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Abstract: Previous literature studies explored the association between brain neurometabolic changes
detected by MR spectroscopy and symptoms in patients with tremor, as well as the outcome after
deep brain stimulation (DBS) treatment. The purpose of our study was to evaluate the possible
changes in cerebello-thalamo-cortical neurometabolic findings using MR spectroscopy in patients
submitted to MRgFUS thalamotomy. For this pilot study, we enrolled 10 ET patients eligible for
MRgFUS thalamotomy. All patients were preoperatively submitted to 3T MR spectroscopy. Single-
voxel MRS measurements were performed at the level of the thalamus contralateral to the treated
side and the ipsilateral cerebellar dentate nucleus. Multivoxel acquisition was used for MRS at
the level of the contralateral motor cortex. At the 6-month follow-up after treatment, we found
a statistically significant increase in the Cho/Cr ratio at the level of the thalamus, a significant
increase of the NAA/Cr ratio at the level of the dentate nucleus and a significant decrease of the
NAA/Cho ratio at the level of the motor cortex. We found a significant positive correlation between
cortical NAA/Cr and clinical improvement (i.e., tremor reduction) after treatment. A significant
negative correlation was found between clinical improvement and thalamic and cerebellar NAA/Cr.
Confirming some previous literature observations, our preliminary results revealed neurometabolic
changes and suggest a possible prognostic role of the MRS assessment in patients with ET treated
by MRgFUS.

Keywords: MR spectroscopy; tremor; Parkinson’s disease; MRgFUS; thalamotomy

1. Introduction

In the recent years, several trials have proved the safety and efficacy of magnetic-
resonance-guided focused ultrasound (MRgFUS) thalamotomy for the treatment of tremor
in Parkinson’s disease (PD) and essential tremor (ET), mainly with ventral intermediate
(Vim) ablation [1–7]. Although functional MRI has limited application in the procedural
phases of MRgFUS thalamotomy, advanced MRI sequences have shown promising results
for the screening of patients fit for undergoing the treatment and for lesion evaluation
after the procedure. Several papers have tried to explore the possible role of advanced
sequences such as DWI, DTI and fMRI for the pretreatment and outcome evaluation [8–13].
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For instance, DWI provides quantitative information about the soft tissue microstructure
based on differences in water proton mobility and cell density assessment, and it has been
used for evaluating the effectiveness of thalamotomy by assessing the ADC values of the
thalamotomy lesion and related white matter tracts. Similarly, the DTI and the FA values
have been used for the direct and indirect targeting of the thalamus nuclei, giving a detailed
presentation of the main white matter fiber tracts. Finally, blood-oxygenation-dependent
imaging (BOLD), which is a technique used to produce functional MRI (fMRI) images that
are the result of changes in regional blood concentrations of oxy- and deoxy-hemoglobin,
has been used for the evaluation of the activation of different brain regions in PD and
ET [2,14–17]. Notwithstanding the interest in these novel techniques, no paper has dealt
with the possible role of magnetic resonance spectroscopy (MRS) in MRgFUS thalamotomy.

MRS is a specialized MRI technique that has been used for probing the metabolism
of well-defined regions of the human body, obtaining in vivo and in situ concentration
measures for certain chemicals in complex samples [18].

In the CNS, it allows the identification of a number of cerebral metabolites such as the
N-acetyl-aspartate (NAA) which is found in high concentrations in neurons and is a marker
of neuronal viability, creatine (Cr), an important molecule for the storage and transfer of
energy in metabolically active tissues and choline compounds (Cho), which are important
metabolites for the cellular membrane turnover.

The NAA/Cr ratio is considered to be a metabolic marker for neuronal function,
and a reduction of this ratio indicates a damage or degeneration of neuronal and/or
axonal structures [19].

A few studies aimed to assess the prognostic value of the concentration of certain brain
metabolites after deep brain stimulation of the subthalamic nucleus (STN DBS) or after
dopaminergic medical treatment [20,21]. They especially examined the cortical function,
without probing the thalamus and other important nuclei. In addition, no studies have
been performed before and after MRgFUS thalamotomy to evaluate the metabolic changes
in the motor cortex, in the thalamus and other brain regions.

Therefore, the aim of our study was to investigate the metabolic and neurochemical
changes in the motor cortex (MC), in the thalamus (T) and in the dentate-rubro-thalamo-
cortical tract (DRTT) using MRS in patients with ET submitted to MRgFUS Vim thalamotomy.

2. Materials and Methods
2.1. Study Population

We evaluated 10 consecutive ET patients (10 males, mean age 70.21 ± 7.5 years, range
50–81) eligible for unilateral MRgFUS Vim ablation at the “San Salvatore” Hospital in
L’Aquila. Patients were evaluated for inclusion criteria by two expert neurologists (PS
and FP) of the Movement Disorders Clinic based at the same Institution. All of them were
right-handed and a left thalamotomy was the indicated treatment. A pretreatment clinical
examination included the collection of demographic data, a detailed clinical history, and
the assessment of tremor severity by the Fahn–Tolosa–Marin (FTM) tremor rating scale.
The FTM test was also administered the day after the treatment, and after 6 months.

Inclusion and exclusion criteria were the same as the ones for the treatment selection
and they are described elsewhere. Written informed consent was obtained from all subjects
who met the eligibility for the treatment. The present study was approved by the IRB of
the University of L’Aquila (protocol number: 01/2020).

2.2. MRI Examination and Procedural Parameters

All examinations were performed using a 3-tesla MR scanner (MR750w, GE Healthcare,
Chicago, IL, USA) with a 32-channel head coil 1 month before and 6 months after the
treatment. The protocol included FLAIR (slice 3–0.3, TR 11,000, frequency FoV 24, phase
FoV 0.8), GRE (slice 3–0.3, TR 960, frequency FoV 26, phase FoV 0.75), SWI (slice 2 mm,
frequency FoV 24, phase FoV 0.85), DWI (slice 3–0.3, TR 10,550, frequency FoV 26, phase
FoV 0.8) sequences on axial planes, T2-weighted (slice 3.0–0.3, TR 7854, frequency FoV 26,
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phase FoV 0.8) sequences on coronal and axial planes, and a volumetric T1-weighted
3D-IR-FSPGR (BRAVO) sequence (slice 1 mm, TR 8.5, frequency FoV 25.6, phase FoV 0.8).
The MRS protocol included:

• two single-voxel (SV) sequences (TR 1700, TE 30, TM, voxel size 15 × 15 × 15, water
suppression Hz, acquisition duration 4 m) with the 1st ROI placed to the contralateral
T and the 2nd in the homolateral DN to the treated side.

• one multivoxel (SE) sequence (TR 1700, TE 30, TM, including the primary motor cortex
120 × 120, water suppression Hz, acquisition duration 6 m) with 2 ROIs placed on the
hand knob area in the primary motor cortex bilaterally (Figure 1).
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Figure 1. Schematic representation of ROI placement for MRS acquisition. (a–c): localization of the
regions of interest (black square) in the thalamus, dentate nucleus, and hand knob, respectively. The
green arrow represents the DRTT, while the omega sign Ω in red is the hand knob. (d–f): the same
localization of the region of interest (white square) on MRI brain images. (g): spectroscopy curve
with the peak of choline (Cho), creatine (Cr), N-acetyl-aspartate (NAA), and GABA-complex.

The NAA/Cr, the Cho/Cr, the NAA/Cho and the GABA/Cr ratios were obtained on
a dedicated workstation. These ratios were correlated to the FTM score after the treatment
and the procedural parameters.

The latter ones were acquired during the sonications and they were described in our
previous work [15]. In particular, we took into consideration the number of sonications
(nos) and the number of movements (nom) taken for an effective treatment. The soni-
cation procedure involved three steps. The first (alignment) included short sonications
with very low energy (1500–3000 J), so that the temperature increase was visible in the
thermometric maps without creating biological effects. At this stage, temperatures of
40–45 ◦C were reached (the thermometric maps were acquired every 3 s and provided
two values: the average temperature and the maximum temperature for a spot of about
nine voxels). The second step (verification) included sonications with increasing energy and
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power parameters to reach higher temperatures (46–52 ◦C) to obtain a neuromodulation
effect, confirming the efficacy of the treatment in the target and the possible presence of
adverse effects. The clinical response was controlled both during sonications to assess
the reduction/disappearance of the tremor and at the end of each sonication to assess the
appearance of adverse effects. The “nos” included all the sonications performed in these
three steps.

In addition, based on the clinical response, it was possible to move the target, taking
into account the somatotopic distribution of the neurons of the Vim and the neighboring
structures which gave the “nom”.

2.3. Statistical Analysis

Data analyses were performed using MedCalc (Version 20.111). Qualitative variables
were summarized as frequency and proportions. The values of continuous variables
were tested for normal distribution using Shapiro–Wilk’s test and reported as means and
standard deviations (SD) or medians and interquartile ranges (IQRs) according to their
distribution. The differences of quantitative values (age, FTM, MoCA, Cho/Cr ratio and
the NAA/CR ratio) between groups were compared using the Wilcoxon test or the Student
t-test according to their distribution. The variance of FTM scores at the different follow-up
times was evaluated using an ANOVA for repeated measures. The point biserial correlation
was applied to evaluate the correlation between continuous and binomial variables. A
correlation analysis of continuous variables was performed by a Spearman correlation test.

3. Results
3.1. Thalamus

Before the treatment, at the level of the thalamus, the median NAA/Cr ratio was 1.69
(max. 1.81 and min. 1.43, CI 95% 1.51–1.76), the Cho/Cr ratio was 0.91 (max. 1.160 and min.
0.810, CI 95% 0.83–1.024) and the GABA/Cr ratio was 0.64 (max. 0.93 and min. 0.46, CI 95%
0.52–0.82). At the 6-month follow-up, at the level of the thalamus, the median NAA/Cr
ratio was 1.90 (max. 2.80 and min. 1.46, CI 95% 1.49–1.90), the Cho/Cr ratio was 1.14 (max.
1.40 and min. 0.99, CI 95% 1.03–1.36) and the GABA/Cr ratio was 0.56 (max. 0.66 and min.
0.40, CI 95% 0.44–0.65). See the details in Table 1.

Table 1. The Cho/Cr increase was significant (p = 0.0314).

Thalamus

NAA/Cr Ratio Cho/Cr Ratio GABA/Cr Ratio

Pretreatment 6 M
Follow-up Pretreatment 6 M

Follow-up Pretreatment 6 M
Follow-up

Min. 1.43 1.46 0.81 0.99 * 0.58 0.40

Max. 1.81 2.80 1.16 1.40 0.93 0.66

Median 1.69 1.90 0.91 1.14 0.66 0.54

CI 95% 1.51–1.76 1.49–1.90 0.83–1.02 1.03–1.36 * 0.45–0.96 0.35–0.74

* p-value < 0.05.

3.2. Cerebellum (Dentate Nucleus)

Before the treatment, at the level of the cerebellum, in the DN, the median NAA/Cr
ratio was 1.53 (max. 1.79 and min. 1.36, CI 95% 1.23–2.07), the Cho/Cr ratio was 0.83 (max.
1.01 and min. 0.83, CI 95% 0.80–1.05) and the GABA/Cr ratio was 0.64 (max. 0.80 and min.
0.53, CI 95% 0.57–0.72). After the treatment, at the level of the cerebellum, in the DN, the
median NAA/Cr ratio was 2.45 (max. 2.62 and min. 2.15, CI 95% 1.23–2.07), the Cho/Cr
ratio was 1.25 (max. 1.44 and min. 1.16, CI 95% 0.80–1.05). See details in Table 2.
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Table 2. The Cho/Cr increase was significant (p = 0.0271).

Dentate Nucleus (Cerebellum)

NAA/Cr Ratio Cho/Cr Ratio

Pretreatment 6 M Follow-up Pretreatment 6 M Follow-up

Min. 1.12 1.30 * 0.69 0.80

Max. 2.11 2.62 * 1.21 1.44

Median 1.53 2.15 * 1.01 1.16
* p-value < 0.05.

3.3. Motor Cortex (Hand Knob)

Before the treatment, at the level of the hand knob in the left motor cortex, the median
NAA/Cr ratio was 2.96 (max. 17.33 and min. 2.00, CI 95% 0.87–7.52), the NAA/Cho ratio
was 3.44 (max. 9.11 and min. 2.11, CI 95% 2.46–5.47) and the Cho/Cr ratio was 2.96 (max.
3.35 and min. 2.05, CI 95% 2.42–3.24). After the treatment, at the level of the hand knob
in the motor cortex, the median NAA/Cr ratio was 2.28 (max. 3.77 and min. 1.77, CI 95%
1.84–2.77), the NAA/Cho ratio was 2.92 (max. 4.63 and min. 1.21, CI 95% 1.69–3.17) and the
Cho/Cr ratio was 2.12 (max. 2.99 and min. 1.70, CI 95% 1.83–2.63). See details in Table 3.

Table 3. The NAA/Cho decrease was significant (p = 0.0271).

Motor Cortex

NAA/Cr Ratio Cho/Cr Ratio NAA/Cho Ratio

Pretreatment 6 M
Follow-up Pretreatment 6 M

Follow-up Pretreatment 6 M
Follow-up

Min. 2.00 1.70 2.050 1.70 2.11 1.21

Max. 17.33 3.77 3.35 2.99 9.11 4.63

Median 2.96 2.28 2.96 2.12 3.44 2.92 *

CI 95% 0.87–7.52 1.88–2.77 2.42–3.24 1.83–2.63 2.46–5.47 1.69–3.17

* p-value < 0.05.

Similarly, before the treatment, at the level of the hand knob in the right motor cortex,
the median NAA/Cho ratio was 2.02 (max. 13.90 and min. 0.73, CI 95% 1.73–2.81), the
NAA/Cr ratio was 1.91 (max. 2.58 and min. 0.04, CI 95% 1.46–2.47) and the Cho/Cr ratio
was 0.86 (max. 1.91 and min. 0.68, CI 95% 0.69–1.54). After the treatment, at the level of the
hand knob in the right motor cortex, the median NAA/Cr ratio was 2.22 (max. 4.30 and
min. 1.07, CI 95% 1.17–2.27) (p = 0.76), the NAA/Cho ratio was 2.25 (max. 6.91 and min.
1.77, CI 95% 1.86–3.13) (p = 0.46) and the Cho/Cr ratio was 0.766 (max. 1.11 and min. 0.35,
CI 95% 0.43–0.95) (p = 0.10).

The analysis of the difference in the variations of Cho and NAA between the two hemi-
spheres did not show any statistical significance. In fact, comparing the Cho in the right
cortex with the same parameter in the left cortex through the Mann–Whitney test, we
obtained a p-value of 0.6857. The behavior of the NAA was similar (p = 0.48).

3.4. Correlation and Simple Regression Analysis

A correlation analysis was performed between the MRS metabolic scores before and after
treatment, the ∆(Pre-Post) FTM rating scale and the procedural parameters. Two separate
analyses were carried out, the first involving the premetabolic ratios in order to evaluate their
effect on the clinical outcome, the second involving the ∆ between the pre- and postmetabolic
ratios in order to evaluate their modification after the MRgFUS thalamotomy.

The mean pretreatment FTM value was 39.75 (CI 95% 25.87–53.63) while the mean
post-treatment FTM value was 18.125 (CI 95% 9.67–27.94) (p < 0.05).

First, the correlation was calculated to evaluate the relationship between the ∆(Pre-
Post) FTM values and the ∆(Pre-Post) NAA in the thalamus, in the DN (DRTT) and in the
motor cortex (hand knob).
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A significant positive correlation was found (R = 0.5, p < 0.04) between the motor
cortex ∆(Pre-Post) NAA and the ∆(Pre-Post) FTM. It was found that higher NAA values in
the cortex were correlated to higher ∆(Pre-Post) FTM.

On the other hand, no significant correlation was found (R = 0.7, p < 0.49) between the
thalamic NAA/Cr ratio as well as (R = 0.31, p < 0.18) between the DN NAA/Cr ratio and
the ∆(Pre-Post) FTM.

Secondly, another significant positive correlation was found (R = 0.5, p < 0.03) between
the motor cortex ∆(Pre-Post) Cho and the ∆(Pre-Post) FTM.

Finally, a correlation was also calculated to evaluate the relationship between the
∆(Pre-Post) FTM and the pre-GABA/Cr in the thalamus and in the DN. No significant
relationship was found in this case.

We also tried to identify a correlation between the premetabolic ratios and the pro-
cedural parameters, particularly with the number of sonications (nos) and the number of
movements (nom).

The mean number of sonications was 10.42 (CI 95% 9.3–11.4, range 9–12).
The mean number of movements from the target was 10.42 (CI 95% 9.3–11.4, min. one

and max. three).
There was a significant negative correlation (r = 0.7, p < 0.05) between the GABA/Cr

and the nom in the thalamus.
A correlation analysis between the brain volumes at baseline (before the treatment)

with age, tremor and cognitive function did not show any significant results in both PD
and ET. Similarly, the point biserial correlation, used to assess whether or not volume
variation was linked to a worse clinical outcome (i.e., tremor relapse), did not show any
significant result.

4. Discussion

Nowadays, magnetic-resonance-guided focused ultrasound (MRgFUS) thalamotomy
for the treatment of tremor in Parkinson’s disease (PD) and essential tremor (ET) is consid-
ered, along with DBS, the most effective therapeutic approach for these kinds of conditions
if the medical management has failed.

Several factors that may contribute to the clinical outcome of MRgFUS have been
extensively studied, namely the skull density ratio (SDR) and brain volume [2,15].

Nevertheless, others are still under consideration. For this reason, to our knowledge,
this is the first study applying MRS to the pre- and post-treatment evaluation of ET patients
with clinical improvement following MRgFUS thalamotomy.

Interestingly, in our preliminary study, we found that cortical ∆(Pre-Post) NAA was
positively correlated with the clinical outcome (FTM). Particularly, a higher pre-NAA
corresponded to higher ∆FTM values 24 h after the MRgFUS thalamotomy.

This may be explained by the role of the NAA as a marker of neuron viability. In fact,
Louis ED et al., in 2002, found that lower values of the NAA/Cr ratio in the cerebellar
cortex were accompanied by a more severe tremor [22]. Therefore, a lower NAA ratio may
reflect a compromised cerebral area, with reduced neuronal density, and as a consequence,
worse clinical scores and worse prognosis. That is why in our study, higher NAA values
were accompanied by higher ∆FTM values since it reflected a better neuronal viability in
the motor cortex. This may also explain the positive relationship between the ∆(Pre-Post)
choline at the cortical level and the ∆(Pre-Post) FTM.

In addition, we explored the relationship between the MRS ratios and the procedural
parameters, particularly the number of sonications and the number of movements from the
target in order to obtain an effective ablation.

We found an inverse relationship between the GABA/Cr ratio in the thalamus and the
number of movements from the target to obtain an effective response. A lower GABA/Cr
ratio corresponds to a higher number of movements. This may be due to the fact that
sonications at non-ablative temperatures determine different effects of neuromodulation on
metabolically damaged neurons (low GABA/Cr ratio). In normal conditions, neuromodu-
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lation has excitatory effects on GABAergic neurons. Therefore, in the thalamus where the
concentration of these neurons is reduced, the neuromodulation response could be lower
and the MRgFUS operator will have to change the sonications’ focus. Finally, these results
are in line with other research papers that found lower values of the GABA/Cr ratio in the
thalamus and the motor cortex of patients with PD and ET and that this was accompanied
by worse clinical scores [23].

This study is still in progress and the number of patients is too scarce for any definitive
prognostic role of these values. In addition, we studied the correlation with the post-
FTM at 24 h and 6 months after the treatment and a further evaluation is needed for
assessing the metabolic changes after this time frame. For example, in 2008, Llumiguano
et al. demonstrated using MRS that the cortical (LFBC) NAA/Cho and NAA/Cr ratios
were significantly increased, paired with a significant decrease of the Cho/Cr ratio in all
patients treated with STN DBS [21], while Lucetti et al. demonstrated the restoration of
the Cho/Cr ratio in the motor cortex of PD patients treated with the dopamine agonist
pergolide after 7 months [20]. We can still hypothesize explanations for our results. The
increase in metabolic indices at the level of the treated thalamus is probably due to the
repair processes following the thalamotomy lesion. On the other hand, the finding of the
reduction of metabolic indices at the cortical level was unexpected. However, it must be
considered that there is evidence in the literature according to which the GABAergic deficit
due to Purkinje cell degeneration may lead to a reduction of the inhibitory output from the
cerebellar deep nuclei to the thalamus, with a consequent increase in the excitatory output
to the motor cortex. This also results in increased cortical output from the motor cortex.
The reduction in tremor after thalamotomy treatment could therefore be the cause of this
reduction in cortical hyperactivity [24].

5. Conclusions

In recent years, several trials have proved the utility of advanced MRI techniques, such
as DWI, DTI and fMRI, for the screening and outcome evaluation of magnetic-resonance-
guided focused ultrasound (MRgFUS) thalamotomy for the treatment of tremor in Parkin-
son’s disease (PD) and essential tremor (ET), mainly with ventral intermediate (Vim)
ablation. Nonetheless, no evidence has been provided for the utility of MRS, and no studies
on the brain metabolic changes after the treatment have been conducted. We proved that
neurometabolic changes appeared after MRgFUS thalamotomy, particularly in the dentate
nucleus and in the motor cortex, and that these changes were related to the treatment
itself. This may also suggest a possible prognostic role of the MRS assessment in patients
with ET treated by MRgFUS. Nonetheless, two important aspects need to be taken into
consideration. First, MRS is not a widely available technique. Secondly, a bigger cohort
is necessary to delineate clear spectroscopic cut-off results in order to predict the actual
prognostic validity.
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