself due to its reactive nature or, for example, increased
strength of glue joints or improved morphology of the glue line. Usually, the available
literature sources do not focus on the reason behind the decreased formaldehyde emission,
which is especially interesting since different studies show different conclusions. However,
studies have indicated that the introduction of silane-modified cellulose derivatives can
improve their effectiveness in lowering formaldehyde emissions when compared with
non-modified ones. Park and Causin [27] stated that the incorporation of amine derivatives
is one of the most effective methods for reducing formaldehyde emissions from UF adhe-
sives. Moreover, according to Neves et al. [28], silanization is the most frequently applied
treatment of cellulose in studies on polymer reinforcement. It improves the dispersion and
interfacial adhesion between the polymer and the filler [29].
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Table 1 also shows that no research has been carried out so far on the application of
a nanocellulose-modified UF adhesive in the production of strawboards. Due to the con-
tinuous shortages of wood, increasing prices, and growing competition for raw materials
between industries, there is a demand for alternative lignocellulosic materials for board
manufacturing [30]. According to Dziurka and Mirski [31], the most promising concept
is to use straws because of their availability. In Poland, the annual production of straws
is estimated at 25–28 million tons [32]. Moreover, rape straw was already found to be
a valuable raw material for the production of various types of panels such as structural
boards [33], lightweight boards for furniture making [34], insulation boards [35], boards for
use in outdoor conditions [36], etc. Furthermore, it is expected that, due to many factors,
research focused on the use of alternative lignocellulosic particles for the production of
boards will continue to expand intensively in the future [37].

Therefore, considering that emerging scientific reports on the influence of nanocel-
lulose on formaldehyde emission are still inconclusive and there is a lack of knowledge
on using nanocellulose-reinforced adhesives in strawboard production, the present study
aimed to investigate the effect of both non-modified and APTES-modified nanocellulose
introduction to the UF resin on the properties of boards made of rape straw particles
and wood particles. Additionally, based on the presented research, it will be possible to
determine whether the use of UF resin reinforced with a small amount of nanocellulose will
allow for the production of rape strawboards with equally good properties as commonly
used particleboards.

2. Materials and Methods
2.1. Materials

Commercially available UF adhesive was purchased from the market with the fol-
lowing characteristics: Viscosity of 470 mPa × s, solid content of 58%, gel time of 88 s at
100 ◦C, and pH of 8.11. The nanocellulose with the trade name NG01NC0101-1000 was
supplied by Nanografi Laboratory (Ankara, Turkey). Nanoparticles were obtained by
sulfuric acid hydrolysis. They were characterized by an average particle width of 10-20 nm
and length of 300–900 nm as confirmed by the producer based on transmission electron
microscopy (TEM) images. The 3-aminopropyltriethoxisilane (99% pure) was supplied
by Merck (Poznan, Poland). The ammonium nitrate introduced as a hardener (20%wt)
was purchased from Chempur (Piekary Slaskie, Poland). Pine (Pinus sylvestris L.) wood
particles intended for the production of the middle layer of particleboard in industrial
conditions were supplied by the manufacturer of wood-based panels. Rape straw (Brassica
napus L. var. napus) was ground in a disc chopper to obtain particles with a similar length
to wood particles.

2.2. Nanocellulose Silanization

The process of silanization with APTES (Figure 1) was carried out using the reaction
conditions proposed by Wang et al. [38]. In order to obtain the mixture of ethanol and
water, 64 mL of ethanol was dissolved in 16 mL of deionized water. Thereafter, 16 ± 0.01 g
of APTES and 4 ± 0.01 g of nanocellulose were added to a 200 mL flask. In order to increase
the effectiveness of silanization, the glacial acetic acid was slowly added to the solution as a
catalyst until the pH reached 4 as recommended by Neves et al. [39]. Then, the mixture was
stirred vigorously with the magnetic stirrer at 75 ◦C for 7 h. The APTES-modified powder
was filtered and washed with distilled water. Following the observations of Siuda et al. [40],
drying the obtained samples in a laboratory oven at a high temperature was abandoned.
Instead, APTES-modified nanocellulose was dried in the desiccator above the silica gel for
72 h at room temperature to increase the effectiveness of silanization.
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Figure 1. Schematic diagram of APTES-modified nanocellulose preparation.

2.3. Characterization of Modified Nanocellulose

Samples of non-modified and APTES-modified NC were marked as NC-N and NC-
S, respectively. In order to evaluate the effect of silanization, FTIR (Fourier transform
infrared spectroscopy) analysis was used. The NC powder was mixed with KBr (1/200
mg ratio), and the spectra were registered with an Alpha FTIR spectrometer (Bruker
Optics GmbH, Ettlingen, Germany) with the Fourier transform range of 400–4000 cm−1,
registering 16 scans at a resolution of 4 cm−1. Moreover, the total crystallinity index (TCI,
A1370/A2900) and the lateral order index (LOI, A1430/A898) were determined according
to Nelson and O’Connor [41].

The concentration of silicon in samples was investigated with the use of flame atomic
absorption spectrometry (FAAS). First, 0.5 g of samples were mineralized using nitric
acid (8 mL) in a semi-closed microwave mineralization MARSX pressing system (CEM
Corporation, Germany). After mineralization was completed, the samples were then
filtered and diluted with deionized water to 50 mL. The analysis of Si content in samples
was performed with the use of the Spectra 280 AA spectrometer (Agilent Technologies,
Santa Clara, CA, USA). The calibration curve was obtained from the serial dilutions of
the Si standard solution. The average values of three simultaneous measurements were
presented as a final result.

The concentration of nitrogen in samples was analyzed with a Flash 2000 elemental
analyzer (Thermo Fisher Scientific, Waltham, MA, USA). The equipment was calibrated
with 2,5-bis-(tert-butyl-benzoxazole-2-yl)thiophene (Thermo Fisher Scientific, Waltham,
MA, USA) and certificated materials such as birch leaf and Alfalfa (Elemental Microanalysis
Ltd., Okehampton, UK). The six-point calibration curve was plotted with the use of the
K factor. The results were expressed as the average values of measurements performed
three times.

An aqueous solution of formaldehyde (0.1 M) was prepared to investigate the ability
of APTES-modified and non-modified nanocellulose powders to absorb the formaldehyde.
To prepare 0.1 M formaldehyde solution, 5 drops of sulphuric acid were mixed with 100 mL
of 15% formaldehyde solution and then refluxed to depolymerize the paraformaldehyde
for 15 min. After cooling was completed, the solution was neutralized to pH 7 with NaOH
and diluted in distilled water. Then, the assumed amount of sample was introduced to
the solution. The prepared formaldehyde and water solutions containing NC were kept
in the laboratory oven at 65 ◦C for 3 h. The solution was then filtered, and the content
of formaldehyde was determined with the use of sodium sulfite titration. Both 25 mL
of 0.1 M Na2SO3 and 2 mL of 0.1 M NaOH were added to a 10 mL aliquot of the filtrate
containing formaldehyde. The titration was performed with the 0.05 M HCl solution
and phenolphthalein as an indicator. A reference analysis was carried out with the same
procedure excluding the formaldehyde. Furthermore, the analysis of the formaldehyde
solution incubated for 3 h at 65 ◦C without any additives was also conducted. Three
repetitions were performed for each solution. This method was previously used to analyze
the ability to reduce the formaldehyde content in an aqueous solution via the addition of
lignocellulosic sludge [42], bark powder [43], and soy flour [44].
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2.4. Adhesive Mixture Preparation

There is a necessity to process cellulosic nanoparticles in a wet state to achieve proper
dispersion, therefore, a 10% aqueous NC suspension was mixed with the magnetic stirrer
at 700 rpm for 10 min. The amount of the introduced suspension was adjusted so that
the adhesives contained 1% or 2% of nanocellulose. It was adjusted in order to develop
variants suitable for the production of wood-based boards. According to Veigel et al. [45],
the amount of introduced NC is crucial to achieving the optimum reinforcement effect
in the case of a UF adhesive. The authors concluded that taking into account the highly
hydrophilic nature of cellulose itself, the amount of nanoparticle introduced should be
in the range of 1–3%. The viscosity of the mixtures must be low enough to ensure the
proper application of the adhesive on the wood surface. Moreover, nanoparticles in general
have a tendency to assemble around each other and form agglomerates. Thus, too much
nanocellulose introduced to the adhesive can cause deterioration of the bonding strength
due to the concentration of stress at certain points (agglomerates) in the glue line [46].
The applied compositions of both modified and reference adhesive mixtures are shown
in Table 2.

Table 2. The compositions of adhesive mixtures.

Variant Label UF Resin (g) Suspension (g) Nanocellulose
Modification *

H2O (g) Hardener (g)
H2O Nanocellulose

REF 100 0 0 - 13.5 2
1%NC-S 100 9 1 S 0 2
2%NC-S 100 18 2 S 0 2
1%NC-N 100 9 1 N 0 2
2%NC-N 100 18 2 N 0 2

* S represents silanized nanocellulose, N represents non-modified nanocellulose.

After the addition of components, the mixtures were subjected to the mixing process at
1000 rpm for 2 min using the CAT-500 homogenizer (Ingenieurburo CAT, M.Zipper GmH,
Ballrechten-Dottingen, Germany) to attain the proper level of homogenization.

2.5. Investigations of Cured Adhesive Properties

After the adhesives were cured in the laboratory oven at 130 ◦C and ground us-
ing a laboratory mill, the obtained powder characterized by a dimensional fraction of
0.125 × 0.125 mm2 was used to perform the analysis. The cured powder was mixed with
KBr at a 1/200 mg ratio. Spectra were registered with the Alpha FTIR spectrometer (Bruker
Optics GmbH, Ettlingen, Germany) with the Fourier transform range of 400–4000 cm−1,
registering 16 scans at the resolution of 4 cm−1.

The SEM-EDS method was used to determine Si content in the cured UF mixtures.
The representative amount (10 ± 0.1 mg) of adhesive powder was sprinkled onto the
double-sided carbon tape (5 × 20 mm2) mounted on the SEM stub. Each sample was
analyzed by randomly selecting 6 fields on individual resin particles (Figure 2). The Si
content was determined within those areas using the scanning electron microscope Hitachi
SU3500 working at the accelerating voltage of 15 kV.

The formaldehyde content in cured adhesives was determined in accordance with
the assumptions of the perforator test EN 120 [47]. It is a well-established method, com-
monly used to determine the formaldehyde content from wood-based boards. However, in
order to investigate the formaldehyde content in the adhesive powder, the method was
adjusted and modified following the guidelines proposed by Dziurka and Mirski [48]. First,
5 ± 0.01 g of ground adhesive powder was subjected to toluene extraction in the perforator
apparatus. Formaldehyde content in the obtained aqueous solution was investigated by
spectrophotometry using the commonly applied ammonium acetate and acetylacetone
method. The absorbance of the samples was determined on a Biosens UV-5600 spectropho-
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tometer (Biosens, Warsaw, Poland) at 412 nm. The analysis of each adhesive variant was
performed in five replicates.
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2.6. Boards Manufacturing and Testing

To characterize the dimensions of wood and rape straw particles, their fractional
composition was determined using sieve analysis. It was conducted with the use of flat
sieves possessing mesh with square perforations of 6.3, 5.0, 4.0, 2.5, 2.0, 1.4, 1.0, and
0.315 mm. The results are presented in Figure 3. Based on the obtained outcomes, it was
found that both wood and straws were characterized by a similar fractional composition.
The dimensions of the majority of particles ranged between 1.4 and 2.5 mm.
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Figure 3. Fractional composition of rape straw particles and wood particles.

Materials were dried at 110 ◦C to reach the moisture content of 2 ± 2%. The gluing
degree (ratio of the dry mass of the adhesive to the dry mass of wood or straw) was 8%. For
each variant of adhesive presented in Table 2, two single-layer strawboards and two single-
layer particleboards with an assumed thickness of 15 mm and a density of 600 kg/m3 were
prepared. The pressing process was conducted at 180 ◦C with a unit pressure of 2.5 N/mm2

for 20 s/mm of the final board thickness.
After conditioning for 7 days at the relative humidity of 65 ± 5%, 20 ± 2 ◦C, the

mechanical properties of manufactured panels such as their bending strength, modulus
of elasticity, and internal bond were investigated according to the relevant standards,
namely, EN 310 [49] and EN 319 [50], respectively. Moreover, the density was evaluated
according to EN 323 [51]. In order to determine the water resistance of the boards, thickness
swelling was investigated after 2 and 24 h according to EN 317 [52]. The determinations of
mechanical and physical properties were performed using 12 samples from each variant
of boards. The formaldehyde emission was analyzed three times for each variant with
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the use of gas chamber analysis according to EN ISO 12460-3 [53] using a GreCon GA
6000 analyzer (Fagus-GreCon Greten GmbH & Co. KG., Alfeld, Germany). Formaldehyde
content in an aqueous solution was determined spectrophotometrically with the use of the
ammonium acetate and acetylacetone method. Absorbance was measured on a Biosens
UV-5600 spectrophotometer at 412 nm (Biosens, Warsaw, Poland).

2.7. Statistical Analysis

The obtained results were subjected to multivariate statistical analysis ANOVA. More-
over, in order to distinguish homogeneous groups and evaluate the significance of observed
changes, the Tukey test on the significance level of α = 0.05 was performed using a Statistica
13.0 software (StatSoft Inc., Tulsa, OK, USA).

3. Results and Discussion

FTIR spectra of non-modified NC and salinized NC are presented in Figure 4. The
broad peak at 3000–3550 cm−1, which can be assigned to O–H groups and the intracellular
hydrogen bonding of cellulose, was observed [54]. C-H stretching vibrations were noted
at 2830–2975 cm−1 [55]. The peak absorption observed at 1638 cm−1 was assigned to the
O-H vibration of water in the structure of the NC [56,57] and the peaks, which can be
noted from 1315 to 1373 cm−1, are shown because of the bending vibration of the C–H
and C–O groups in the polysaccharide rings of cellulose [57,58]. The peak observed at
1053 cm−1 was associated with the bending vibration of C–O–C and the cellulose chains
are observed around 897 cm−1 [59]. The peaks listed above appear for nanocellulose and
silanized nanocellulose samples. However, in the case of samples modified with APTES,
a peak at 1562 cm−1 can be noted. This peak corresponds to bending vibrations of -NH2
groups present in the APTES structure [60]. Moreover, C–O bending modes contributed to
the overlapping of peaks derived from Si-O-Si bonds of the silicon compounds [60]. The
indication of the presence of amino groups is particularly beneficial taking into account the
potential application of NC as a formaldehyde scavenger because the -NH2 group located
on top of the APTES molecule may potentially react with the formaldehyde in UF resin [25].
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According to Tang et al. [61], the crystallinity of nanocellulose is one of the crucial
factors affecting its mechanical and thermal properties. The results of the calculated indexes
are presented in Table 3. The lateral order index (LOI) was similar regardless of the variant
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of nanocellulose. However, in the case of the total crystallinity index (TCI) of NC-S, a
slightly lower value was found. The same effect of decreased crystallinity was observed
in previously conducted studies regarding polymer reinforcement with silane-modified
NC [62,63]. The reason could be the fact that the surface of nanocellulose was grafted
with the amorphous silane side chains, which consequently could lead to the reduction in
TCI [63].

Table 3. Crystallinity of nanocellulose.

Variant TCI
(A1370/A2900)

LOI
(A1430/898)

NC 1.13 1.57
NC-S 1.04 1.55

The analysis of silicon and nitrogen concentrations in cellulose is a commonly applied
method allowing the determination of silanization effectiveness [64]. The concentrations of
both N and Si are presented in Table 4. Based on the outcomes, it was found that the APTES-
modified NC was characterized by a high concentration of nitrogen and silicon. On the
other hand, the presence of these elements was not observed in the non-modified variant.
The increased content of silicon from the -Si-(O-CH2-CH3)3 groups and nitrogen from
-NH2 groups may indicate that the applied method of treatment with APTES was effective.
Moreover, the obtained values were higher than those presented by Neves et al. [65] for
APTES-functionalized microcellulose. The reason could be the increased chemical reactivity
of nano-sized particles compared with the cellulosic derivatives characterized by the larger
particle sizes [66]. Based on FTIR spectra and elemental analysis, it can be assumed that
APTES was bonded to cellulosic nanoparticles. However, due to the chemical structure,
not all hydroxyl groups of nanocellulose are highly reactive. According to observations
presented in the literature, the attachment of modifying molecules takes place mainly
at C6 and C2 and results from regioselectivity [67,68]. Moreover, Beaumont et al. [69]
reported that organosilicon groups such as mercapto-, vinyl-, and azido- functionalities
were attached to the cellulose at the C6 position. Therefore, it can be assumed that a similar
mechanism occurred during the present functionalization

Table 4. Elemental composition of nanocellulose.

Variant
Elemental Composition

N (%) Si (mg/kg)

NC 0.00 0.00
NC-S 3.24 ± 0.059 459.13 ± 1.16

The results of the formaldehyde-scavenging ability of NC and NC-S are presented in
Figure 5. Based on the investigations, it was found that non-modified NC did not show the
ability to absorb formaldehyde. Regardless of the amount of nanoparticle introduced, the
changes were not statistically significant. There are many reports in the literature about the
positive effect of nanoparticles on the emission of formaldehyde even at a very low loading
level. It is usually attributed to their absorbability, shielding effect, high reactivity, and
barrier properties [70–72]. However, none of these effects have been observed in this study
for non-modified NC. On the other hand, the modification of cellulosic nanoparticles with
the use of silane resulted in a significant improvement in the ability to absorb formaldehyde.
As the amount of NC-S increased, the formaldehyde content in the aqueous solution
noticeably decreased by up to 39% in the case of the highest load of nanoparticles. This
effect was most likely caused by the introduction of amino groups contained in the APTES
molecule. According to Nomura and Jones [73], the occurrence of amine groups can
contribute to the decrease in formaldehyde content due to bonding with formaldehyde.
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homogeneous groups in HSD Tukey test).

FTIR spectra of UF resin with the addition of NC and NC-S are presented in Figure 6.
The spectra mostly revealed peaks characteristic of UF resin. Peaks corresponding to
O–H groups (3356 cm−1) and the stretching vibrations of C–H (2956 cm−1) were observed.
Moreover, the peaks at 1646 cm−1 and 1540 cm−1 were assigned to C=O stretching and N–H
bending bands in amides I and II [74,75]. The C–N stretching and N–H bending vibrations
of amide III were observed at 1246 cm −1 [76]. Moreover, in the case of silane-modified
samples, a peak at 1187 cm−1 occurred and was attributed to the presence of siloxane
groups (Si-O-Si) [77,78].
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The results of silicon content measurements in the cured adhesive powder are summa-
rized in Table 5. The results have shown that the Si content increased with the increasing
addition of modified nanocellulose. The small level of standard deviations is also a valuable
observation because it may indicate good homogenization of the resin mixture and good
dispersion of nanoparticles within the adhesive matrix. Usually, a large number of hydroxyl
groups on the surface of nanocellulose results in poor dispersion, which can negatively
affect the result [79]. Therefore, silanization could contribute to the improvement in par-
ticle dispersion by making the NC molecules more hydrophobic [80]. This is especially
important because the level of NC dispersion in the polymer has a significant effect, for
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example, on its strength properties [63]. The outcomes of many previously conducted
studies focused on the reinforcement of polymer composites confirmed that decreasing the
hydrophilicity of NC prior to blending with polymers resulted in the enhancement of their
mechanical properties [81–84].

Table 5. Silicon content in the cured UF adhesive.

Silicon Content (%)
REF 1%NC-S 2%NC-S 1%NC-N 2%NC-N

0.00 a 0.98 ± 0.02 b 1.99 ± 0.03 c 0.00 a 0.00 a

Based on the conducted analysis, it was found that the addition of non-modified
nanocellulose did not reduce the amount of formaldehyde contained in the adhesive
(Figure 7). There were no statistically significant changes when compared to the reference
variant. However, the introduction of APTES-modified cellulosic nanoparticles led to
a significant decrease in formaldehyde content. It was reduced by 5% and 10% due to
the reinforcement with 1% and 2% silanized nanocellulose, respectively. Therefore, the
observed effect showed the same tendency as in the case of the ability to absorb the
formaldehyde from an aqueous solution. The reason for the reduction is likely the fact that
amines can undergo a reaction with formaldehyde and form methylol groups, which in turn
can form methylene bridges due to further reactions [25,85,86]. This effect is particularly
beneficial since it can indicate that nanocellulose modified with APTES can contribute to
the decrease in the amount of hazardous emission from the UF adhesive-bonded materials.
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The effect of UF resin modification on the properties of manufactured rape strawboards
and particleboards is shown in Table 6. It was found that regardless of the variant, the
modification had no effect on the final density of the boards. The comparison of the
reference variants showed that the boards made of rape straw were characterized by
lower strength than the particleboards. This could have been caused by differences in
the chemical composition of raw material since rape straw contains less cellulose and
lignin than pine wood, and there are indications in the literature that this can potentially
influence the mechanical properties of the boards [31,87,88]. Moreover, straws in general
are characterized by the presence of waxes on their surface, which could adversely affect
gluing and adhesion [89]. The UF resin modification with nanocellulose had a significant
effect on the strength properties of manufactured boards. It caused an improvement in the
bending strength, modulus of elasticity, and internal bond of panels made of both wood
particles and rape straw. However, no statistically significant influence of the amount of
added modifier and functionalization with APTES was noted. In the case of particleboards,
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the improvement was significant enough to change the classification of the board from
P1 (general-purpose boards for use in dry conditions) to P2 (boards intended for interior
application for use in dry conditions) according to EN 312 [90]. Furthermore, the outcomes
of the strength properties of rape strawboards also showed a significant improvement
allowing for the classification of NC-modified panels as P1 boards, while the non-modified
variant did not meet the requirements of the standard. Therefore, it can be concluded that
reinforcement of UF adhesive with NC led to the production of strawboards achieving
the same strength properties as particleboards bonded with non-modified adhesive. The
reason for such an increase in mechanical properties could be the improvement in ductility,
fracture energy, and fracture toughness of adhesive bonds [91]. It may be possible due to
the large specific surface area of NC, which causes great interfacial interactions between the
nanocellulose and the UF resin matrix. The reinforcing effect could be obtained due to the
strong intra- and intermolecular hydrogen bonds with the matrix resulting from the high
aspect ratio of NC [92]. Moreover, according to Ng et al. [93], the strong bonding ability
that can be observed between the nanocellulose and the polymer matrix could allow for
the improvement in the transfer of stresses. A similar effect was observed by Dukarska [94]
who also noted an improvement in the mechanical properties of rape strawboards allowing
for their classification as P1 boards due to the reinforcement of UF adhesive with APTES-
modified nano-SiO2. The results of thickness swelling were affected only by the material
used for the production of boards, not by the application of NC-modified UF adhesive.
Rape strawboards were characterized by significantly higher values of thickness swelling
compared to particleboards, which could be caused by poorer adhesion resulting in the
formation of weaker glue bonds in the manufactured panel [95]. Moreover, no changes in
formaldehyde emission were found in the case of reference variants or those containing
non-modified NC. The reduction in the HCHO emission was observed only in the case of
using APTES-functionalized nanoparticles due to the introduction of amine groups, which,
according to Park and Jeong [96], can easily react with both free formaldehyde in the UF
adhesive and the hydrolyzed formaldehyde in the obtained panel.

Table 6. Properties of manufactured boards.

Variant of
Board

Density
(kg/m3)

Bending
Strength
(N/mm2)

Modulus of
Elasticity
(N/mm2)

Internal Bond
(N/mm2)

Thickness Swelling (%) HCHO
Emission
(mg/m2 h)2 h 24 h

PB-REF 602 ± 12 a 12.4 ± 1.1 b 1582 ± 21 a 0.27 ± 0.03 b 23.1 ± 2.1 a 27.3 ± 2.1 a 4.9 ± 0.2 b
PB-1%NC-S 598 ± 17 a 14.8 ± 1.3 c 1731 ± 12 b 0.38 ± 0.08 c 23.3 ± 2.4 a 28.2 ± 1.8 a 3.3 ± 0.3 a
PB-2%NC-S 601 ± 11 a 14.5 ± 1.7 c 1743 ± 18 b 0.39 ± 0.04 c 23.4 ± 2.1 a 27.8 ± 1.4 a 3.1 ± 0.2 a
PB-1%NC-N 599 ± 19 a 13.9 ± 1.4 c 1738 ± 16 b 0.37 ± 0.05 c 22.7 ± 1.8 a 27.2 ± 2.3 a 4.7 ± 0.3 b
PB-2%NC-N 603 ± 11 a 14.1 ± 0.9 c 1741 ± 12 b 0.39 ± 0.04 c 23.5 ± 1.7 a 26.9 ± 2.1 a 4.8 ± 0.4 b

RB-REF 609 ± 12 a 10.1 ± 1.3 a 1576 ± 22 a 0.17 ± 0.03 a 28.3 ± 2.1 b 31.4 ± 3.1 b 4.8 ± 0.2 b
RB-1%NC-S 596 ± 10 a 12.9 ± 1.4 b 1581 ± 25 a 0.29 ± 0.04 b 27.8 ± 1.6 b 32.1 ± 2.3 b 3.2 ± 0.3 a
RB-2%NC-S 594 ± 11 a 13.1 ± 0.7 b 1579 ± 16 a 0.31 ± 0.03 b 28.3 ± 1.9 b 31.8 ± 1.9 b 3.1 ± 0.2 a
RB-1%NC-N 604 ± 17 a 12.5 ± 0.9 b 1568 ± 18 a 0.29 ± 0.03 b 27.9 ± 2.2 b 32.5 ± 2.9 b 4.6 ± 0.4 b
RB-2%NC-N 601 ± 14 a 12.4 ± 1.3 b 1563 ± 24 a 0.31 ± 0.02 b 28.2 ± 2.3 b 31.5 ± 1.8 b 4.8 ± 0.3 b

PB—particleboard; RB—rape strawboard; letters a, b, and c mark homogeneous groups in HSD Tukey test.

4. Conclusions

• The effectiveness of the applied method of nanocellulose silanization is confirmed
on the basis of the coarse FTIR spectra indicating the presence of amino groups and
increased nitrogen and silicon content.

• The functionalization of nanocellulose with APTES causes a slight decrease in
its crystallinity.

• The addition of non-modified nanocellulose does not show the ability to absorb
formaldehyde from an aqueous solution. In contrast, in the case of silanized nanocel-
lulose, the formaldehyde-scavenging ability can be observed.

• The presence of APTES-modified nanocellulose in the cured UF adhesive can be
observed in the FTIR spectra and increased silicon content.
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• The introduction of non-modified NC does not influence the amount of formaldehyde
contained in the cured UF adhesive; however, the silanization of nanoparticles prior
to homogenization significantly decreased the content of formaldehyde due to the
reactions with amino groups contained in the APTES molecule.

• The addition of nanocellulose does not affect the density and thickness swelling of the
rape strawboards and particleboards.

• Nanocellulose addition to the UF adhesive causes an improvement in the bending
strength, modulus of elasticity, and internal bond of strawboard and particleboard
allowing for an extension in the range of their application.

• Functionalization of nanocellulose with APTES leads to a decrease in formaldehyde
emission from boards, which is not observed in the case of non-modified nanocellulose.
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