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Abstract: Atherosclerotic cardiovascular diseases are an important medical problem due to their high
prevalence, impact on quality of life and prognosis. The pathogenesis of atherosclerosis is an urgent
medical and social problem, the solution of which may improve the quality of diagnosis and treatment
of patients. Atherosclerosis is a complex chain of events, which proceeds over many years and in
which many cells in the bloodstream and the vascular wall are involved. A growing body of evidence
suggests that there are complex, closely linked molecular mechanisms that occur in the plasma
membranes of cells involved in atherogenesis. Lipid transport, innate immune system receptor
function, and hemodynamic regulation are linked to plasma membranes and their biophysical
properties. A better understanding of these interrelationships will improve diagnostic quality and
treatment efficacy.
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1. Introduction

Atherosclerotic cardiovascular disease is a global problem of modern medicine. The
increasing prevalence, medical and social consequences of atherosclerosis emphasize the
importance of the problem and raise awareness of the need to address it [1]. Coronary
heart disease, ischemic stroke and peripheral artery disease occupy an important place in
the structure of population morbidity and carry a heavy economic and social burden [2,3].

Atherosclerosis is an actively studied problem. In the complicated history of the study
of atherosclerosis, many theories of its pathogenesis have been proposed. The lipid theory
is widely known and underlies today’s therapeutic approaches in both the treatment and
prevention of atherosclerosis, which is achieved through the correction of lipid disorders.
Indeed, dyslipidemia, metabolic syndrome and obesity are among the leading problems of
modern society, which are associated with low physical activity and poor diet. Importantly,
lipid accumulation in the vascular wall is one of the first imaging events in atherogenesis.
Macrophages, key participants in the innate immune system, accumulate lipids by turning
into foam cells.

At the same time, there is a growing body of evidence that supports a role for the innate
immune system and inflammation in atherogenesis [4]. In addition, lipid mediators derived
from fatty acids are actively involved in inflammation in atherosclerosis. Leukotrienes
play an important role in atherogenesis; whereas specialized pro-resolving mediators, in
contrast, are involved in the resolution of inflammation.

An important conceptual advance in vascular biology has been the understanding
of the complex role of endothelial cells, whose function is associated with the regulation
of blood flow and the behavior of other cells in the vascular wall [5]. There is a growing
body of data demonstrating the important role of endothelial cell mechanobiology and
how this function is linked to the role of the plasma membrane [6]. The data obtained to
date have greatly expanded our understanding of the structure and function of the plasma
membrane and have also increased our understanding of the clinical significance of their
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impairment. Thus, the purpose of this review is to discuss the role of the cellular plasma
membrane and the significance of changes in its structure and function in atherogenesis.

2. Function of Plasma Membranes and Membrane Proteins

The structure and function of cellular plasma membranes have been the subject of
numerous studies, the results of which have improved and systematized our understanding
that the plasma membrane is not only a complex multicomponent structure that serves the
function of delimiting the living cell from the surrounding space, but is also a platform on
which various biological processes are organized, providing many cell functions [7,8].

According to modern concepts, the plasma membrane is a lipid bilayer, in which
proteins are integrated. At the same time, the lipid bilayer is represented by various
types of lipids, distributed asymmetrically between the two bilayer leaflets. An important
component of plasma membranes is cholesterol, which, due to its chemical structure,
participates in the lateral organization of the lipid bilayer of the plasma membrane, largely
determining its biophysical properties and functions [9]. The location of the cholesterol
molecule in the plasma membrane is determined by its chemical structure [10]. The
cholesterol molecule is oriented with steroid rings parallel to the hydrocarbon chains of
membrane phospholipids. The hydroxyl groups of the cholesterol molecule are located
between the polar head groups of phospholipids near the lipid-water interface. Cholesterol
hydroxyl groups often form hydrogen bonds with oxygen atoms of phosphate and ester
groups of lipids. The polycyclic cholesterol ring in this arrangement is located in the
thickness of the membrane, where it can reach the depth of C9 to C10 carbon atoms of
phospholipid acyl chains [11]. It is important to note that the rigid tetracyclic cholesterol
ring has an asymmetric structure, which includes a flat α-surface and a β-surface containing
two methyl groups. Sphingolipids usually interact with the α-surface of cholesterol, and
transmembrane protein domains interact with the β-surface [12,13]. This structure of the
cholesterol molecule allows for a denser packing of lipids, which increases the viscosity of
the lipid bilayer of the membrane. Large hydrophilic head groups are known to protect
the hydrophobic tails of membrane phospholipids from the external polar environment.
At the same time, cholesterol has a smaller hydrophilic head group than phospholipids.
In this regard, its presence in the membrane cannot protect the hydrophobic region as
effectively as phospholipids, so in the presence of cholesterol, the phospholipid tails
become more aligned as they are packed closer together. At the same time, the area they
occupy decreases [14]. As a consequence, changes in cholesterol content can influence
the main mechanical parameters of the plasma membrane, such as stiffness, elasticity,
and resistance to rupture under load [15–20]. Thus, an increase in the concentration of
cholesterol in the plasma membrane increases the ordering of phospholipid tails, which
manifests itself as a decrease in membrane fluidity due to the reduced lateral movement
of membrane phospholipids. Moreover, the effect of cholesterol on membrane fluidity
varies depending on the depth [11,21–23]. Near the surface, cholesterol reduces membrane
fluidity, whereas in the center of the membrane, cholesterol increases membrane fluidity
because the cholesterol ring reaches a depth approximately equal to the C9 position of the
carbon atom in the acyl chains [11]. This may be important for the spatial arrangement of
membrane proteins.

It is important to note that cholesterol is unevenly distributed in the plasma mem-
brane, which provides a unique lateral organization of the membrane that involves the
simultaneous existence of a lipid ordered phase and a lipid disordered phase [11]. The
lipid ordered phase is associated with the so-called lipid rafts, which are involved in many
physiological processes [24]. It is assumed that microdomains of the lipid ordered phase,
called lipid rafts, float in the disordered phase like «icebergs in the ocean».

Lipid rafts are cholesterol- and sphingolipid-enriched special structures of the cell
plasma membrane, which provide many essential cellular functions by acting as dynamic
platforms recruiting a number of signaling and transport proteins [25] The concept of lipid
rafts was proposed 25 years ago, but still remains a subject of discussions, including not
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only their structure and function, but also the fact of their existence, due to the complexity
of their visualization [26]. Two types of plasma membrane lipid domains are well known:
planar lipid rafts enriched with glycosylphosphatidylinositol (GPI) and related proteins,
and caveolae, which are microdomains invaginated inside the cell and stabilized by caveolin
structural proteins [27]. Caveolin-1 is the main framework protein of caveolae, where it
forms oligomeric structures. Cav1 gene knockout leads to loss of caveolae by cells [28].
It is suggested that Caveolin-1 can directly interact with cholesterol through cholesterol
recognition/interaction amino acid consensus (CRAC) domain [29]. Cholesterol depletion
leads to a decrease in the number of caveolae; whereas excessive cholesterol saturation leads
to a decrease in plasma membrane fluidity and an increase in the number of caveolae [30].

It is assumed that the size of lipid rafts is approximately 10 to 200 nm, while the
diameter of the opening of caveolae on the surface of the plasma membrane is about
60–80 nm [31–33]. Caveolae are supposed to be more stable than planar lipid rafts and
can have different shapes, including flat, tubular, or vesicular [34]. Although caveolae and
planar lipid rafts have a certain similarity in lipid composition, the possibility of a mutual
transition between them has not been confirmed [35].

Cholesterol is an important component of lipid rafts, making a significant contribution
to their structural organization [36]. Due to the polycyclic ring, cholesterol provides a
denser packing of lipids in rafts. This increases the viscosity of lipid rafts compared to
non-raft domains. Importantly, the function of membrane proteins that reside in lipid rafts
may depend on specific lipid-protein interactions [12,37]. Membrane lipids can affect the
conformation and function of membrane proteins by altering membrane structure and
physical properties. They can change the local thickness of the membrane and the curvature
of the lipid bilayer and can alter physical properties of the membrane, including cholesterol
levels, phospholipid types, and acyl chain length and movement [38,39]. In addition,
cholesterol may be involved in regulating the function of transmembrane proteins through
direct interaction of sterol with specific protein sites. Proteins that interact with cholesterol
can contain characteristic amino acid sequences that are involved in this interaction. Such
sequences include the cholesterol-binding amino acid domain (CRAC), which has been
identified in proteins that interact with or are regulated by cholesterol. The CRAC amino
acid sequence is characterized by the following set of amino acids: (L/V) − X (1–5) −
(Y) − X (1–5) − (R/K) [12]. The CARC motif, which has similar properties in binding to
transmembrane proteins, has the reverse amino acid sequence: (R/K)-X (1–5) − (Y/F)-X
(1–5) − (L/V) (with X = any amino acid), and tyrosine can be replaced by phenylalanine.
It is assumed that the CRAC sequence contributes to a certain extent to the localization
of membrane proteins in lipid rafts. However, the mere presence of such a domain does
not necessarily indicate the occurrence of specific cholesterol-protein interactions, and
experimental data are needed to confirm them.

The data obtained in recent years have significantly expanded our understanding
of the structure and function of the cell membrane [40,41]. Of particular interest are
the mechanisms of interactions between the cortical actin cytoskeleton and the plasma
membrane [42]. According to the concept known as the “fences and pickets model”,
it is assumed that the liquid plasma membrane is separated by actin-based membrane
skeleton “fences” and anchored transmembrane protein “pickets” [41,43,44]. The actin-
based membrane skeleton is located directly on the cytoplasmic surface of the plasma
membrane. The actin cytoskeleton, specific to the eukaryotic cell, is thought to be involved
in a wide range of cellular processes, from shape determination and phagocytosis to
intracellular transport and cytokinesis [45].

The actin cytoskeleton is thought to contribute to the partitioning of the plasma
membrane into small compartments, which are involved in the temporary confinement
of phospholipids [42,44]. This mechanism ensures lateral segregation of lipids, not only
those located in the inner leaflet of the plasma membrane, with which the cortical F-actin
cytoskeleton is associated, but also those located in the outer leaflet of the membrane. In
addition, the model of pickets of anchored transmembrane proteins suggests that various
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transmembrane proteins can be anchored and aligned along the membrane skeleton, acting
as rows of pickets against the free diffusion of membrane molecules [44]. Importantly,
pickets affect both lipid and transmembrane protein trafficking, whereas fences mainly
affect only transmembrane proteins. Immobilization of the transmembrane protein attached
to the membrane skeleton provides an increase in fluid viscosity around it due to the
effects of hydrodynamic friction on the surface of the immobilized protein. This makes it
difficult for membrane molecules to pass to the compartment boundaries of the anchored
transmembrane proteins aligned along the membrane-skeleton fence [41,43]. This has
implications for the redistribution and clustering of receptors and their signaling.

These data and the results of other macrophage studies that the pickets do not need
to be permanently attached to the cytoskeleton but can bind to the cortical actin through
reversible interactions. In addition, the stability of the cytoskeletal mesh, which creates
diffusion-limiting enclosures, can vary greatly, which is characteristic of myeloid cells, for
example [46]. Circulating leukocytes at quiescent state have a dense cortical actin cyto-skeleton
polymerized with formins. However, when leukocytes cross the endothelium and enter the
tissues, actin becomes branched and severed [46]. Such changes may, to some extent, turn off
the function of the pickets, facilitating the ability of the receptors to diffuse and form oligomers.
Phosphatidylinositol 4,5-bisphosphate (PtdIns (4,5) P2) has an asymmetric distribution in
the plasma membrane and is involved in maintaining the polarization of individual actin
networks, which is important for immune cells [46]. Thus, the picket-anchored model can
explain some functions of immune cells and mechanisms of their regulation.

It is important to note that the model of a fixed picket fence does not exclude the
existence of other principles of plasma membrane organization, such as lipid rafts [41].

Thus, the “picket fence model” postulates that lipid diffusion can be confined to
the juxtamembrane cortex and, therefore, can participate in the formation of membrane
domains. In this case, the organization of the plasma membrane of atherogenic cells
probably results from a combination of mechanisms expected in both the “picket-fence”
model and the “lipid-raft” model.

Thus, variations in the content of individual lipid components of lipid rafts can lead
to changes in the function of membrane proteins. Included in phospholipids, saturated
and polyunsaturated fatty acids can differentially affect the structure and function of lipid
microdomains [47,48]. In addition, proteins in lipid rafts often have posttranslational modi-
fication by fatty acids, such as palmitoylation and myristoylation [47], which contribute
to protein localization in lipid rafts [49]. In addition, glycosylphosphatidylinositol (GPI)
anchors contribute to the localization of proteins in lipid rafts. S-acylation, often referred to
as S-palmitoylation, is one of the key factors controlling the association of proteins with
rafts. S-palmitoylation is the attachment of a palmitic acid residue (C16:0) to a protein
cysteine residue via a thioether bond [50]. S-palmitoylation affects protein function, in-
cluding their stability, localization in membranes, and interprotein interactions [51,52].
By increasing membrane affinity, palmitoylation promotes stable protein binding to the
membrane [53–55]. At the same time, palmitoylation is a reversible process and is carried
out by a complex of enzymes [53,56,57].

Analyzing the biophysical principles of the organization of the plasma membrane, it is
important to note the asymmetric distribution of lipids between its leaflets [58]. In mammals,
the asymmetry of negatively charged phosphatidylserine, which is localized mainly on the
inner leaflet of the plasma membrane, is well known [59]. In addition to phosphatidylserine,
phosphatidylethanolamine is also found in the inner leaflet of the plasma membrane of
many cell types, whereas phosphatidylcholine and sphingomyelin are localized in the outer
leaflet. It is known that the asymmetric distribution of phospholipids may be related to their
unsaturation. It was found that the cytoplasmic leaflet of the plasma membrane is twice
as unsaturated as the exoplasmic leaflet [59]. Given that saturated lipids are more densely
packed, they correspond to stiffer and more ordered membranes. In contrast, high levels of
unsaturated lipids correspond to relatively liquid, loosely packed membranes. This suggests
a difference in the biophysical properties of plasma membrane leaflets, in which the outer
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leaflet of mammalian plasma membranes may be more tightly packed and ordered than the
inner leaflet [59]. This structural asymmetry of lipids is reflected in asymmetric structures of
transmembrane protein domains [59]. A growing body of evidence suggests the presence of a
complex system of mutual regulation between membrane proteins and the surrounding lipid
microenvironment in the plasma membrane [59].

Membrane lipid asymmetry is associated with the action of transport mechanisms and
has important biological significance. Membrane localization of phosphatidylserine is a
well-known “eat me” signal, due to which it functions as a link between the dying cell and
the phagocyte [60].

In addition, phosphatidylserine is an important part of the actin cortex connection
to the plasma membrane [61,62]. Data obtained in recent years have suggested that in-
teractions between the cortical actin cytoskeleton and living asymmetric membranes are
related to the clustering behavior of anchored GPI proteins on the outer leaflet of the plasma
membrane. GPI anchor, which is a complex glycolipid, has long saturated acyl chains such
as C16:0 or C18:0. GPI plays an important role in the delivery of the attached membrane
protein to the plasma membrane. Although the details of the mechanisms of nanocluster
formation remain the subject of debate, the importance of acyl chain interactions between
GPI-anchored proteins and phosphatidylserine localized in the inner leaflet of the plasma
membrane has been shown to result in the formation of clustered domains on the plasma
membrane [61,62]. Such clustering, in accordance with the active composite membrane
model, may be related to the dynamic organization of actin into nanoscopic assemblies
known as “asters” [63,64]. It is suggested that this is due to myosin activity, which promotes
the organization of short dynamic actin filaments into “aster-like” configurations that can
stimulate nanoclustering of proteins and lipids of the outer membrane leaflet [61]. Using
some adaptor proteins, these actin assemblies can bind phosphatidylserine, which contains
long saturated acyl chains that participate in lipid-mediated interactions with GPI-anchored
proteins located in the opposite leaflet containing long acyl chains [61,62]. In this case, the
chemical composition of the fatty acid chain of the GPI anchor plays an important role in
the occurrence of nanoclustering [61].

Thus, phosphatidylserine containing a long acyl chain is essential for interlayer cou-
pling in the plasma membrane [61,62]. Indeed, it has been shown that immobilization
of lipids with a long saturated acyl chain can stabilize cholesterol-dependent interlayer
interactions, which promote the formation of local domains with liquid-ordered (lo) phase
characteristics [62]. The importance of phosphatidylserine is supported by the data that
cells unable to produce sufficient amounts of phosphatidylserine due to mutations in
the enzymes involved in its biosynthesis lack the ability to create GPI nanoclusters on
the plasma membrane, but this ability was restored when phosphatidylserine with a
long chain of saturated fatty acids (18:0) was added [61]. Thus, proteins and lipids lo-
calized on the outer leaflet of the plasma membrane can also interact with cortical actin
through this mechanism [65].

It should be noted that the active composite membrane model describes the dynamic
response of glycosylphosphatidylinositol-anchored proteins (GPI-APs) on the outer leaflet
as a consequence of internal motion under the action of active actomyosin-dependent
stresses [65]. It was shown that at temperatures above the equilibrium segregation of the
lipid phase a possible combination of active contractile stresses generated by the corti-
cal actomyosin, transbilayer interactions between phosphatidylserine and GPI/lo lipids
and lateral lipid interactions is suggested. This leads to the formation of active emul-
sion, mesoscale liquid order (lo) domains of the GPI-APs and lipids. These domains,
enriched with GPI-APs nanoclusters, are supported by cortical actin activity and interlayer
interactions and are characterized by significant lipid order [65]. These data enhance the
understanding of the significance of lipid asymmetry, cortical actin, and their dynamic inter-
actions with the biophysical properties of the plasma membrane as well as the localization
and function of membrane proteins.
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Thus, plasma membranes having a dynamic complex composition are a self-regulating
system, which is capable not only of being a site for proteins and their signaling pathways,
but also a tool for regulation of their functional activity under the influence of internal and
external factors.

3. Involvement in the Regulation of the Innate Immune System

The innate immune system relies on a large number of pattern recognition receptors to
detect molecular structures associated with damage. Toll-like receptors (TLR) are the most
well characterized family of receptors that are involved in the detection of a wide range of
intra- and extracellular molecular structures. TLR4 is the most studied toll-like receptor,
and its role in atherogenesis is of growing interest, given the importance of macrophages
in atherosclerotic lesions. Activation of toll-like receptor signaling can contribute to the
development of atherosclerosis through multiple mechanisms. TLR4, TLR2, and MyD88-
deficient mice had reduced development of atherosclerosis [66]. TLR4 is expressed at low
levels by human endothelial cells in normal arteries, but expression is markedly increased
in endothelial cells in the region of atherosclerotic lesions [67].

TLR4 detects lipopolysaccharides (LPS) of the cell wall of Gram-negative bacteria and
can localize both on the plasma membrane and in endosomes. TLR4 homodimerization is the
initial step in receptor activation [68–70]. It is assumed that, upon activation, TLR4 localizes
in the lipid rafts of plasma membranes, which may regulate its activity [71]. The possibility
of direct interaction of TLR4 with cholesterol in lipid rafts is described. This is due to the
presence of CRAC and CARC sequences in the transmembrane domain of TLR4, which can
provide a link between cholesterol and the regulation of signal transduction of the receptor [71].
Thus, the regulation of TLR4 activity can be carried out through changes in the cholesterol
content in lipid rafts of macrophage plasma membranes. It has been shown that enrichment
of free cholesterol in plasma or endosomal membranes of macrophages leads to activation
of signal transduction through various TLRs [72]. In addition, LPS and lauric acid induced
dimerization and recruitment of TLR4 to lipid rafts. At the same time, docosahexaenoic acid
inhibited LPS or lauric acid induced dimerization and recruitment of TLR4 to lipid rafts.
Lauric acid was shown to stimulate and docosahexaenoic acid to inhibit the association of
TLR4 with MD-2 and downstream adaptor molecules, as well as the activation of NF-κB
expression [73]. Docosahexaenoic acid is highly unsaturated, making it sterically incompatible
with cholesterol, which can lead to disruption of lipid rafts [74].

It has also been shown that eicosapentaenoic acid can incorporate into lipids in lipid
rafts, inhibit their formation and inhibit some signaling pathways [75,76]. Eicosapentaenoic
acid has been shown to inhibit T-lymphocyte activation, probably by displacing acylated
signaling proteins from membrane lipid rafts [75].

LPS recognition and TLR4-mediated signaling in myeloid cells is facilitated by CD14,
which contains a GPI part attached to its C-terminal, which anchors the protein in the
outer leaflet of the plasma membrane in lipid rafts [77–79]. Once in the plasma membrane,
CD14 binds LPS and facilitates the transfer of LPS to the MD-2 protein of the TLR4/MD-2
complex [77,80,81].

It seems interesting that S-palmitoylation also controls TLR signaling. In experiments
on the macrophage cell line RAW264.7, exposure to LPS was shown to alter the palmitoyl
profile of these cells [82]. LPS was found to trigger S-palmitoylation and activation of phos-
phatidylinositol 4-kinase type II (PI4KII) β, which generates PI(4)P, leading to inflammatory
activation of macrophages [77].

Toll-like receptor-mediated inflammation has been shown to require FASN-dependent
palmitoylation of MYD88. Binding of IRAK4 to the MYD88 intermediate domain and
subsequent signal activation required MYD88 palmitoylation [83]. Accordingly, blocking
S-palmitoylation of MYD88 suppressed TLR-mediated inflammation. In addition, CD36
maintains the intracellular pool of palmitate required for S-palmitoylation of MyD88. Mean-
while, CD36 function is also dependent on S-palmitoylation, highlighting the complexity of
the CD36-TLR signaling axis and the important role that S-palmitoylation plays here [84].
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S-palmitoylation is necessary for the complete localization of another representative of this
receptor group, TLR2, on the cell surface, which affects its interaction with its ligands [85].

Cholesterol crystals are a common element present in atherosclerotic lesions. An
increase in the frequency of their formation is observed in atherosclerotic lesions as they
progress [86,87]. There is an assumption that cholesterol crystals may appear due to high
cholesterol content in cell membranes of the arterial wall, which is accompanied by peroxi-
dation of membrane phospholipids [88]. Increased cholesterol content and the presence
of polyunsaturated phospholipids in these membranes together with oxidative stress can
lead to the formation of pure bilayer cholesterol domains. With further peroxidation and
increased cholesterol, they can break down as cholesterol crystals [88]. Cholesterol crys-
tals activate inflammasomes and induce IL-1β secretion by monocytes and macrophages,
thereby stimulating immune responses and initiating inflammation, which can lead to the
development of atherosclerosis [88].

Thus, the innate immune system actively involved in atherogenesis may be related to
the function of plasma cell membranes, which is a promising topic for further research.

4. Participation in Hemodynamic Regulation

Numerous data suggest that disorders of vascular hemodynamics contribute signif-
icantly to the development and progression of atherosclerosis. It has been shown that
despite the systemic nature of many risk factors, such as dyslipidemia, systemic inflamma-
tion and oxidative stress, atherosclerotic lesions do not develop diffusely, but more often
localize in the arterial areas characterized by bifurcations, bends and curvatures [89–91].

The modern concept of vascular hemodynamics suggests an active role of the endothe-
lium in the regulation of blood flow. Endothelial cells have a wide set of mechanisms for
detecting changes in the character of blood flow and its regulation through the production
of several biologically active substances [92–94]. At the same time, the endothelial cells
themselves are constantly under the influence of several hemodynamic forces, among
which the leading role belongs to the shear stress. The magnitude of shear stress, as well as
the nature and rate of its change, are considered to be the key hemodynamic characteristics
influencing mechanobiology and endothelial function (Figure 1) [95]. It is believed that
high laminar blood flow is characteristic of straight arterial sections, which correlates with
resistance to atherosclerosis. On the contrary, the mean shear stress value is lower in areas
of curved or branching arteries. In addition, blood flow in these areas undergoes complex
changes in direction during the cardiac cycle, which is generally referred to as “disturbed
flow” [96]. Such areas are characterized by the development of atherosclerosis.

Endothelial cells are able to actively respond to changes in the nature of blood flow,
which allows them to adapt most effectively to the action of hemodynamic forces. Changes
in the nature of blood flow can affect the orientation and morphology of endothelial
cells [97–107].

When endothelial cells are exposed to hemodynamic forces, the lipid ordering and
cholesterol content of the plasma membranes change, which leads to changes in the bio-
physical properties of the membrane. This, in turn, affects the conformation and function
of various ion channels and receptors, thereby activating a wide range of downstream
signaling pathways [108].

The plasma membrane of endothelial cells is linked to the actin cytoskeleton, and these
connections are an important part of the mechanism of mechanical transduction [109,110].
Indeed, the interaction of hemodynamic forces with the cell begins with the plasma membrane.
Therefore, the mechanisms involved in the transformation of cellular strain into molecular
signaling pathways mediating this mechanical transduction are of great importance [109–111].

Experimental evidence suggests that changes in shear stress affect the ordering of lipids
in endothelial cell plasma membranes. This entails changes in some physical properties
of the plasma membrane, such as fluidity and viscosity [112–115]. It was shown that a
shear stress of 10 dyne/cm2 in laminar flow led to a rapid decrease in lipid order of the
plasma membrane, with the most pronounced changes in the ordered phases [116]. This
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corresponded to the transition of caveolae to a disordered state [116]. Importantly, changes
in lipid order depend on shear stress intensity and are reversible [38]. In addition, a similar
decrease in lipid order was observed in artificial membranes that were exposed to shear
stress, highlighting the physical basis of this mechanism [116].
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endothelial cells.

It is assumed that the nature of the physical impact on the membrane differently
affects the ordering of lipids in the plasma membrane, which allows endothelial cells to
distinguish between shear stress and stretching [117]. Stretching leads to an increase in
cholesterol content in the plasma membrane, which corresponds to a transition from a
liquid-unordered phase to a liquid-ordered phase in some areas, as well as a decrease in
membrane fluidity [117]. In turn, shear stress is characterized by a decrease in cholesterol
levels, which decreases lipid order and increases membrane fluidity [117]. A decrease
in lipid order during the phase transition of the liquid-ordered phase into the liquid
disordered phase under the influence of shear stress, leads to a decrease in the number of
caveolae [113,116].

Increasing evidence suggests that lipid rafts are important platforms for membrane-
cytoskeleton coupling. The regulatory phospholipid PIP2 is involved in the regulation of
cytoskeleton-membrane coupling [16,118,119]. Cholesterol has been shown to be involved
in the regulation of this connection [16]. Changes in membrane cholesterol levels affect
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membrane and cytoskeleton interactions. Although cholesterol enrichment of plasma
membranes leads to a decrease in their fluidity and viscosity [19], cholesterol enrichment of
endothelial cell membranes causes a decrease in surface viscosity [16,119] and weakening
of membrane-cytoskeleton adhesion [118–121]. Cholesterol depletion, although resulting
in impaired lipid rafts, increases endothelial cell rigidity, which is associated with increased
plasma membrane attachment to the actin cytoskeleton [16,118,119]. OxLDL has been
shown to deplete cholesterol from caveolae by acting as a cholesterol acceptor [122]. The
oxLDL-induced depletion of cholesterol levels in the caveolae causes eNOS to leave the
caveolae and inhibits enzyme activation [122]. Reduced membrane and cytoskeletal ad-
hesion may have important consequences for the development of atherosclerosis [119].
Indeed, endothelial cell stiffness was shown to be increased in atherosclerosis-prone areas
that were characterized by impaired flow patterns compared with arterial sections, where
higher shear stress values and more uniform unidirectional blood flow were observed [123].

Experiments with exposure of human umbilical vein endothelial cells to reduced shear
stress showed reorganization of the actin cytoskeleton with a decrease in the number of
stress fibers and actin recruited to the peripheral cell band, indicating an important relation-
ship between the physical parameters of blood flow and endothelial cell phenotype [124].

As noted above, the degree of unsaturated fatty acids in cell membrane lipids de-
termines membrane fluidity. It is of interest to learn that the expression of stearoyl-CoA
desaturase-1 (SCD1), an enzyme that biosynthesizes monounsaturated fatty acids, is associ-
ated with hemodynamics in endothelial cells. The main product of SCD1 is oleic acid, which
is formed by desaturation of stearic acid. Laminar flow increases the expression of SCD1,
which may act as an important mechanism to regulate plasma membrane fluidity [125].
Laminar flow-induced expression of SCD1 can lead to an increase in membrane fluidity
and modulate endothelial cell responses to various proatherogenic stimuli. Induction of
stearoyl-CoA desaturase protects human arterial endothelial cells from palmitate-induced
lipotoxicity, cellular apoptosis, and expression of the inflammatory cytokines IL-6 and
IL-8 [126]. Conversion of saturated stearic acid to unsaturated oleic acid may have an
atheroprotective effect by displacing saturated fatty acids from cell membrane phospho-
lipids with subsequent modulation of gene expression of molecules involved in monocyte
recruitment [127].

The data on the involvement of VEGFR2 in the cross-linking between chemoreception
and mechanoreception in endothelial cells seem interesting. VEGFR2 localizes in lipid
rafts, where cholesterol stabilizes the dimeric state of VEGFR2 and can affect its signaling
pathway [128,129]. Both decreased and increased amounts of cholesterol in the plasma
membrane can affect the structure of lipid rafts and influence VEGFR2 signaling [128].
Disruption of lipid rafts leads to significantly less receptor activation in response to VEGF
exposure [129]. Restoration of normal cholesterol content in lipid rafts of endothelial cells
stabilizes the dimeric state of VEGFR2 and angiogenesis [128].

Laminar blood flow with a shear stress of 12 dyne/cm2 affecting membrane lipid
organization is able to activate VEGFR2 and its signaling pathways, including PI3K-Akt-
eNOS, in a ligand-independent manner [130,131]. Thus, VEGFR2 can be regarded as a
sensor capable of integrating chemical and mechanical information [132]. In this case,
blood flow and VEGF-A act together to promote endothelial cell alignment and polarity.
The central role of VEGFR2 in these processes is supported by evidence that inhibition of
VEGFR2 results in the loss of influence of both shear stress and VEGF-A on endothelial cell
alignment and polarity [132].

Nitric oxide is considered a key player in vascular hemodynamics. This molecule,
produced by the endothelium via a specific nitric oxide synthase isoform, has a wide range
of physiological functions. In addition to targeting vascular smooth muscle cells, through
the relaxation of which NO exerts vasodilatory properties, nitric oxide performs a number of
other important physiological functions. Reduced availability of endothelial NO is thought
to be associated with endothelial dysfunction and the development of atherosclerosis.
Endothelial cells are key participants in the regulation of vascular hemodynamics through
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the production of NO via endothelial nitric oxide synthase (eNOS) [5]. eNOS has a complex
system of regulation, including that associated with its membrane localization. Binding of
caveolin-1 to eNOS is known to keep eNOS in an inactive conformation, which reduces NO
production [133–136]. Mice without caveolin-1 have no caveolae and show increased eNOS
activity [28]. Shear stress increases eNOS transcription through several mechanisms [137].
Hemodynamic forces resulting from increased blood flow release eNOS from its inhibitory
binding to caveolin and increase its binding to calmodulin, which causes eNOS dissociation
from caveolin for flow-regulated NO production [138,139].

eNOS is known to be regulated by posttranslational modification, including phos-
phorylation, nitrosylation, and acylation. The localization of eNOS in caveolae depends
on its myristoylation [49]. In addition, eNOS must be palmitoylated for localization in
caveolae [56,140–145]. Myristoylation of eNOS is a prerequisite for the enzyme to undergo
palmitoylation [146]. Myristoylation and palmitoylation give eNOS three acyl anchors that
firmly attach it to caveolae [49]. Disruption of eNOS palmitoylation leads to decreased
nitric oxide production [56,147]. Palmitoylation of eNOS can be partially controlled by
fatty acid availability. Deletion of fatty acid synthase impairs eNOS palmitoylation and NO
production by endothelial cells [56,147]. Mice with endothelial inactivation of FAS (FASTie
mice) showed decreased membrane eNOS activity, which corresponded to a proinflam-
matory state in mice characterized by increased vascular permeability and the presence of
endothelial inflammatory markers [148].

G-protein-coupled receptors (GPCRs) are the largest family of integral membrane
proteins that control multiple cellular functions when binding to a variety of extracellular
ligands. Due to their architecture of seven transmembrane domains, GPCRs cross the mem-
brane seven times and are therefore closely related to their membrane environment [149].
Membrane cholesterol has been shown to be a critical modulator of GPCR organization,
oligomerization, and function. A possible mechanism underlying modulation of GPCR
function by cholesterol could be the specific interaction of GPCRs with membrane choles-
terol, or cholesterol-induced changes in global bilayer properties, or a combination of both
mechanisms [149].

It has been shown that G-proteins can be activated by shear stress [150,151], then
suggests a link between GPCRs and mechanoreception. It is known that shear stress can
directly affect the physical properties of the membrane, which can regulate the function of
membrane proteins [152,153]. It is suggested that shear stress can be transmitted through
the lipid bilayer to directly activate heterotrimeric G-proteins on the cytosolic surface of the
plasma membrane [150].

Thus, the action of physical factors on endothelial cells is a significant factor in vascular
biology, many aspects of which are still unknown. A growing body of evidence suggests
that endothelial cell mechanoreception is closely related to endothelial cell plasma mem-
brane function. This mechanoreception is associated with numerous signaling pathways
affecting both endothelial cells themselves and other cells in the vascular wall through the
production of biologically active molecules.

5. The Importance of ABC Transporters

ATP-binding Cassette (ABC) transporters are a large family of proteins that are involved
in the transport of various substrates across cell membranes [154]. In humans, 48 transporters
of this family are known, divided on the basis of their structural features into 7 subfamilies
(ABCA-ABCG) [155]. Currently, the role of several ABC transporters in the pathogenesis
of atherosclerosis is well known [156]. To the greatest extent, it concerns representatives of
subfamilies ABCA and ABCG due to their participation in lipid transport. At the same time,
members of the ABCB and ABCC subfamilies are involved in the mechanisms of multidrug
resistance, which is also of significant clinical interest [154,157].

ABCA1 is well known for its atheroprotective role through its involvement in reverse
cholesterol transport, a process in which cholesterol is exported from cells to an extracellular
acceptor to form HDL [158]. Macrophages release excess cholesterol in this way, which is



Membranes 2022, 12, 1036 11 of 21

considered to be one of the key functions in providing cholesterol homeostasis [159]. ABCA1
is localized in the plasma membrane of cells but is able to recirculate between the plasma
membrane and cellular organelles, which provides its transport function [160]. Through its
function, ABCA1 affects cellular cholesterol content and is also associated with several plasma
membrane functions, including phagocytosis, endocytosis, and microvesiculation [161–165].

ABCA1 is an integral protein with multiple transmembrane domains and can affect
membrane lateral organization. ABCA1 is localized in non-raft domains and can disrupt
lipid rafts and redistribute cholesterol to non-raft domains [161,166–168]. At the same time,
ABCA1 also disrupts caveolae formation and can move phospholipids and cholesterol
from the inner bilayer to the outer bilayer, which leads to membrane destabilization [161].
Thus, ABCA1 promotes redistribution of cholesterol into cell surface domains accessible to
removal by apolipoproteins [169]. This is because ApoA-I preferentially accepts cholesterol
from loosely packed non-raft microdomains [161,166,170]. The regulation of cholesterol
content in the plasma membrane by ABCA1 ensures lipid raft stability, and may participate
in signal transduction by VEGFR2 [171].

ABCA1 is known to be involved in the formation and maintenance of membrane
lipid asymmetry by moving, for example, phosphatidylserine from the inner leaflet of the
plasma membrane to the outer leaflet [172].

An important effect of the lipid-transporting function of ABCA1 is its role in reducing
the surface presentation of TLR4 and recruiting the receptor into lipid rafts, which has anti-
inflammatory effects [168,173]. It has been shown that ABCA1 expression in macrophages
can protect against atherosclerosis through reduction in cholesterol in macrophage plasma
membrane and lipid raft content, which suppresses proinflammatory MyD88-dependent
signaling pathways [174]. ABCA1 deficiency in macrophages leads to increased transloca-
tion or recruitment of MyD88-dependent TLR2, TLR 4, TLR 7, and TLR9 to lipid rafts. This
results in enhanced downstream signaling and increased production of proinflammatory
cytokines [168]. In addition, ABCA1 enhances TLR4-stimulated interleukin-10 (IL-10) se-
cretion through protein kinase A (PKA) activation [175]. ABCA1-mediated PKA activation
has been shown to promote an M2-like inflammatory response by bone marrow-derived
ABCA1+/+ macrophages. In contrast, cholesterol enrichment suppresses PKA activity and
promotes an M1-like inflammatory response [175].

Thus, ABCA1 is an important participant in the lipid-transport function of cells, due
to which the transporter is involved in the regulation of inflammation, which is of great
importance in the prevention of atherosclerosis [172].

Another member of this subfamily, ABCA7, is thought to be involved in phagocy-
tosis [176–178]. ABCA7 is expressed in macrophages, where it can be localized in the
plasma membrane, or intracellularly [176,179–184]. The CED-7 protein in the nematode
Caenorhabditis elegans, which functions in phagocytic and apoptotic cells during phagocyto-
sis and is required for clustering CED-1, a transmembrane receptor that initiates uptake
signals, has a high similarity in amino acid sequences to ABCA7. In this case, CED-7 carries
out the exposure of phospholipid ligands on the surface of apoptotic cells [177].

ABCB1, well known for its role in multidrug resistance through its ability to efflux
a variety of molecules with different chemical structures, also has other physiologically
relevant functions, such as participation in lipid transport [185–187] by moving lipids from
the inside to the outside of the cell plasma membrane [71,186]. ABCB1 is also involved
in cholesterol transport [188]. At the same time, the cholesterol content in the plasma
membrane can affect the functional activity of the transporter [189–192], which can be
related to the direct interaction of ABCB1 with lipid molecules [71,186,193].

ABCG1 is also involved in the export of cholesterol from peripheral cells and the sat-
uration of HDL [194–197]. ABCG1 is also involved in the regulation of inflammation [198].
ABCG1 has been shown to be involved in macrophage polarization. ABCG1 deficiency con-
tributes to proinflammatory M1 polarization of human macrophages. Abcg1−/− macrophages
have been shown to engulf apoptotic cells but are unable to remove cholesterol derived from
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these apoptotic cells to the necessary extent, which is consistent with the propensity of
Abcg1−/− alveolar macrophages for apoptosis [199,200].

Thus, ABC transporters may be involved in the regulation of plasma membrane
composition and function, and these processes may be impaired in atherosclerosis.

6. The Significance of PUFAs

A growing body of clinical evidence is increasing interest in polyunsaturated fatty
acids derived from marine fish in the prevention of atherosclerosis. ω-3 PUFAs are in-
volved in many physiological processes in the vascular wall. They are a substrate for
the synthesis of specialized pro-resolving mediators and can also act on innate immune
system receptors themselves, demonstrating anti-inflammatory properties. In addition,
fatty acids can be incorporated into membrane phospholipids, thus participating in the
maintenance of the biophysical properties of plasma membranes. The fatty acid compo-
sition of phospholipids provides, on the one hand, optimal fluidity, which is required
for the necessary conformational changes of proteins when performing their functions,
and, on the other hand, provides sufficient viscosity, which is required for the membrane
localization of proteins [39,201]. Phospholipid tails of saturated fatty acids provide an
ordered lipid organization, whereas in contrast, phospholipids containing polyunsaturated
fatty acids are less disordered. When incorporated into membrane phospholipids, ω-3
PUFAs displace cholesterol, which affects the lipid ordering of microdomains [202]. This is
due to the structural features of PUFAs, whose acyl chains have many rapidly changing
conformations that repel the rigid steroidal part of cholesterol, which affects the lipid
ordering of the membrane [202,203].

In this regard, the incorporation of ω-3 PUFA into phospholipids of plasma mem-
branes can significantly affect the organization of their molecular architecture as well as
lipid-protein interactions and the functions of membrane proteins [202]. Eicosapentaenoic
acid affects lipid composition in caveolae, promoting eNOS translocation from caveolae to
soluble fractions, which leads to stimulation of NO production [204]. In turn, docosahex-
aenoic acid affects caveolae not only by changing their lipid composition but also through
the distribution of key structural proteins, such as caveolin-1, and also promotes eNOS
displacement from caveolae [205]. Treatment of cells with docosahexaenoic acid has been
shown to increase eNOS activity [205].

Interestingly, PUFAs can act differently on the lipid organization of membranes, which
is determined by the chain length of the fatty acids and the degree of their unsaturation.
Eicosapentaenoic acid prefers a disordered region; whereas docosahexaenoic acid can
penetrate lipid rafts, affecting their structural organization [206]. Eicosapentaenoic acid
inhibits the formation of cholesterol domains, reduces membrane fluidity, and normalizes
bilayer width in atherosclerotic model membranes [207]. At the same time, docosahex-
aenoic acid induced the formation of cholesterol domains and increased the fluidity of
the model membrane without affecting the membrane bilayer width [207]. Compared to
eicosapentaenoic acid, exposure to docosahexaenoic acid can increase the fluidity of the
plasma membrane of endothelial cells to a greater extent. Thus, eicosapentaenoic acid and
docosahexaenoic acid can counteract each other’s physiological effects in individual tissues
to a certain extent [206]. These effects may be related to the fact that docosahexaenoic acid
is the most unsaturated and one of the longest ω3 PUFAs, due to which it has a significant
influence on the biophysical properties of plasma membranes [203].

These effects on membrane biophysical properties and other physiological functions
make PUFAs an interesting topic for clinical research.

7. Conclusions

Atherosclerosis is an important medical and social problem, the keys to understanding
the many links in the pathogenesis of which are still largely unknown to clinicians and
researchers. Atherosclerosis develops over many years and is a complex chain of events,
many links of which are closely linked. It is believed that disorders of lipid metabolism
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are an important cornerstone in the pathogenesis of atherosclerosis. This is due to the
multifaceted role of lipids, not only as energy substrates or a structural component of cells,
but as an important participant in many processes occurring in the vascular wall (Figure 2).
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