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Abstract: The early prediction of diabetes can facilitate interventions to prevent or delay it. This study
proposes a diabetes prediction model based on machine learning (ML) to encourage individuals at
risk of diabetes to employ healthy interventions. A total of 38,379 subjects were included. We trained
the model on 80% of the subjects and verified its predictive performance on the remaining 20%.
Furthermore, the performances of several algorithms were compared, including logistic regression,
decision tree, random forest, eXtreme Gradient Boosting (XGBoost), Cox regression, and XGBoost
Survival Embedding (XGBSE). The area under the receiver operating characteristic curve (AUROC)
of the XGBoost model was the largest, followed by those of the decision tree, logistic regression,
and random forest models. For the survival analysis, XGBSE yielded an AUROC exceeding 0.9 for
the 2- to 9-year predictions and a C-index of 0.934, while the Cox regression achieved a C-index of
0.921. After lowering the threshold from 0.5 to 0.25, the sensitivity increased from 0.011 to 0.236
for the 2-year prediction model and from 0.607 to 0.994 for the 9-year prediction model, while the
specificity showed negligible changes. We developed a high-performance diabetes prediction model
that applied the XGBSE algorithm with threshold adjustment. We plan to use this prediction model
in real clinical practice for diabetes prevention after simplifying and validating it externally.

Keywords: diabetes prediction model; diabetes prevention; type 2 diabetes; XGBoost Survival Embedding

1. Introduction

In Korea, general medical checkups are popular owing to the mandate of the gov-
ernment and the financial aid provided by companies. These medical checkups consist of
various examinations, including laboratory, imaging, and functional studies, followed by
individualized recommendations [1–3]. Previously, people visited hospitals for diagnosis
and treatment after symptom occurrence. However, nowadays, many people visit hospitals
for screening even without symptoms in the hopes of early disease identification followed
by timely treatment and a good prognosis [4]. Furthermore, people desire a reliable pre-
diction of their conditions and short- and long-term possibilities of disease occurrence
followed by appropriate intervention to prevent or delay them. They consider that recent
technological advances have led to the development of new methods that can provide
better answers. Diseases occur from a combination of genetic and environmental/external
factors [5]. Many chronic diseases, such as diabetes mellitus (DM), hypertension, and
obesity, are closely related to patient lifestyle choices, including nutrition and physical
activity, and their occurrence cannot be attributed to a single factor.

DM is a major chronic disease with a growing prevalence [6]. The management of
diabetes and its related complications consumes valuable social resources. Therefore,
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strategies to prevent diabetes are as important as an early diagnosis, and the develop-
ment of a diabetes predictive model can be the first step toward performing the necessary
interventions [7]. By informing each individual of their risk for diabetes, healthcare profes-
sionals can prescribe the appropriate individualized lifestyle modifications and monitor
their progress.

Machine learning (ML) algorithms have been utilized for developing predictive models
in various fields, such as weather forecasting, predicting consumer propensity, and traffic
prediction [8–12]. Furthermore, ML has been applied in the medical field; for instance, it is
used to explain disease progression to patients. Many models have been created to predict
the possibility of diseases, and they are expected to suggest appropriate interventions
after stratifying the risk [13,14]. In a previous study, we made simplified ML models
for 12-month DM predictions [15]. In this study, we aimed to develop more valid and
applicable DM prediction models for longer periods by comparing the performances of
widely used ML models, such as classification and decision tree-based algorithms. To this
end, we applied logistic regression for the former and decision tree, random forest, and
eXtreme Gradient Boosting (XGBoost) models for the latter. XGBoost is a decision-tree-
based ensemble ML algorithm whose good performance has been widely demonstrated
in ML competitions [16,17]. Subsequently, we compared the recently introduced open-
source algorithm based on XGBoost, the XGBoost Survival Embedding (XGBSE) model [18],
against the conventional Cox regression model.

2. Materials and Methods
2.1. Privacy Protection

All the data extracted from electronic medical records for this study were separately
stored in secure computing systems and facilities, and access was provided solely to the
principal investigator. Examinees were assigned random temporary identifications, and
only encrypted, anonymous data were available to observers and analysts. Because the
data used in this study were anonymized, no violation of human rights or infringement of
moral or ethical rights was possible. Consequently, it was not necessary to obtain informed
consent from the participants. The study was approved by the Institutional Review Board
of the Hospital (IRB No. KC20RISI900).

2.2. Data Collection

The dataset used in this research was extracted from electronic medical records be-
tween July 2009 and April 2019 at the Health Promotion Center of a tertiary hospital in
Seoul, Korea. The general checkups were open to all without any restrictions, such as
occupation or underlying diseases. Regular checkups were recommended, generally in the
form of annual follow-ups; however, the interval depended on the examinees’ intentions.
Data from only the adult subjects (18 years of age or older) were collected. First, we selected
subjects with at least two medical checkups at intervals of three or more months. Then, we
excluded those who were diagnosed with diabetes at the first visit. We defined patients
with diabetes if they fulfilled any of the following three criteria [19]: (1) self-reported
diabetes, (2) taking any glucose-lowering agent, and (3) fasting glucose level ≥ 126 mg/dL
and glycosylated hemoglobin (HbA1c) ≥ 6.5%.

The medical records contained information on approximately 99,414 individuals
with 206,398 checkups (Figure 1). A total of 59,194 individuals with only one visit and
1841 individuals who had diabetes at their first visit were excluded from the study, and the
remaining 38,379 individuals were included. Among them, 1518 patients were diagnosed
with diabetes, whereas 36,861 were not. After random splitting, the training dataset
consisted of 29,489 subjects with no diabetes and 1214 subjects with incident diabetes.
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2.3. Variables Used to Develop the Diabetes Prediction Model

The variables included in this study are presented in Table S1. These included age,
sex, underlying diseases, family history, physical examinations, and laboratory results.
Additionally, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were in-
cluded. The anthropometric variables of ideal body weight, skeletal muscle mass, body
fat mass, and percent body fat were measured through a bioelectrical impedance analysis
performed using the InBody 720 device (Biospace, Seoul, Korea). The body mass index
(BMI) was calculated by dividing the patient’s weight (kg) by the height squared (m2).
The data of the pulmonary function test, including forced vital capacity (FVC), forced
expiratory volume in 1 s (FEV1), forced expiratory flow at 25% and 75% of vital capacity
(FEF25–75), and peak expiratory flow rate (PEFR), were available. Among the laboratory
tests, we used the data points under the following variables: fasting glucose (FBG), gly-
cosylated hemoglobin (HbA1c), total cholesterol, triglyceride, high-density lipoprotein
cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), hemoglobin, hematocrit,
total protein, albumin, uric acid, aspartate transaminase, alanine aminotransferase, alkaline
phosphatase, amylase, gamma-glutamyl transpeptidase, globulin, albumin/globulin ratio,
blood urea nitrogen, creatinine, sodium, potassium, chloride, calcium, phosphorus, thyroid
stimulating hormone, and free thyroxine. As the questionnaires asked comprehensive
questions about underlying diseases and family history, the total number of variables was
112, and the variables comprised numerical and categorical values.

2.4. Construction and Validation of the DM Prediction Models

We split the dataset into training and testing datasets by randomly assigning 80%
and 20% of the data points to each dataset, respectively. Applying the stratified 10-fold
cross-validation method to the training dataset, we tuned the model hyperparameters
to obtain optimal hyperparameters that would yield the largest area under the receiver
operating characteristic (AUROC). Missing values were replaced with the median and
mode values in the case of the continuous and discrete features, respectively. Algorithms
that could handle missing values produced two different predictive models with and
without the imputation of missing values using the medians and modes. The values of
Shapley additive explanations (SHAP) were used to determine the importance of each
variable. First, the logistic regression, decision tree, random forest, and XGBoost models
were applied to predict the presence of diabetes within 9 years using a checkup record at
the first visit for each person. Then, the Cox regression and XGBSE models were applied to
calculate the possibility of diabetes within a certain period using all serial data for survival
analysis. We used the AUROC, sensitivity, specificity, positive predictive value (PPV),
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negative predictive value (NPV), and accuracy to evaluate the performance of each model.
The AUROC is a performance metric between sensitivity and specificity. Sensitivity and
specificity are the abilities used to correctly predict whether an individual has diabetes or
does not have diabetes, respectively. PPV and NPV are the percentages of true incident
diabetes and no diabetes, respectively.

3. Results

The characteristics of the study population are summarized in Table 1, and those used
in the test data are presented in Table S2. The mean age of the subjects of the training set was
45 ± 10 years, and 44.2% of the subjects (13,578/30,703) were female. The mean BMI was
23.4 ± 3.2 kg/m2. Laboratory test results showed that the mean FBG was 91 ± 12 mg/dL,
and HbA1c was 5.4 ± 0.3%. The mean duration of the follow-up was 3.9 years, and the mean
number of medical checkups was 3.70. Numerous differing characteristics were observed
between the incident diabetes and “no diabetes” groups. Subjects in the incident diabetes
group were older (51 ± 10 years vs. 45 ± 10 years), and a lower proportion of females was
observed therein (26.6% vs. 44.9%). Anthropometric measurements showed that people in
the incident diabetes group had higher BMI (25.8 ± 3.4 kg/m2 vs. 23.3 ± 3.1 kg/m2), body
fat percentage (27.8 ± 6.3% vs. 26.0 ± 6.1%) and waist–hip ratio (0.93 ± 0.08 vs. 0.88 ± 0.12)
than those in the “no diabetes” group. Either SBP (127 ± 14 mmHg vs. 118 ± 14 mmHg)
and DBP (78 ± 11 mmHg vs. 73 ± 10 mmHg) or FBG (109 ± 21 mg/dL vs. 90 ± 10 mg/dL)
and HbA1c (6.0 ± 0.3 vs. 5.4 ± 0.3%) were higher in the incident diabetes group. The
average number of visits for the incident diabetes and “no diabetes” groups was 4.66 and
3.67, respectively, and the follow-up periods were 5.4 years and 3.9 years, respectively.
Overall, the incidence rate of diabetes was 3.96%.

Table 1. Characteristics of the subjects in training data.

All
(n = 30,703)

Incident
Diabetes

(n = 1,214)

No Diabetes
(n = 29,489)

Age, years 45 ± 10 51 ± 10 45 ± 10
Sex, female (%) 13,578 (44.2) 323 (26.6) 13,255 (44.9)
BMI, kg/m2 23.4 ± 3.2 25.8 ± 3.4 23.3 ± 3.1
Body fat percent, % 26.1 ± 6.2 27.8 ± 6.3 26.0 ± 6.1
Waist-hip ratio 0.88 ± 0.12 0.93 ± 0.08 0.88 ± 0.12
SBP, mmHg 119 ± 14 127 ± 14 118 ± 14
DBP, mmHg 73 ± 10 78 ± 11 73 ± 10
Laboratory finding

FBG, mg/dL 91 ± 12 109 ± 21 90 ± 10
HbA1c, % 5.4 ± 0.3 6.0 ± 0.3 5.4 ± 0.3
Total cholesterol, mg/dL 195 ± 34 200 ± 38 195 ± 33
Triglyceride, mg/dL 112 ± 80 162 ± 109 110 ± 78
HDL-C, mg/dL 54 ± 13 47 ± 11 54 ± 13
LDL-C, mg/dL 118 ± 30 122 ± 34 118 ± 30
AST, IU/L 23 ± 13 28 ± 15 23 ± 13
ALT, IU/L 25 ± 21 36 ± 27 25 ± 21
gamma-GTP, IU/L 34 ± 39 54 ± 50 34 ± 38
Amylase, IU/L 86 ± 29 79 ± 30 87 ± 29
BUN, mg/dL 13 ± 4 14 ± 4 13 ± 4
Creatinine, mg/dL 0.9 ± 0.2 0.9 ± 0.4 0.9 ± 0.2
Sodium, mEq/L 142 ± 2 142 ± 2 142 ± 2
Potassium, mEq/L 4.2 ± 0.3 4.2 ± 0.3 4.2 ± 0.3
Calcium, mg/dL 9.1 ± 0.4 9.2 ± 0.4 9.1 ± 0.4
Phosphate, mg/dL 3.5 ± 0.5 3.5 ± 0.5 3.5 ± 0.5
Uric acid, mg/dL 5.4 ± 1.4 5.9 ± 1.4 5.4 ± 1.4
TSH, uIU/ml 2.24 ± 4.97 2.25 ± 3.42 2.24 ± 5.03
Hemoglobin, g/dL 14.4 ± 1.6 14.9 ± 1.5 14.7 ± 1.6
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Table 1. Cont.

All
(n = 30,703)

Incident
Diabetes

(n = 1,214)

No Diabetes
(n = 29,489)

Pulmonary function test
FVC, % 93.8 ± 11.0 90.9 ± 11.1 92.9 ± 10.9
FEV1, % 98.6 ± 12.8 97.7 ± 13.3 98.7 ± 12.8
FEV1/FVC, % 82.4 ± 6.7 80.7 ± 6.1 82.4 ± 6.8
FEF25–75, % 100.1 ± 26.9 97.9 ± 27.8 100.2 ± 26.8
PEFR, L/s 99.1 ± 17.5 99.5 ± 18.3 99.1 ± 17.5

Personal history
Hypertension (%) 3320 (11.0) 319 (26.5) 3001 (10.3)
Cardiovascular diseases (%) 449 (1.5) 55 (4.6) 394 (1.4)
Cerebrovascular diseases (%) 371 (1.2) 20 (1.7) 351 (1.2)

Family history
Hypertension (%) 12,797 (42.1) 577 (47.8) 12,220 (41.9)
Diabetes (%) 8927 (29.4) 604 (50.0) 8323 (28.5)
Cardiovascular diseases (%) 5529 (18.2) 252 (20.9) 5277 (18.1)
Cerebrovascular diseases (%) 6907 (22.7) 338 (28.0) 6569 (22.5)

Follow-up, year 3.9 ± 2.5 5.4 ± 2.4 3.9 ± 2.5
Checkup, n 3.7 ± 2.0 4.7 ± 2.3 3.7 ± 2.0

Categorical variables are reported as frequencies (%), and continuous variables are reported as mean ± SD.
BMI—body mass index; SBP—systolic blood pressure; DBP—diastolic blood pressure; FBG—fasting blood
glucose; HbA1c—glycosylated hemoglobin; HDL-C—high-density lipoprotein cholesterol; LDL-C—low-density
lipoprotein cholesterol; AST—aspartate transaminase; ALT—alanine aminotransferase; gamma-GTP—glutamyl
transpeptidase; BUN—blood urea nitrogen; TSH—thyroid stimulating hormone; FVC—forced vital capacity;
FEV1—forced expiratory volume in 1 s; FEF25–75—forced expiratory flow at 25% and 75% of vital capacity;
PEFR—peak expiratory flow rate.

Figure 2 shows the effects of each variable on diabetes prediction and lists the top
20 variables in decreasing order of importance. FBG and HbA1c achieved remarkable
importance among all the variables, followed by the family history of diabetes, age, waist–
hip ratio, triglyceride, TSH, HDL-C, FVC, etc. The mean SHAP values of FBG and HbA1c
were four and three times those of the third-ranked variable, family history of diabetes
(0.963 for FBG, 0.761 for HbA1c, and 0.244 for the family history of diabetes). All four
measurements of the pulmonary function test, FVC, PEFR, FEF 2575%, and FEV1, were
included among the top 20 important variables.

Table 2 shows the performance parameters of several different prediction models that
determined the existence of diabetes for the 9-year period. All seven models showed high
accuracies; all accuracy values exceeded 0.9. The sensitivities were high, but the specificities
were low as a result of the trade-off relationship between sensitivity and specificity. The
AUROC ranged from a minimum of 0.524 in the random forest model with a missing value
imputation by median to a maximum of 0.623 in the XGBoost model without missing value
imputation.

Table 3 shows the performance parameters of the XGBSE models, which determined
the existence of diabetes in each corresponding period from 2 years to 9 years. The XGBSE
models yielded remarkably high AUROCs; each model achieved an AUROC exceeding 0.9.
Among them, the 9-year prediction XGBSE model had the highest AUROC of 0.955. The
sensitivity of our XGBSE models for the standard threshold value of 0.5 ranged between
0.090 and 0.818, whereas the specificity ranged between 0.917 and 0.999. The models for
longer-term predictions achieved higher sensitivity values. We lowered the threshold to
0.25 to increase sensitivity; subsequently, the sensitivity changed from 0.090 to 0.326 and
from 0.818 to 0.934 for the 2- and 9-year prediction models, respectively. The specificity
range decreased from between 0.917 and 0.999 to between 0.792 and 0.992. When the
XGBSE model was compared with the Cox regression model, C-indexes of 0.934 and 0.921
were obtained for the XGBSE and the Cox regression model, respectively.
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ulating hormone; HDL—high-density lipoprotein; FVC—forced vital capacity; BMI—body mass
index; PEFR—peak expiratory flow rate; FEF—forced expiratory flow; GTP—glutamyl transpepti-
dase; Hb—hemoglobin; ALT—alanine aminotransferase; FEV1—forced expiratory volume in 1 s;
SHAP—Shapley additive explanations.

Table 2. Performance parameters of diabetes prediction models.

AUROC Sensitivity Specificity PPV NPV Accuracy

Logistic regression MI by Median 0.547 0.964 0.529 0.996 0.098 0.960
Decision tree MI by Median 0.590 0.967 0.582 0.994 0.186 0.962

No MI 0.598 0.968 0.556 0.993 0.204 0.962
Random Forest MI by Median 0.524 0.962 0.696 0.999 0.050 0.961

No MI 0.530 0.962 0.756 0.999 0.061 0.962
XGBoost MI by Median 0.616 0.969 0.646 0.994 0.237 0.964

No MI 0.623 0.970 0.690 0.995 0.250 0.966

AUROC—area under the receiver operating characteristic curve; NPV—negative prediction value; PPV—positive
prediction value; MI—missing value imputation.

Table 3. Diabetes risk prediction model performance evaluation parameters by XGBoost Survival
Embedding method.

Threshold = 0.5 Threshold = 0.25

Prediction
Period AUROC Sensitivity Specificity PPV NPV Accuracy Sensitivity Specificity PPV NPV Accuracy

2 year 0.949 0.090 0.999 0.571 0.985 0.984 0.326 0.992 0.387 0.989 0.981
3 year 0.953 0.190 0.996 0.600 0.974 0.970 0.465 0.984 0.489 0.982 0.967
4 year 0.945 0.332 0.989 0.643 0.962 0.953 0.626 0.969 0.536 0.978 0.95
5 year 0.948 0.377 0.985 0.692 0.947 0.936 0.686 0.960 0.599 0.972 0.938
6 year 0.945 0.506 0.982 0.804 0.932 0.922 0.741 0.948 0.674 0.962 0.922
7 year 0.937 0.578 0.974 0.846 0.905 0.897 0.785 0.926 0.720 0.947 0.898
8 year 0.940 0.671 0.97 0.925 0.841 0.863 0.856 0.888 0.809 0.917 0.876
9 year 0.955 0.818 0.917 0.969 0.615 0.842 0.934 0.792 0.934 0.792 0.900

AUROC—area under the receiver operating characteristic curve; NPV—negative prediction value; PPV—positive
prediction value.
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4. Discussion

In this study, using the recently developed XGBSE algorithm, we created a model to
predict diabetes development from electronic medical records data, which were created
based on general medical checkups. Each XGBSE model performed predictions over
various periods ranging from 2- to 9-years, and the models outperformed other existing
models. Considering the results of a recent systematic review and meta-analysis [20] that
suggested an AUROC of 0.812 for ML prediction models, our prediction models with AUCs
exceeding 0.9 are satisfactory.

One potential reason for the excellent performance of our model is that we used as
many variables as possible, including self-reported information, physical examinations, and
laboratory tests, while excluding complicated information, such as the results of imaging
studies or unavailable data. Although the use of more variables leads to a complex and
cumbersome process, this process facilitates a high predictive power for the model [21].
Other meaningful variables, such as medication history, smoking, alcohol consumption,
stress, occupation, and education, were unavailable [22–25]. However, we included the
two most important variables of FBG and HbA1c levels. Previous studies have shown the
importance of these two parameters for diabetes prediction models [15,26], and the estima-
tion of variable importance in this study confirmed the high importance of FBG and HbA1c
levels. Although the order of importance was different, the family history of diabetes, age,
TG, BMI, and uric acid were also meaningful variables, and the results were consistent with
those of other studies [27–29]. Our model included distinctive variables such as waist–hip
ratio and the results of pulmonary function tests, which are not used in other deep learning
models and were considered contributing factors for outstanding performance.

In our study, the waist–hip ratio had higher SHAP values than those of BMI. Although
the choice of the best anthropometric index remains debatable [30,31], these are well-known
factors relating to diabetes [32–34]. Shin et al. developed an ML-based diabetes prediction
model using the results of pulmonary function tests [15]. Other studies have reported
a close relationship between pulmonary function and diabetes incidence [35–38], and
our study showed that FVC, PEFR, FEF 25–75%, and FEV1 were included in the top 20
important variables. Here, we determined the importance of all the variables with SHAP
values, unlike the previous study by Shin et al., in which feature importance proved the
effect of 27 selected variables to fit the simplified model [15]. In addition to the advantages
offered by a large number of variables used in our study, our data source and the records
of regular medical checkups offered the advantage of a small number of missing values.
The examinees were active subjects of these checkups; hence, they sincerely answered the
questionnaires and participated in the tests. In fact, based on the SHAP values, the third
most important variable in this study was a family history of diabetes. A third critical
factor accounting for the success of our model could be the use of a threshold of 0.25, which
increased the sensitivity with negligible changes in specificity, even though sensitivity
and specificity have a trade-off relationship. It has been noted that an optimal threshold
choice is essential to improve the performance of artificial intelligence algorithms [39]. This
manipulation of higher sensitivity is reasonable as the fundamental goal of this diabetes
prediction model was to reduce the economic burden by preventing diabetes rather than
initiating medication. There is negligible harm in diagnosing the risk of developing diabetes
and recommending lifestyle modifications to prevent it.

The final important point accounting for the excellent performance of our model might
be the XGBSE algorithm. Chen et al. [16] proposed a decision-tree-based XGBoost as an
effective and flexible ML method. This model has also been introduced in the clinical
field [40–43]. XGBSE is an open-source, and a state-of-the-art modeling algorithm devel-
oped to solve concerns about survival-curve prediction, confidence-interval estimation, and
unbiased expected survival times [18]. To the best of our knowledge, this is the first study
that uses the XGBSE algorithm for diabetes prediction. The performance of our model with
the XGBSE algorithm showed a higher AUROC than that of XGBoost. Generally, achieving
accurate predictions for longer prediction periods is difficult. Rhee et al. compared the
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Cox longitudinal summary and deep learning models for up to 10 years and obtained a
declining AUROC value [44]. Our models maintained good AUROC values across the
2- to 9-year periods; this is another notable strength as our models predict serially for
prediction survival.

The ultimate goal of these diabetes prediction models is to identify the people at risk
for diabetes and motivate them to incorporate changes into their lifestyles for better health.
In Korea, people voluntarily undergo regular comprehensive medical checkups. Owing
to technological advancements, people’s expectations are shifting from early diagnosis
and treatment to an early detection of disease possibility and preventive management. To
address these expectations, commercialized genetic studies were introduced. However,
not only genetics but also environmental and/or external conditions can influence disease
progression, and currently available commercialized genetic studies are unable to reflect
changes in people’s conditions. In addition, everyone undergoes internal aging, and the risk
of diabetes increases with age. Furthermore, our data show that age is an important variable
in predicting diabetes (Figure 2). These factors appear to account for the differences—not
only age but also the number of checks or lengths of follow-up periods—between the
incident diabetes group and the no diabetes group (Table 1). Therefore, disease prediction
models will be helpful to guide people, particularly those with chronic diseases, such as
diabetes. Awareness concerning the risk of diabetes can motivate people to track changes in
their risk after applying preventive measures. In the near future, the results of the ongoing
Korean Diabetes Prevention Study can serve as an evidence-based guide for determining
suitable interventions to prevent diabetes [45]. In addition, healthcare providers and
politicians can formulate strategies for a stratified approach to retard the progress of DM.
These efforts can be implemented not only by healthcare providers but also target high-risk
individuals through various types of support, including official educational programs,
smartphone applications, and social networks.

This study has some limitations. Our dataset was obtained from a tertiary institution.
Typically, patients with severe and multiple diseases tend to visit higher-level hospitals.
However, this tendency is expected to be lower because the data were obtained from a
disease screening service where examinees volunteered for general checkups. Secondly,
the models were only validated internally. We cannot confirm that our study subjects are
representative of the general population [46,47]. Therefore, we plan to perform external
validations before applying the model in other scenarios. Excessive numbers of parameters
and variables to evaluate can also be a limitation.

5. Conclusions

We developed a high-performance model to predict diabetes via various prediction
periods ranging from 2- to 9-year periods based on a large, reliable dataset that included nu-
merous variables, such as answers to a questionnaire and the results of physical, functional,
and laboratory examinations after comparing various ML algorithms via threshold adjust-
ment. We hope this diabetes risk predictor will set a foundation for diabetes prevention
with appropriate individualized and specified interventions.
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