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Abstract

Most pathogens are capable of infecting multiple hosts. These multiple hosts provide many 

avenues for the disease to emerge. In this investigation, we formulate and analyze multi-host 

epidemic models and determine conditions under which the disease can emerge. In particular, SIS 

and SIR epidemic models are formulated for a pathogen that can infect n different hosts. The basic 

reproduction number is computed and shown to increase with n, the number of hosts that can 

be infected. Therefore, the possibility of disease emergence increases with the number of hosts 

infected. The SIS model for two hosts is studied in detail. Necessary and sufficient conditions 

are derived for the global stability of an endemic equilibrium. Numerical examples illustrate the 

dynamics of the two- and three-host epidemic models. The models have applications to hantavirus 

in rodents and other zoonotic diseases with multiple hosts.
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1. Introduction

Most pathogens are capable of infecting multiple hosts, and in addition, many of these 

pathogens can also be transmitted by multiple hosts (Woolhouse et al., 2001). According 

to Woolhouse et al. (2001), approximately sixty percent of human pathogens are zoonotic 

causing diseases such as Lyme disease, influenza, sleeping sickness, rabies, and hantavirus 

pulmonary syndrome. To prevent human infection from these zoonoses, it is necessary to 

identify the animal reservoirs (Haydon et al., 2002). One or more animal reservoirs may 

exist depending on the disease and the location. For example, domestic dogs and jackals 

(Canis adustus) in Africa may both serve as reservoirs for the rabies virus (Haydon et al., 
2002; Rhodes et al., 1998). In Britain, red foxes (Vulpes vulpes) are a reservoir population 

for rabies in wildlife and European badgers (Meles meles) may be a secondary host (Smith, 

2002). Eliminating rabies in only one of these populations may be insufficient to prevent the 

disease from spreading to humans.

Hantaviruses are rodent-borne zoonotic agents that cause hemorrhagic fever with renal 

syndrome (HFRS) in humans throughout Europe and Asia (Schmaljohn & Hjelle, 1997). In 

the Americas, the infection in humans is known as hantavirus pulmonary syndrome (HPS) 

(Schmaljohn & Hjelle, 1997). Thirty different hantaviruses are recognized throughout the 

world (Mills et al., 1999; Schmaljohn & Hjelle, 1997). But each virus is primarily associated 
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with one reservoir species that is indigenous to a particular geographic region (Chu et al., 
2003; Mills et al., 1999; Schmaljohn & Hjelle, 1997; Yahnke et al., 2001). Hantaviruses 

are transmitted to humans primarily through inhalation of aerosolized saliva and/or excreta 

from infected rodents (Mills et al., 1999; Schmaljohn & Hjelle, 1997). Spillover infection 

to other rodents has been reported (Chu et al., 2003), but it is generally thought that these 

other rodents cannot maintain the disease. The role played by these other species in disease 

emergence or persistence is not clear.

In the present study, we are interested in the role that multiple hosts play in the emergence 

and persistence of disease. Our models were developed with hantavirus infection in mind, 

where there is a primary reservoir host and other rodents are referred to as spillover 

species. Rodents generally prefer certain habitats (e.g., cropland, pasture, forest) and those 

species carrying hantavirus strains transmissible to humans are often associated with human 

habitations or agriculture (Mills et al., 1999; Yahnke et al., 2001). As anthropogenic 

influences continually change landscape patterns (e.g., clearcutting of forests for cropland 

and pastures), there is greater overlap in species habitats resulting in increased contacts 

between rodent reservoir hosts, other rodents, and humans.

In our multi-host epidemic models, we assume that each individual in a host population is 

classified according to their disease status, either susceptible (S), infected (I), or recovered 

and immune to reinfection (R). Rodents infected with hantavirus do not shed virus for their 

entire life. Therefore, we study two different types of models. In the first model, infected 

rodents recover but do not develop immunity (SIS), and in the second model, infected 

rodents recover and develop immunity (SIR).

Allen and Cormier (1996) studied SIS epidemic models, similar to ours, but they considered 

only two hosts with no disease-related deaths. Holt and Pickering (1985) studied a two-host 

SIS epidemic model with exponential growth. Begon et al. (1992) included self regulation 

in the two-host model and free-living infective stages (Begon and Bowers, 1994). Equilibria 

and local stability analyses were performed for these latter models. Gandon (2004) applied 

multi-host SIS models to the study of parasite evolutionary dynamics. An SIS epidemic 

model with multiple groups within a single population was applied to gonorrhea by 

Lajmanovich and Yorke (1976). In this latter model, the total population size was constant 

and there were no births nor deaths. This model and others with multiple groups were 

studied by Capasso (1993) using quasimonotone methods. Other two-species models with 

disease affecting at least one of the two species such as predator and prey or two competing 

species have been analyzed (e.g., Chattopadhyay & Arino, 1999; Hadeler & Freedman, 

1999; Han & Hethcote, 2001; Hethcote et al., 2004; Venturino, 1994; Venturino, 1995; 

2001; 2002). In our multi-host epidemic models, species do not have a predator-prey or 

competitive relationship. They are related only through infection by a common pathogen. 

Previous models developed for hantavirus infection in rodents have been restricted to one 

host (Abramson & Kenkre, 2002; Abramson et al., 2003; Allen et al., 2003; 2006; Sauvage 

et al. 2003). In this investigation, we extend these models to n hosts. We assume that 

multiple hosts can be infected with the disease but one species is the primary reservoir host. 

The multi-host epidemic models are described in Sect. 2. The basic reproduction number, 

an important threshold parameter in epidemiology, is computed in Sect. 3. It is shown that 
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the basic reproduction number can increase with n, the number of hosts. A special case of 

a two-host model is analyzed in Sect. 4. Necessary and sufficient conditions are derived for 

global stability of the endemic equilibrium. In the last section, some numerical examples for 

two and three-host models are presented.

2. Description of Models

First, we formulate a multi-host SIS epidemic model for n different hosts that can be 

infected by a common pathogen. Second, we formulate a multi-host SIR epidemic model. 

We assume that there is one reservoir species and n − 1 spillover species.

2.1 SIS Model

Let S1 and I1 denote the susceptible and infected reservoir species and Sj and Ij the 

susceptible and infected spillover species, j = 2, …, n. Each species may recover from 

the disease but immunity does not occur. Therefore, the model is known as an SIS epidemic 

model. We assume that the only interaction between species is via the disease. In particular, 

there are no competitor or predator-prey relationships among the populations. This is 

a reasonable assumption among rats and mice, carriers of hantavirus. Although rodents 

have many predators, we are not modeling the predator populations here, only the rodent 

populations. In our models, the maximal population size is limited by the availability of 

environmental resources, the size of the carrying capacity. Growth is regulated by a density-

dependent death rate.

The SIS multi-host epidemic model is given by the following system of differential 

equations:

dSj
dt = Njbj − Sjdj(Nj) − Sj ∑

k = 1

n
βjk(Nk) Ik

Nk
+ γjIj, (2.1)

dIj
dt = − Ijdj(Nj) + Sj ∑

k = 1

n
(βjk(Nk) Ik

Nk
) − (γj + αj)Ij, (2.2)

where the total population size for species j is Nj = Sj + Ij, j = 1,2, …, n. The initial 

conditions satisfy Sj(0) > 0 and Ij(0) ≥ 0 for j = 1,2, …, n. The birth rate for each host 

population j is given by bj, bj > 0. The parameter γj ≥ 0 is the recovery rate and αj ≥ 

0 is the disease-related death rate for species j. In the case where γj = 0, i.e. there is no 

recovery from the disease, the SIS model becomes an SI model. The density-dependent 

death rate, dj(Nj), for species j depends on the total population size Nj. The transmission 

rate between an infected individual of species k and a susceptible individual of species j is 

βjk(Nk), βjk(Nk) ≥ 0.

To distinguish the dynamics of the reservoir species from the spillover species we assume 

a higher transmission rate from the reservoir species than from the spillover species or 

between members of the spillover species. That is,
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β11(N1) > βj1(N1) ≥
βjk(Nk), j, k = 2, …, n,
β1j(Nj), j = 2, …, n . (2.3)

In addition, we assume that the reservoir species has a longer period of infectivity than the 

spillover species. In particular, the recovery and disease-related death rates are smaller for 

the reservoir species than for the spillover species,

0 ≤ γ1 + α1 ≤ γj + αj, j = 2, …, n . (2.4)

The transmission rate βjk may depend on the total population size Nk (of the infected 

species). We consider two well-known forms for βjk. In our models, the incidence rate 

βjk(Nk)SjIk/Nk can be either standard incidence or mass action incidence, where βjk(Nk) 

is either constant, βjk(Nk) ≡ λjk, or proportional to Nk, βjk(Nk) ≡ λjkNk, respectively. 

For animal populations, it is reasonable to assume a mass action incidence rate because 

as the population size increases so do the contacts, i.e., βjk(Nk) ≡ λjkNk (also referred 

to as density-dependent transmission). Mass action incidence has been assumed in some 

hantavirus models (Abramson & Kenkre, 2002; Abramson et al., 2003; Allen et al., 2006; 

Sauvage et al., 2003) and standard incidence in others (Allen et al., 2003).

The following assumptions are made concerning the density-dependent natural death rate 

dj(Nj).

i. dj ∈ C1[0,∞).

ii. 0 < dj(0) < bj − αj.

iii. dj is increasing for Nj ≥ 0.

iv. There exists Kj > 0 such that dj (Kj) = bj.

Assumptions (i)-(iv) imply that the total population has a logistic growth curve, a reasonable 

assumption for wildlife populations. Logistic growth has been assumed in models for 

hantavirus infection in rodents (Abramson & Kenkre, 2002; Abramson et al., 2003; Allen 

et al., 2003, 2006; Begon & Bowers, 1994; Begon et al., 1992; Sauvage et al., 2003) and 

in many other epidemic models where population growth is limited (e.g., Ackleh & Allen, 

2003; 2005; Allen & Cormier, 1996; Gao & Hethcote, 1992; Mena-Lorca & Hethcote, 

1992). The total population size for each host satisfies the following differential equation:

dNj
dt = Nj[bj − αjij − dj(Nj)], (2.5)

where ij = Ij/Nj is the proportion infected of species j for j = 1,2, …, n. In the absence of 

infection, limt→∞Nj(t) = Kj, where Kj is the carrying capacity for species j. It follows from 

assumptions (i)-(iv) that the total population size is positive and bounded. In particular,

0 < Lj ≤ liminf
t ∞

Nj(t) ≤ limsup
t ∞

Nj(t) ≤ Kj, (2.6)
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where Lj is the unique solution satisfying d(Lj) = bj − αj. The disease-free equilibrium 

(DFE) for (2.1) and (2.2) is the unique solution satisfying S̄
j = Kj and Īj = 0, j = 1,2, …, 

n, where the equilibrium point is denoted as E0 = (S̄
1,Ī1, …, S̄

n,Īn) = (K1,0, …, Kn, 0). The 

existence of a nonnegative endemic equilibrium E1 with Īk > 0 requires that Īj > 0 when 

βjk(Nk) > 0. In other words, persistence of the disease in one host population results in 

disease persistence in another host if there is transmission between the two.

2.2 SIR Model

In the SIR epidemic model, individuals develop immunity to the disease; an immune class, 

Rj, is added to the SIS multi-host epidemic model (2.1) and (2.2) for each host j. The SIR 

multi-host epidemic model is given by the following system of differential equations:

dSj
dt = Njbj − Sjdj(Nj) − Sj ∑

k = 1

n
βjk(Nk) Ik

Nk
, (2.7)

dIj
dt = − Ijdj(Nj) + Sj ∑

k = 1

n
βjk(Nk) Ik

Nk
− (γj + αj)Ij, (2.8)

dRj
dt = − Rjdj(Nj) + γjIj, (2.9)

where Nj = Sj + Ij + Rj and Sj(0) > 0, Ij(0) ≥ 0 and Rj(0) ≥ 0 for j = 1,2, …, n. All parameters 

are interpreted as in the SIS model except for the parameter γj which represents the rate 

at which infected individuals recover and enter the immune class Rj. The total population 

size Nj satisfies the differential equation (2.5). Assumptions (i)-(iv) hold. Therefore, the total 

population size is bounded as in (2.6) and the unique DFE is given by S̄
j = Kj and Īj = 0 = R̄

j 

for j = 1,2, …, n.

3. Basic Reproduction Number

The basic reproduction number ℛ0 is one of the most important parameters in epidemiology. 

The basic reproduction number is defined as the average number of secondary infections 

that occur when an infected individual is introduced into a completely susceptible population 

(Dietz, 1975; Hethcote, 2000). If ℛ0 > 1, then the disease may emerge in one of the 

populations. However, if ℛ0 < 1, then the DFE is locally asymptotically stable (van den 

Driessche & Watmough, 2002). We compute the basic reproduction number for the SIS 

and SIR multi-host epidemic models based on the next generation approach (Diekmann et 
al., 1990; van den Driessche & Watmough, 2002). It is shown that the basic reproduction 

number is the same for both models.

Theorem 3.1

The basic reproduction number for the SIS multi-host epidemic model, (2.1) and (2.2), and 
the SIR multi-host epidemic model, (2.7), (2.8) and (2.9), is given by the spectral radius of 

the n ×n matrix Mn = (ℛjk)j, k = 1
n ,

McCormack and Allen Page 5

Math Med Biol. Author manuscript; available in PMC 2022 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ℛ0 = ρ(Mn),

where

ℛjk =
Kjβjk(Kk)

Kk(γk + αk + bk) ,

is the jk entry in the matrix Mn, j, k = 1,2, ..,n. In the special case of n = 2 hosts, the basic 
reproduction number is

ℛ0 = ℛ11 + ℛ22 + (ℛ11 − ℛ22)2 + 4ℛ12ℛ21
2 . (3.1)

Proof—We apply the method developed by Diekmann et al. (1990) and van den Driessche 

& Watmough (2002) to calculate the next generation matrix for the SIS model, equations 

(2.1) and (2.2), and the SIR model, equations (2.7), (2.8), and (2.9). Since these models have 

the same differential equations for the infectious state and the same DFE (where S̄
j = Kj, j = 

1,2, …, n and the other equilibrium values are zero), they have the same basic reproduction 

number.

The terms in the differential equations for the infected states, I = (I1, I2, …, In)T, are 

separated according to new infections and recovery or death. Then the system of differential 

equations for the vector I satisfies dI/dt = ℱ(I) − V (I), where ℱ(I) and V (I) are vector 

functions for the new infections and recovery or death, respectively. Computing the Jacobian 

matrix of these two functions, F = Dℱ and V = DV, and evaluating at the DFE, we obtain 

the following n ×n matrices:

F =

β11(K1) K1
K2

β12(K2) … K1
Kn

β1n(Kn)

K2
K1

β21(K1) β22(K2) … K2
Kn

β2n(Kn)

⋮ ⋮ ⋱ ⋮
Kn
K1

βn1(K1) Kn
K2

βn2(K2) … βnn(Kn)

(3.2)

and V = diag(γj+αj+bj). The basic reproduction number is the spectral radius of the matrix 

Mn = FV −1 = (ℛjk)j, k = 1
n .

In the special case where there are n = 2 species,
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M2 =

β11(K1)
γ1 + α1 + b1

K1β12(K2)
K2(γ2 + α2 + b2)

K2β21(K1)
K1(γ1 + α1 + b1)

β22(K2)
(γ2 + α2 + b2)

=
ℛ11 ℛ12
ℛ21 ℛ22

. (3.3)

It can be easily shown that the spectral radius of M2 satisfies (3.1).

In the case where there is no recovery, γk = 0 in equations (2.1) and (2.2), the SIS model 

becomes an SI model; Theorem 3.1 still holds true. That is, the basic reproduction number 

for the SI model is given by the formula in Theorem 3.1 with γk = 0.

The basic reproduction number for each species j, when there is no contact with other 

species, is defined by ℛjj, j = 1,2, …, n. It follows from assumptions (2.3) and (2.4) that 

the basic reproduction number for the reservoir species is greater than the basic reproduction 

number for the spillover species,

ℛ11 > ℛjj, j = 2, …, n .

The expressions ℛjj simplify when either mass action or standard incidence are assumed. 

For mass action incidence, βjk(Kk) = λjkKk. The value of ℛjj simplifies to

ℛjj =
Kjλjj

γj + αj + bj
.

Notice for mass action incidence that the species basic reproduction numbers increase at a 

rate proportional to their carrying capacity Kj. For standard incidence, βjk(Kk) = λjk so that

ℛjj =
λjj

γj + αj + bj
.

Favorable environmental conditions can lead to increased rodent densities (resulting in 

increased contacts λjk or increased carrying capacities Kj) which, in turn, can lead to 

hantavirus outbreaks. Increased densities of deer mice (Peromyscus maniculatus), the 

reservoir host for the hantavirus known as Sin Nombre virus, was one of the driving factors 

in the hantavirus outbreak in New Mexico in 1993 (Mills et al., 1999).

The next theorem shows that the presence of multiple species capable of transmitting the 

disease can result in an increase in the basic reproduction number for the system. The form 

of the next generation matrix is very important to verification of this next result.

Theorem 3.2

Assume that the SIS multi-host epidemic model, (2.1) and (2.2), and the SIR multi-host 
epidemic model, (2.7), (2.8) and (2.9), with n hosts have a basic reproduction number given 
by the spectral radius of the n × n matrix Mn, ρ(Mn), where Mn is defined in Theorem 
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3.1. If one spillover species is added to each of the model equations and all parameters of 
the original system with n hosts remain unchanged, then the new SIS and SIR multi-host 
epidemic models with n + 1 hosts has a spectral radius ρ(Mn+1) that satisfies

ρ(Mn + 1) ≥ ρ(Mn) ≥ ℛ11 . (3.4)

If, in addition, the transmission rate for host n satisfies

βn1(K1)β1n(Kn) ≠ 0, n ≠ 1, (3.5)

then

ρ(Mn) > ℛ11 (3.6)

Proof—Augment the n × n matrix Mn with one row and one column of zeros, so that the 

augmented matrix Mn
0 is of size n + 1 × n + 1,

Mn0 = Mn 0T

0 0
,

where 0 is a zero row vector of size n. Notice that the n × n submatrix of Mn
0 equals Mn and 

equals the n + 1 × n + 1 submatrix of Mn+1,

Mn + 1 =
Mn A
B ℛn + 1, n + 1

,

where ρ(Mn+1) is the basic reproduction number of the SIS and SIR epidemic models with n 
+ 1 hosts. From the assumptions in the SIS and SIR multi-host epidemic models and the next 

generation approach, it follows that the column and row vectors A and B of matrix Mn+1 

have nonnegative entries. Hence, it follows from the theory of nonnegative matrices (6.1.12, 

page 225, Ortega, 1987) that

ρ(Mn) = ρ(Mn0) ≤ ρ(Mn + 1) .

If n = 1, ρ(M1) = ℛ11.

Assumption (3.5) and the assumptions regarding the nonnegativity (or positivity) of the 

basic parameters imply ℛn1 > 0 and ℛ1n > 0 for n ≠ 1. Consider the 2 ×2 matrix,

M =
ℛ11 ℛ1n
ℛn1 0 .
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It is straightforward to verify that ρ(M) > ℛ11, where the inequality is strict. Applying the 

preceding argument shows that ρ(Mn) ≥ ρ(M). Hence, the strict inequality (3.6) holds.

Assumption (3.5) implies that there is transmission of the disease back and forth between 

the reservoir species and species n + 1. The system with an additional species has a basic 

reproduction number that is greater than the basic reproduction number of the reservoir 

host. The inequality (3.4) regarding the spectral radii can be applied to more general SEIR 

epidemic models with multiple hosts, where the state E represents individuals in a latent or 

exposed class.

For SIS and SIR models, it is not always the case that the basic reproduction number 

increases with multiple species. If either ℛn+1, j = 0 or ℛj, n+1 = 0 for all j = 1, …, n, 

then the basic reproduction number does not increase, but ρ(Mn+1) = ρ(Mn). For the basic 

reproduction number to strictly increase with the addition of a spillover species into the 

system, the disease must be able to infect the spillover species and also be transmitted back 

to the reservoir host from this spillover species (inequality (3.5) must hold).

Because hantavirus infection in rodents is primarily associated with one reservoir species, 

intraspecies transmission in spillover species, βjj(Kj), j = 2, …, n, may be very low or 

negligible. Interspecies transmission between spillover species, βkj(Kj), j, k = 2, …, n, is 

probably very low also. Therefore, the only positive entries in the next generation matrix 

may be the entries in the first column or first row, indicating there is transmission from 

the reservoir species to a spillover species or from a spillover to the reservoir species, 

respectively. There is evidence of transmission from the reservoir species to spillover species 

(positive antibody titers in the spillover species). Then βj1(K1) > 0 for j = 1,2, …, n; the first 

column of the next generation matrix Mn has positive entries. If, in addition, for some j ≠ 1, 

β1j(Kj) > 0, then, according to Theorem 3.2, our model predicts that the basic reproduction 

number in the system with the reservoir and spillover species is greater than with the 

reservoir host alone. For example, if ℛ11 = ρ(M1) < 1, then the presence of spillover species 

in the system can increase the reproduction number to a value greater than one, ℛ0 = ρ(Mn) 

> 1 for n > 1.

4. Two-Host SIS Epidemic Model with Standard Incidence

Consider a special case of the general n host model, where there is only the reservoir species 

and one spillover species. Assume that the incidence rate is standard incidence so that 

βjk(Nk) = λjk is constant. An explicit expression for the basic reproduction number is given 

in (3.1).

The SIS multi-host epidemic model (2.1) and (2.2) for n = 2 hosts can be expressed in terms 

of proportions. Let the proportion of infected individuals for the two hosts be denoted as i1 

= I1/N1 and i2 = I2/N2. Then the differential equations for the two-host SIS epidemic model 

can be expressed in terms of the proportions as follows:

di1
dt = λ12i2 − i1[b1 + γ1 + (1 − i1)(α1 − λ11) + λ12i2], (4.1)
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di2
dt = λ21i1 − i2[b2 + γ2 + (1 − i2)(α2 − λ22) + λ21i1] . (4.2)

Based on the assumptions (i)-(iv), Nj(t) > Lj > 0 for j = 1,2. An endemic equilibrium of (2.1) 

and (2.2) requires that Īj > 0 and S̄
j > 0, j = 1,2. Hence, there exists an endemic equilibrium 

of (2.1) and (2.2) if and only if there exists an endemic equilibrium of (4.1) and (4.2) with īj 
= Īj/(Īj+S̄

j) < 1, j = 1,2. The next result states that a unique endemic equilibrium exists to the 

two-host SIS epidemic model if and only if ℛ0 > 1. In addition, two conditions, equivalent 

to ℛ0 > 1, are given that express this inequality in terms of the species basic reproduction 

numbers ℛjj, j = 1,2 and that relate to condition (3.5) in Theorem 3.2.

Theorem 4.1

A unique endemic equilibrium exists for the two-host SIS epidemic model (2.1) and (2.2) 

with standard incidence if and only if

i. ℛjj > 1 for some j = 1,2 or

ii. ℛjj ≤ 1 for j = 1,2 and (1 − ℛ11)(1 − ℛ22) < ℛ12ℛ21.

Conditions (i) and (ii) are equivalent to ℛ0 > 1, where ℛ0 is defined in (3.1) and

ℛjk =
Kjλjk

Kk(γk + αk + bk) , j, k = 1, 2.

The second inequality in part (ii) of Theorem 4.1 relates to condition (3.5) in Theorem 3.2. 

If the species basic reproduction numbers are less than one, ℛjj ≤ 1, j = 1,2, and if ℛ0 > 1, 

then there must be transmission between the reservoir and the spillover species (inequality 

(3.5)) because condition (ii) implies ℛ12ℛ21> 0 which implies λ12λ21 > 0. The presence of 

the spillover species increases the basic reproduction number of the system to a value greater 

than one, ℛ11 ≤ 1 < ℛ0.

Proof—The nullclines for system (4.1) and (4.2) can be expressed as

i2 = f1(i1) =
i1[γ1 + α1 + b1 − λ11 + i1(λ11 − α1)]

λ12(1 − i1) ,

i1 = f2(i2) =
i2[γ2 + α2 + b2 − λ22 + i2(λ22 − α2)]

λ21(1 − i2) .

Notice that the region D = [0,1] × [0,1] is invariant for this system, that is, if ij = 0 then 

dij/dt > 0, and if ij = 1, then dij/dt < 0 for j = 1,2. The nullclines always intersect at the 

origin. Additionally, f1 has an asymptote at i1 = 1, and f2 has an asymptote at i2 = 1. The 

denominators of both functions are positive in the interior of region D.

First, we show conditions (i) and (ii) imply there exists a unique endemic equilibrium. We 

examine three different cases for the nullclines by considering the signs of the coefficients of 

the functions f1 and f2.
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Case (i): Suppose λ11 > γ1 +α1 + b1 and λ22 > γ2 +α2 + b2. These two inequalities are 

equivalent to ℛ11 > 1 and ℛ22 > 1, respectively. In addition,

df1
di1

∣ i1 = 0 < 0 and
df2
di2

∣ i2 = 0 < 0.

The nullclines are graphed in Figure 1. There exists a unique point of intersection in the 

interior of D.

Case (ii): Suppose λ11 > γ1 + α1 + b1 and λ22 < γ2 + α2 + b2. Then ℛ11 > 1, ℛ22 < 1,

df1
di1

∣ i1 = 0 < 0, and
df2
di2

∣ i2 = 0 > 0.

Again there exists a unique point of intersection of the nullclines in D (see Figure 2). A 

similar result holds if the two inequalities are reversed, when ℛ11 < 1 and ℛ22 > 1.

Case (iii): Suppose λ11 < γ1 + α1 + b1 and λ22 < γ2 + α2 + b2. Then ℛ11 < 1 and ℛ22 < 

1. Both nullclines have positive slope at the origin. For the nullclines to intersect in D it must 

be the case that the slopes at the origin satisfy

df1
di1

∣ i1 = 0 < 1
[df2/di2] ∣ i2 = 0

.

This condition can be expressed as

(b1 + γ1 + α1 − λ11)(b2 + γ2 + α2 − λ22)
λ12λ21

< 1

or equivalently (1 − ℛ11)(1 − ℛ22) < ℛ12ℛ21. Under these conditions, the nullclines cross 

at a unique point in the interior of the region D (see Figure 3).

Suppose there exists a unique endemic equilibrium but conditions (i) and (ii) are not 

satisfied, that is, ℛ11 < 1, ℛ22 < 1 and (1 − ℛ11)(1 − ℛ22) ≥ ℛ12ℛ21. This case cannot 

occur because the nullclines do not cross in the interior of the region D (see Figure 4).

Next we show that ℛ0 > 1 if and only if conditions (i) or (ii) hold. Suppose (i) holds. 

Without loss of generality, assume ℛ11 > 1 and ℛ11 > ℛ22. Then

ℛ0 ≥
ℛ11 + ℛ22 + (ℛ11 − ℛ22)2

2 = ℛ11 > 1 .

Suppose (ii) holds. Then
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ℛ0 >
ℛ11 + ℛ22 + (ℛ11 − ℛ22)2 + 4(1 − ℛ11)(1 − ℛ22)

2

=
ℛ11 + ℛ22 + (2 − ℛ11 − ℛ22)2

2 = 1.

Next assume ℛ0 > 1. Then

2 − ℛ11 − ℛ22 < (ℛ11 − ℛ22)2 + 4ℛ12ℛ21 . (4.3)

If 2 − ℛ11 − ℛ22 < 0, then either ℛ11 > 1 or ℛ22 > 1 so that condition (i) holds. If 2 − ℛ11 

− ℛ22 ≥ 0, then squaring both sides of (4.3) and simplifying leads to

(1 − ℛ11)(1 − ℛ22) < ℛ12ℛ21 . (4.4)

Thus, ℛjj ≤ 1 for j = 1,2 and inequality (4.4) implies condition (ii) holds.

Conditions similar to (i) and (ii) in Theorem 4.1 were derived by Allen and Cormier (1996). 

In their SIS models there was no disease-related deaths, αj = 0. Figures 1-4 illustrate the 

four possibilities of the nullclines and are helpful in verifying global stability of the endemic 

equilibrium when ℛ0 > 1.

Theorem 4.2

For the two-host SIS epidemic model (2.1) and (2.2) with n = 2 and standard incidence the 
basic reproduction number determines the global dynamics. In particular,

i. If ℛ0 ≤ 1, then the DFE is globally asymptotically stable.

ii. If ℛ0 > 1, then the endemic equilibrium is globally asymptotically stable.

Proof—Suppose ℛ0 ≤ 1. According to Theorem 4.1, there is no endemic equilibrium. 

The only equilibrium is the DFE and it is locally asymptotically stable (van den Driessche 

& Watmough, 2002). Because solutions are bounded, Poincare-Bendixson theory can be 

applied. The origin is globally asymptotically stable; part (i) has been proved.

Suppose ℛ0 > 1. Then by Theorem 4.1 a unique endemic equilibrium exists. The 

proportions model (4.1) and (4.2) is analyzed. The endemic equilibrium for model (4.1) 

and (4.2) is globally asymptotically stable if and only if the endemic equilibrium for the 

two-host model (2.1) and (2.2) is globally asymptotically stable. The region D = [0,1] ×[0,1] 

is invariant for the proportions model.

First, we show that no solution can approach the DFE (the origin in the case of the 

proportions model). The Jacobian matrix for the proportions model evaluated at the origin is 

given by
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J =
λ11 − (γ1 + α1 + b1) λ12

λ21 λ22 − (γ2 + α2 + b2)

The eigenvalues of J are real and are given by

λ± =
r1 + r2 ± (r1 − r2)2 + 4λ12λ21

2 ,

where r1 = λ11 − (γ1 + α1 + b1) and r2 = λ22 − (γ2 + α2 + b2). Since ℛ0 > 1, clearly λ+ > 0. 

If λ− > 0, then the DFE is a repellor. If λ− < 0, the eigenvector corresponding to λ− is given 

by

x1
x2

=
1

λ− − r1
λ12

Since λ− < 0, x2 is negative. Thus, the stable manifold of the origin lies outside the region D. 

No solutions approach the DFE.

Consider the i1 and i2 nullclines for system (4.1) and (4.2), i2 = f1(i1) and i1 = f2(i2), 

respectively (see Figures 1-4). We show that the regions enclosed by the nullclines are 

invariant. Along the i1-nullcline, inside the region D, but below the endemic equilibrium, 

di2/dt > 0 (see Figure 5). In addition, along the i2-nullcline, inside D, but to the left of the 

endemic equilibrium, di1/dt > 0. Thus, region A in Figure 5 is invariant. The direction of 

flow changes as the endemic equilibrium is crossed, so that region B is also invariant.

As a result, there can be no periodic solutions inside region D. Poincare-Bendixson theory 

can be applied. Thus, the endemic equilibrium is globally asymptotically stable.

5. Numerical Examples

Two numerical examples are presented to illustrate the dynamics of the SIS epidemic 

model with standard and mass action incidence. In the first example, standard incidence is 

assumed, where βjk(Nk) = λjk. With only two hosts the DFE is locally asymptotically stable, 

ℛ0 < 1, but addition of a third host results in ℛ0 > 1. In the second example, mass action 

incidence is assumed, where βjk(Nk) = λjkNk. In this example, we show that increasing the 

carrying capacity increases the basic reproduction number and the level of prevalence.

Hantavirus in rodents results in very few, if any, disease-related deaths. Therefore, we let αj 

= 0.01, j = 1, …, n. We assume that conditions (2.3) and (2.4) hold. That is, λ11 > λj1 ≥ λjk, 
j, k = 2, …, n, λj1 ≥ λ1j, and γ1 < γj, j = 2, …, n.

In the first numerical example, for the two-host SIS epidemic model, let λ11 = 3.5, λ12 

= 0.3 = λ22, λ21 = 2λ22, γ1 = 0.55, and γ2 = 1. For example, if the time period is two 

months, then the average length of the infectious period for the reservoir host is 1/γ1 = 3.6 
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months and for the spillover species it is 1/γ2 = 2 months. For the per capita birth rates, 

let bi = 3 for i = 1,2, where the average litter size is 6 (males and females). These are 

reasonable estimates based on the rice rat Oryzomys palustris which is the reservoir host 

for the hantavirus known as Bayou virus (Davis & Schmidley, 1994; McIntyre et al., 2005). 

We assume a simple form for the density-dependent death rates, d1(N1) = 0.5 + 0.005N1 

and d2(N2) = 0.5 + 0.01N2. These forms result in carrying capacities of K1 = 500 and K2 

= 250. The basic reproduction number for the two-host SIS epidemic model, based on these 

parameter values, is ℛ0 = 0.9968 < 1. Thus, the disease dies out and the DFE is globally 

asymptotically stable (Theorem 4.2). The dynamics over time are graphed in Figure 6 for the 

susceptible Sj, infected Ij, and proportion infected ij, j = 1,2. It can be seen that limt→∞ Ij(t) 
= 0 = limt→∞ tj(t) for j = 1,2.

Suppose a third host is added to the two-host model. The third host is a spillover species 

similar to the second host with the same parameter values as the second host. In particular, 

α3 = α2, γ3 = γ2, b3 = b2, λ13 = λ33 = λ22, λ31 = λ21, d3(N3) = 0.5 + 0.01N3, and 

λ32 = 0 = λ23. The latter assumption implies there is no disease transmission between 

the two spillover species. The carrying capacity of the third species is K3 = 250. With 

the introduction of the third host, the basic reproduction number for the three-host SIS 

epidemic model increases to ℛ0 = 1.0101 > 1; the disease persists. There exists a unique 

endemic equilibrium which is locally asymptotically stable, (S̄
1, Ī1, S̄

2, Ī2, S̄
3, Ī3) ≈ 

(495,5,249.6,0.4,249.6,0.4) (see Figure 7).

The prevalence of infection within the spillover species and the reservoir host is very low at 

the endemic equilibrium, 0.16% and 1%, respectively, but it is much greater in the reservoir 

host. In this example, it is the presence of the spillover species that allows the disease to 

persist in the system.

In the second numerical example, mass action incidence with βjk(Nk) = λjkNk is assumed. 

We assume the transmission rates have the same values at the carrying capacity as in the 

previous example, i.e., βjk(Kk) = λjk. For example, β11(K1) = 3.5 so that β11(N1) = 0.007N1. 

In addition, we assume β1j(Nj) = 0.0012Nj = βjj(Nj), βj1(N1) = 0.0012N1 for j = 2,3, and 

β23(N3) = 0 = β32(N2). With these transmission rates and the same parameter values as in 

the preceding three-host example, the basic reproduction number is the same, ℛ0 = 1.0101. 

To illustrate the impact of the carrying capacity on the dynamics, we double the carrying 

capacities. The same parameter values are assumed as in the preceding example, except for 

the density-dependent death rates and the assumptions we made regarding the transmission 

rates. The density-dependent death rates are d1(N1) = 0.5 + 0.0025N1, d2(N2) = 0.5 + 

0.005N2, and d3(N3) = 0.5 + 0.005N3. In this second example, the carrying capacities for the 

three-host SIS model are K1 = 1000 and K2 = 500 = K3. When all of the carrying capacities 

double so does the basic reproduction number, ℛ0 = 2.0202. This can be easily seen from 

the next generation matrix M2 given in (3.3). The jk entry in matrix M2 is ℛjk = Kjλjk/(γk + 

αk + bk). An increase in Kj to 2Kj increases all of the matrix entries of M2 by a factor of 2 

and as a result the spectral radius of the new matrix increases by a factor of 2.

There exists a locally stable endemic equilibrium for this three-host epidemic model given 

by (S̄
1, Ī1, S̄

2, Ī2, S̄
3, Ī3) ≈ (483.7,514.3,424.8,74.9,424.8,74.9) (see Figure 8). The level of 
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prevalence has increased substantially in this second example. At the endemic equilibrium, 

the total percentage of the rodent population infected is 33% (51.5% in the reservoir host 

and 15% in the spillover species).

In a three-host SIR epidemic model with mass action incidence having the same parameter 

values and carrying capacities as in the second example, the basic reproduction is the same, 

ℛ0 = 2.0202. There is a unique locally stable endemic equilibrium in the SIR model but the 

prevalence of infection is less than for the SIS model (43.5% in the reservoir host and 12.4% 

in the spillover species).

6. Concluding Remarks

We formulated and analyzed SIS and SIR epidemic models with multiple hosts with a goal 

of applying our results to the study of hantavirus in rodent populations. Our analyses and 

simulations show that the presence of spillover species can be an important factor in the 

emergence and persistence of hantavirus in wild rodent populations. The important question 

to address for hantavirus is whether the spillover species can transmit the disease back to 

the reservoir host. Our theoretical results can be applied to any diseases that involve multiple 

hosts. The results in Theorem 3.2 imply as the number of hosts increases so does the basic 

reproduction number. Multiple hosts can play an important role in disease outbreaks and in 

disease persistence.
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Fig. 1. 
The nullclines for case (i), ℛ11 > 1 and ℛ22 > 1

McCormack and Allen Page 18

Math Med Biol. Author manuscript; available in PMC 2022 November 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
The nullclines for case (ii), ℛ11 > 1 and ℛ22 < 1
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Fig. 3. 
The nullclines for case (iii), ℛ11 < 1 and ℛ22 < 1 and (1 − ℛ11)(1 − ℛ22) <ℛ12ℛ21
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Fig. 4. 
ℛ11 < 1 and ℛ22 < 1 and (1 − ℛ11)(1 − ℛ22) ≥ ℛ12ℛ21
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Fig. 5. 
Direction field for the case ℛ11 < 1 and ℛ22 < 1 and (1 − ℛ11)(1 − ℛ22) <ℛ12ℛ21
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Fig. 6. 
Solution of the two-host SIS epidemic model with standard incidence for initial conditions: 

S1(0) = 200, S2(0) = 100, I1 (0) = 5, and I2 (0) = 1; ℛ0 = 0.9968 < 1.
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Fig. 7. 
Solution of the three-host SIS epidemic model with standard incidence for initial conditions: 

S1(0) = 200, S2(0) = 100 = S3 (0), I1(0) = 5, I2 (0) = 1 and I3 (0) = 0; ℛ0 = 1.0101 > 1.
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Fig. 8. 
Solution of the three-host SIS epidemic model with mass action incidence for the initial 

conditions: S1(0) = 400, S2(0) = 200 = S3(0), I1 (0) = 5, I2(0) = 1 and I3(0) = 0; ℛ0 = 2.0202 

> 1.
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