Skip to main content
. 2022 Nov 11;22(22):8704. doi: 10.3390/s22228704

Table 3.

CNN layers for emotion recognition.

Layer (Type) Output Shape Parameter Numbers Activation
conv2d (Conv2D) (None, 48, 48, 32) 320 ReLU
conv2d_1 (Conv2D) (None, 48, 48, 32) 9248 ReLU
max_pooling2d (MaxPooling2D) (None, 24, 24, 32) 0 ReLU
conv2d_2 (Conv2D) (None, 24, 24, 64) 18,496 ReLU
conv2d_3 (Conv2D) (None, 24, 24, 64) 36,928 ReLU
max_pooling2d_1 (MaxPooling 2D) (None, 12, 12, 64) 0 ReLU
conv2d_4 (Conv2D) (None, 12, 12, 128) 73,856 ReLU
conv2d_5 (Conv2D) (None, 12, 12, 128) 147,584 ReLU
max_pooling2d_1 (MaxPooling 2D) (None, 6, 6, 128) 0 ReLU
flatten (Flatten) (None, 4608) 0 None
dense (Dense) (None, 512) 2,359,808 ReLU
dense_1 (Dense) (None, 64) 32,832 ReLU
dense_2 (Dense) (None, 7) 455 Softmax