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Abstract: Echinococcus granulosus sensu lato is the causative agent of cystic echinococcosis (CE), which
is a neglected zoonotic disease with an important role in human morbidity. In this study, we aimed to
investigate the haplotype diversity, genetic variation, population structure and phylogeny of human
E. granulosus sensu stricto (s.s.) (G1 genotype) isolates submitted to GenBank from different parts of the
world by sequencing the mitochondrial CO1 and ND1 genes. The sequences of the mt-CO1 (401 bp;
n = 133) and mt-ND1 (407 bp; n = 140) genes were used to analyze the haplotype, polymorphism and
phylogenetic of 273 E. granulosus s.s. (G1 genotype) isolates. Mutations were observed at 31 different
points in the mt-CO1 gene sequences and at 100 different points in the mt-ND1 gene sequences.
Furthermore, 34 haplotypes of the mt-CO1 sequences and 37 haplotypes of the mt-ND1 sequences
were identified. Tajima’s D, Fu’s Fs, and Fu’s LD values showed high negative values in both mt-CO1
and mt-ND1 gene fragments. The haplotype diversities in the sequences retrieved from GenBank
in this study indicate that the genetic variation in human isolates of E. granulosus s.s. in western
countries is higher than in eastern countries. This may be due to demographic expansions due to
animal trades and natural selections.

Keywords: Echinococcus granulosus s.s.; G1 genotype; CO1; ND1; genetic variability

1. Introduction

Cystic echinococcosis (CE) is a neglected parasitic zoonotic disease caused by Echinococ-
cus granulosus sensu lato and has an important role in human morbidity. CE is distributed
worldwide, especially in Asia, Africa, Europe, South America, Canada and Australia [1–3].
In 2014, CE was ranked as the third most important foodborne parasitic disease globally
by the Food and Agriculture Organization (FAO) and World Health Organization (WHO),
and E. granulosus s.l. infections are responsible for billions of dollars of economic loss per
year [4–6].

In recent years, according to the mitochondrial cytochrome c oxidase subunit 1 (mt-
CO1) and NADH dehydrogenase subunit 1 (mt-ND1) DNA sequences, the genetic diver-
sity of E. granulosus s.l. was reported. These were designated E. granulosus sensu stricto
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(s.s.) (G1 and G3), E. equinus (G4), E. ortleppi (G5) and E. canadensis (G6/7, G8-10), and
E. felidis [7–9]. However, E. granulosus s.s. is the most common of these, constituting the
majority of human CE infections (approximately 89%), and also has the most zoonotic
features [10,11].

Two interrelated hosts play an important role in the life cycle of E. granulosus s.l.
Carnivores, mostly dogs, are final hosts, and many mammals, including humans, are
intermediate hosts. Accidental ingestion of eggs from the feces of infected host species
leads to the infection of different internal organs of the intermediate host, but mainly the
liver and lungs [12–14].

Although CE is a benign disease, it can progress with high morbidity and mortality
as a result of unexpected and serious complications [15]. However, the clinical symptoms
vary based on the size, location and condition of the cyst. After ingestion, the embryos
are released from the eggs into the small intestine, where they penetrate the mucous
membranes, mix with the blood and reach many organs. Although a single cyst is prevalent
in the majority of infected organisms, multiple cysts or cyst formation in multiple organs
can be observed in 20–40% of individuals. Most cysts occur in the liver (>65%), followed by
the lung (25%), while they are less common in the spleen, kidney, bone, heart and central
nervous system [16,17].

Human CE is widely distributed throughout the world. The prevalence of surgically
managed human CE per 100,000 has been reported at 32 in Central and Southern Peru [18],
6–20 in Southwest Chile in 2005 [19], 30 in Argentina Rio Negro [20], 1.5 in Northern
Israel [21], 0.68 in Southern Israel [21], 80 in China-Xinjiang [22], 4.2 in Eastern Libya [23],
1.3–2.6 in Egypt [24], 15 in Tunisia [25], 3.6–4.6 in Algeria [26], 10.8 in Spain-Salamanca
between 1980–2000 [27], 10 in France-Corsica [28], 1.3 in Italy [29] and 4.55 in Morocco in
2006 [30]. Its prevalence was also reported at between 3.5% and 6% in urban and rural
areas of Brazil [31].

Communities in which sheep breeding is widespread contribute greatly to this distri-
bution, with E. granulosus s.s. (G1 genotype) playing an important role in transmission in
humans [32–34].

Due to the maternal inheritance and high mutation rates of mitochondrial (mt) DNA
sequences, these sequences are commonly analyzed to determine the genetic structure of
the population and the degree of close kinship [35]. In many studies, partial sequences of
mt-CO1 and mt-ND1 genes have been used successfully to distinguish genetic variants
among Echinococcus species and between E. granulosus strains [36–38].

Global evaluation of genetic variation among human isolates of E. granulosus s.s.
(G1 genotype) is important to reveal the population dynamics of the parasite. In the current
study, we evaluated the haplotype diversity, genetic variation, population structure and
phylogeny of human E. granulosus s.s. (G1 genotype) submitted to GenBank from different
parts of the world by analyzing the mt-CO1 and mt-ND1 gene sequences.

2. Materials and Methods
2.1. Data Collection

After filtering the mt-CO1 (n = 382) and mt-ND1 (n = 199) gene sequences containing
human (Homo sapiens) isolates of the E. granulosus s.s. (G1 genotype) submitted to the
National Center for Biotechnology Information, USA, (NCBI) (www.ncbi.nlm.nih.gov)
database until 6 April 2022, a total of 581 gene sequences were obtained and a dataset
was created.

2.2. Alignment and Phylogenetic Analysis

All the gene sequences were loaded into the CLC Sequence Viewer 8 [39] in FASTA
format. All sequences were trimmed from both ends and were then aligned using the mt-
CO1 (accession no. MG672129) and mt-ND1 (accession no. KU925413) reference sequences.
After the removal of short gene sequences, the remaining 273 gene sequences [401 bp mt-
CO1 (n = 133) and 407 bp mt-ND1 (n = 140)] were used for bioinformatic analysis. Individual
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phylogenetic trees were created from the sequences of both gene regions using the neighbor-
joining (NJ) model and the Jukes-Cantor nucleotide distance measure. Statistical support
for the specificity of the branches was obtained using 1000 bootstrap replicates. Taenia
saginata and T. solium sequences were added as outgroups to show the degree of relations.

2.3. Haplotype Analysis and Networking

The haplotype analysis was carried out using the DnaSP 6 program in which the
sequences were investigated in FASTA format [40]. The haplotype and nucleotide change
values, nucleotide and haplotype numbers and neutrality indexes were calculated to
determine the genetic structure of both gene regions. The sequences were converted to
Nexus format [41] and a haplotype network was generated by using the PopArt (Population
Analysis with Reticulate Trees) program [42] for a visual representation of the relationships
between haplotypes.

3. Results

In this study, we analyzed a total of 273 gene sequences of E. granulosus s.s. (G1 genotype)
isolates obtained from the NCBI database, consisting of 133 mt-CO1 sequences from
15 countries and 140 mt-ND1 sequences from 16 countries (Table 1).

Table 1. Accession numbers of mt-CO1 and mt-ND1 gene fragments of E. granulosus s.s. (G1 genotype)
isolates used in the study.

mt-CO1 mt-ND1

Origin No. of Isolates Accession Numbers Origin No. of Isolates Accession Numbers

China 43

DQ356874-75-76-77-78-79-
80/83,

KJ628328-29-30-31-32-33-
34-35,

AB688602-03-04-05-06-07-
08-09-10-11/13-14-15-16-

17-18-19,
MH050608-09-10-11-12-

13-14-15-16-17

Uzbekistan 43

MN696570/72/76-77-78-
79-80-81-82-83-84-85-86-
87-88-89-90-91-92-93-94-

95-96-98-99,
MN696600-01-02-03-

04/06-07-08-09-10-11-12-
13/15/19-20-21-22

Tunisia 13 MG672264-65-66-67-68-69-
70-71-72-73-74-75-76 Algeria 20

MG672128, KT316342,
KR349038-39-40-41-42-

43-44,
MG672282/84-85-86-87-

88-89-90-91-92-93

Pakistan 12
MK229295-96-97/99,

MK229301-
02/04/13/15/17-18-19

China 17

AY572548, KJ556993-94,
EU072111-12-13-14,

MH050620-21-22-23-24-
25-26-27-28-29

Mongolia 12
MG672254-55,

AB893242-43-44-45-46-47-
48-49-50-51

Peru 14
JF946597-98-99,

JF946600-01-02-03-04-05-
06-07-08-09/24,

Algeria 12
MG672128,

MG672283-84-85-86-87-88-
89-90-91-92-93

Tunisia 13 MG672264-65-66-67-68-69-
70-71-72-73-74-75-76

Turkey 10
EU006783, GU951512-13,
MG886833-34-35-36-37-

38-39
Iran 9

KT284349, MG672245,
JF836800-01-02-03,

JF836797-98-99
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Table 1. Cont.

mt-CO1 mt-ND1

Origin No. of Isolates Accession Numbers Origin No. of Isolates Accession Numbers

Iran 9

KR337817, MW350099,
MT073987, MG672245,

MH025946-47,
JQ250810/12/15

Slovenia 6 MT239133-34-
35/38/40/42

Russia 9 AB777904/07-08,
AB688136-37-38-39-40-41 Spain 4 KU925413-14,

MG672129/37

Spain 4 MG672129/37,
KU925413-14, Iraq 3 FJ226756, MN231833-34

Finland 3 MG672132, KY766884,
KU925429 Finland 3 MG672132, KY766884,

KU925429

India 2 JX854029-30 Mongolia 2 MG672254-55

Morocco 1 EF367266 Poland 2 KT780298- KT780300

Romania 1 MG672138 Romania 1 MG672138

Kazakhstan 1 MG672257 Kazakhstan 1 MG672257

Italy 1 MG672135 Italy 1 MG672135

Morocco 1 EF367298

The distribution of the collected mt-CO1 and mt-ND1 sequences over the world is
shown in Figure 1.

3.1. Polymorphism and Haplotype Analysis

Mutations were observed at 31 different points within the mt-CO1 gene sequences,
with the longest conserved areas detected between 116 bp and 167 bp. Within the mt-ND1
sequences, mutations were observed at 100 different points, with conserved areas detected
between 361 bp and 407 bp. No protein-coding domain was found in either of the datasets.
Analysis of 133 mt-CO1 gene sequences revealed 34 different haplotypes (Table 2). Among
these, Hap03 constituted the main haplotype with 79 gene sequences, of which 23 existed
as a single haplotype. Analysis of 140 mt-ND1 gene sequences revealed 37 haplotypes
(Table 3). Among these, Hap01 constituted the main haplotype, with 83 gene sequences,
constitutes of which 28 existed as a single haplotype.

3.2. Haplotype Network

The mt-CO1 haplotype network consisted of 34 haplotypes (Figure 2). A comparison
of the main haplotype with the others in this network revealed between one and seven mu-
tations. The main haplotype was Hap03, accounting for 59.39% (79/133) of the haplotype
network, followed by Hap10, accounting for 9.02%. (12/133). A unique single haplotype
constituted 67.64% (23/34) of the haplotype network. Single haplotypes were from China
(n = 9), Pakistan (n = 3), Iran (n = 2), Tunisia (n = 2), Russia (n = 2), Mongolia (n = 2), Turkey
(n = 1), Romania (n = 1) and Morocco (n = 1).

The mt-ND1 haplotype network consisted of 37 haplotypes (Figure 3). A comparison of
the main haplotype with the others in this network revealed between one and 50 mutations.
The main haplotype was Hap01, accounting for 59.28% (83/140) of the haplotype network,
followed by Hap05, accounting for 10.71% (15/140). A unique single haplotype constituted
75.67% (28/37) of the haplotype network. Single haplotypes were from Uzbekistan (n = 17),
Slovenia (n = 4), China (n = 4), Algeria (n = 2) and Iraq (n = 1).
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Table 2. Haplotypes of mt-CO1 sequences of E. granulosus s.s. (G1 genotype) and accession numbers
of isolates forming groups.

Haplotype Name No. of Isolate Accession Numbers

Hap01 2 KJ628335-China, KJ628331-China

Hap02 1 KR337817-Iran

Hap03 79

GU951513-Turkey, GU951512-Turkey, JX854029-India, MG886839-Turkey,
MG886838-Turkey, MG886837-Turkey, MG886836-Turkey, MG886835-Turkey,

MG886834-Turkey, MG886833-Turkey, DQ356883-China, MW350099-Iran,
MT073987-Iran, MK229301-Pakistan, MK229296-Pakistan, MH050617-China,
MH050615-China, MH050614-China, MH050612-China, MH050609-China,

MH050608-China, MH025946-Iran, KJ628334-China, KJ628333-China, KJ628332-China,
KJ628330-China, KJ628329-China, AB688617-China, AB688616-China, AB688614-China,
AB688611-China, AB688610-China, AB688609-China, AB688608-China, AB688607-China,

AB688603-China, AB688602-China, JQ250815-Iran, AB893250-Mongolia,
AB893249-Mongolia, AB893248-Mongolia, AB893247-Mongolia, AB893245-Mongolia,

AB893244-Mongolia, AB893243-Mongolia, AB777908-Russia, AB777907-Russia,
AB777904-Russia, AB688141-Russia, AB688136-Russia, MG672293-Algeria,

MG672292-Algeria, MG672291-Algeria, MG672289-Algeria, MG672288-Algeria,
MG672287-Algeria, MG672285-Algeria, MG672284-Algeria, MG672283-Algeria,
MG672276-Tunisia, MG672275-Tunisia, MG672274-Tunisia, MG672272-Tunisia,
MG672270-Tunisia, MG672269-Tunisia, MG672268-Tunisia, MG672266-Tunisia,

MG672265-Tunisia, MG672264-Tunisia, MG672257-Kazakhstan, MG672254-Mongolia,
MG672245-Iran, MG672135-Italy, MG672132-Finland, MG672129-Spain,

MG672128-Algeria, KY766884-Finland, KU925429-Finland, KU925413-Spain

Hap04 1 EU006783-Turkey

Hap05 2 JX854030-India, MH050610-China

Hap06 2 MK229304-Pakistan, MK229299-Pakistan

Hap07 1 DQ356880-China

Hap08 1 DQ356879-China

Hap09 2 DQ356878-China, AB688604-China

Hap10 12
DQ356877-China, MK229302-Pakistan, MK229297-Pakistan, MH050611-China,

JQ250812-Iran, JQ250810-Iran, AB893246-Mongolia, AB688140-Russia, AB688139-Russia,
MG672290-Algeria, MG672267-Tunisia, MG672255-Mongolia

Hap11 2 DQ356876-China, DQ356875-China

Hap12 1 DQ356874-China

Hap13 2 MK229319-Pakistan, MK229313-Pakistan

Hap14 3 MK229318-Pakistan, AB688618-China, MG672286-Algeria

Hap15 1 MK229317-Pakistan

Hap16 1 MK229315-Pakistan

Hap17 1 MK229295-Pakistan

Hap18 2 MH050616-China, AB688606-China

Hap19 1 MH050613-China

Hap20 1 EF367266-Morocco

Hap21 1 MH025947-Iran

Hap22 1 KJ628328-China

Hap23 1 AB688619-China

Hap24 1 AB688615-China

Hap25 1 AB688613-China
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Table 2. Cont.

Haplotype Name No. of Isolate Accession Numbers

Hap26 1 AB688605-China

Hap27 1 AB893251-Mongolia

Hap28 1 AB893242-Mongolia

Hap29 1 AB688138-Russia

Hap30 1 AB688137-Russia

Hap31 1 MG672273-Tunisia

Hap32 1 MG672271-Tunisia

Hap33 1 MG672138-Romania

Hap34 2 MG672137-Spain, KU925414-Spain

Table 3. Haplotype of mt-ND1 sequences of E. granulosus s.s. (G1 genotype) and accession numbers
of isolates forming groups.

Haplotype Name No. of Isolate Accession Numbers

Hap01 83

KU925413-Spain, EU072111-China, FJ226756-Iraq, KT284349-Iran, JF836803-Iran,
JF836802-Iran, JF836801-Iran, JF836799-Iran, JF836797-Iran, MN696622-Uzbekistan,

MN696621-Uzbekistan, MN696620-Uzbekistan, MN696619-Uzbekistan,
MN696606-Uzbekistan, MN696596-Uzbekistan, MN696591-Uzbekistan,

MN696583-Uzbekistan, MN696572-Uzbekistan, MN696570-Uzbekistan, JF946609-Peru,
JF946608-Peru, JF946607-Peru, JF946606-Peru, JF946605-Peru, JF946604-Peru,
JF946603-Peru, JF946602-Peru, JF946601-Peru, JF946600-Peru, JF946599-Peru,

JF946598-Peru, JF946597-Peru, KR349044-Algeria, KR349042-Algeria, KR349038-Algeria,
MT239138-Slovenia, MT239133-Slovenia, KT780300-Poland, KT780298-Poland,

JF946624-Peru, MH050629-China, MH050628-China, MH050626-China,
MH050625-China, MH050622-China, MH050621-China, MH050620-China,

KJ556994-China, KJ556993-China, MN231834-Iraq, EF367298-Morocco,
MG672293-Algeria, MG672292-Algeria, MG672291-Algeria, MG672289-Algeria,
MG672288-Algeria, MG672287-Algeria, MG672285-Algeria, MG672284-Algeria,
MG672283-Algeria, MG672276-Tunisia, MG672275-Tunisia, MG672274-Tunisia,
MG672273-Tunisia, MG672272-Tunisia, MG672271-Tunisia, MG672270-Tunisia,
MG672268-Tunisia, MG672267-Tunisia, MG672266-Tunisia, MG672265-Tunisia,

MG672264-Tunisia, MG672257-Kazakhstan, MG672255-Mongolia, MG672254-Mongolia,
MG672245-Iran, MG672138-Romania, MG672135-Italy, MG672132-Finland,

MG672129-Spain, MG672128-Algeria, KY766884-Finland, KU925429-Finland

Hap02 1 EU072114-China

Hap03 2 EU072113-China, JF836798-Iran

Hap04 2 EU072112-China, AY572548-China

Hap05 15

JF836800-Iran, MN696613-Uzbekistan, MN696612-Uzbekistan, MN696610-Uzbekistan,
MN696609-Uzbekistan, MN696607-Uzbekistan, MN696599-Uzbekistan,
MN696598-Uzbekistan, MN696590-Uzbekistan, MN696589-Uzbekistan,
MN696587-Uzbekistan, MN696585-Uzbekistan, MN696584-Uzbekistan,

MN696582-Uzbekistan, MN696581-Uzbekistan

Hap06 1 MN696615-Uzbekistan

Hap07 2 MN696611-Uzbekistan, MN696608-Uzbekistan

Hap08 1 MN696604-Uzbekistan

Hap09 1 MN696603-Uzbekistan

Hap10 1 MN696602-Uzbekistan

Hap11 1 MN696601-Uzbekistan
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Table 3. Cont.

Haplotype Name No. of Isolate Accession Numbers

Hap12 1 MN696600-Uzbekistan

Hap13 1 MN696595-Uzbekistan

Hap14 1 MN696594-Uzbekistan

Hap15 1 MN696593-Uzbekistan

Hap16 1 MN696592-Uzbekistan

Hap17 1 MN696588-Uzbekistan

Hap18 1 MN696586-Uzbekistan

Hap19 1 MN696580-Uzbekistan

Hap20 1 MN696579-Uzbekistan

Hap21 1 MN696578-Uzbekistan

Hap22 1 MN696577-Uzbekistan

Hap23 1 MN696576-Uzbekistan

Hap24 1 KT316342-Algeria

Hap25 1 KR349043-Algeria

Hap26 2 KR349041-Algeria, MG672286-Algeria

Hap27 2 KR349040-Algeria, MG672290-Algeria

Hap28 2 KR349039-Algeria, MG672269-Tunisia

Hap29 1 MT239142-Slovenia

Hap30 1 MT239140-Slovenia

Hap31 1 MT239135-Slovenia

Hap32 1 MT239134-Slovenia

Hap33 1 MH050627-China

Hap34 1 MH050624-China

Hap35 1 MH050623-China

Hap36 1 MN231833-Iraq

Hap37 2 MG672137-Spain KU925414-Spain

The nucleotide positions of the mt-CO1 and mt-ND1 genes among the haplotypes
were presented in Supplementary Tables S1 and S2.

3.3. Phylogenetic Tree

The results of the phylogenetic analysis were consistent with the haplotype network.
The phylogenetic tree generated by aligning the mt-CO1 gene sequences is shown in
Figure 4A. In this tree, Hap04 (EU006783), Hap12 (DQ356874), Hap16 (MK229315) and
Hap23 (AB688619) were the haplotypes farthest apart, with mutations at seven points. The
phylogenetic tree generated by aligning the mt-ND1 gene sequences is shown in Figure 4B.
In this tree, Hap10 (MN696602) and Hap36 (MN231833) were the haplotypes farthest apart,
with mutations at 50 points. Taenia saginata and T. solium were added as outgroups in both
phylogenetic trees.
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(AB688619) were the haplotypes farthest apart, with mutations at seven points. The 
phylogenetic tree generated by aligning the mt-ND1 gene sequences is shown in Figure 
4B. In this tree, Hap10 (MN696602) and Hap36 (MN231833) were the haplotypes farthest 
apart, with mutations at 50 points. Taenia saginata and T. solium were added as outgroups 
in both phylogenetic trees. 

Figure 3. Appearance of mt-ND1 (407 bp) haplotypes of E. granulosus s.s. (G1 genotype) sequences.
The number of mutations that distinguish haplotypes is indicated by screening marks. The geograph-
ical distribution of haplotypes is shown in different colors. The size of the circles is related to the
haplotype frequency.
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Figure 4. Phylogenetic tree view of E. granulosus s.s. (G1 genotype) sequences using mt-CO1 (401 bp)
(A) and mt-ND1 (407 bp) (B) gene and reference sequences. CLC Sequence Viewer 8 was used to
generate a Maximum Likelihood tree based on the Neighbor Joining model. The reliability of the tree
was evaluated with 1000 bootstrap iterations. � Taenia saginata N Taenia solium.

3.4. Gene Flow, Diversity and Neutrality Analysis

The diversity and neutrality indices of the mt-CO1 and mt-ND1 groups are shown
in Table 4. Tajima’s D (Tajima, 1989) and Fu’s FS (Fu, 1997) values were calculated to
determine whether populations were subject to selection pressure. Tajima D, Fu’s Fs and
Fu’s LD values showed high negative values in both the mt-CO1 and mt-ND1 regions,
providing evidence of a large number of alleles.

Table 4. Diversity and neutrality indices obtained using nucleotide data of the mt-CO1 (401 bp) and
mt-ND1 (407 bp) genes of E. granulosus s.s. (G1 genotype).

n H hd ± SD πd ± SD Tajima’s D p Value Fu’s Fs p Value FLD p Value FLF p Value

mt-CO1 133 34 0.640 ± 0.048 0.00255 ± 0.00031 −2.47269 *. p < 0.01 −49.797 0.000 −3.97170 p < 0.02 −4.03871 p < 0.02
mt-ND1 140 37 0.639 ± 0.047 0.00611 ± 0.00147 −2.80355 *. p < 0.001 −31.231 0.000 −8.50154 p < 0.02 −7.14019 p < 0.02

n: Number of isolates, H: number of haplotypes; hd: haplotype diversity; πd: nucleotide diversity; SD: standard
deviation; FLD: Fu and Li’s D * test statistic; FLF: Fu and Li’s F * test statistic.

4. Discussion

Genetic diversity and population structure of E. granulosus s.s. (G1 genotype) were
investigated in the current study. This was carried out using sequenced data of mt-CO1 and
mt-ND1 retrieved from GenBank, commonly used for the differentiation of Echinococcus
species. Results obtained in this study emerged information about gene flow and popula-
tion dynamics in human E. granulosus s.s. infections globally. A total of 133 mt-CO1 (401 bp)
and 140 mt-ND1 (407 bp) gene sequences of E. granulosus s.s. (G1 genotype) human isolates
already registered in the NCBI database were used for us in silico analyses to determine
the genetic diversity and variations of the E. granulosus s.s. (G1 genotype) human isolates.
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Although the prevalence and incidence of CE have decreased significantly in recent
years, it still remains an important public health concern, especially in some countries
and geographical regions that cannot implement a control program due to economic
difficulties [43]. In addition, it is an important problem for human health in developing
countries where animal husbandry is intense, and sheep meat is consumed intensively [44].
The incidence of CE increases with age and is more common between the ages of 20 and
40 years. The incidence of the disease is higher in societies with a low socio-economic
ratio [45].

The results of the current study show an extremely high global haplotype diversity
within the G1 genotype. The 273 samples analyzed represented a total of 34 haplotypes for
mt-CO1 and 37 for mt-ND1. High genetic diversity within E. granulosus s.s. has also been
reported by Kinkar et al. [46]. They [46] analyzed 212 samples (near complete mitochondrial
sequence) and found 171 haplotypes (overall haplotype diversity was 0.994). The main
reason for the haplotype difference between the studies is related to the length of the gene
regions analyzed. Therefore, more haplotypes can be determined by sequencing longer
mitochondrial gene fragments.

Neutrality indices such as Tajima D, Fu’s Fs, and Fu’s LD were used to measure
nucleotide variability and population expansion [47]. The Tajima D test evaluates the
deviation of populations from the standard neutral model, with a positive Tajima D value
representing heterozygosity, defined as having a selective advantage, while negative values
indicate that a particular allele has a selective advantage over the other allele. A negative
value also indicates a rapid increase in the population [48,49]. In our study, Tajima D values
were low in both the mt-CO1 and mt-ND1 gene fragments, indicating a high probability
of population increase in the future. However, the lower Tajima D value of the mt-ND1
gene sequence (−2.80355) compared with that of the mt-CO1 gene sequence (−2.47269)
indicates a higher rate of population growth in the former. The negative value of the
neutrality indices Tajima’s D suggests population expansion (Animal movements among
the countries indicate that this expansion may continue in the coming years. Fu’s FS
represents a marker of sensitivity to population growth, with a significantly negative value
(p < 0.05), indicating that the populations have common growth patterns and belong to the
same gene pool [50,51]. Our analysis yielded highly negative and statistically significant
Fu’s Fs values in both the mt-CO1 and mt-ND1 haplotype groups, indicating that these
populations are subject to expansion globally.

Nucleotide diversity was examined to determine the degree of polymorphism in the
population. We determined that the mean nucleotide difference of the mt-ND1 (0.00611)
gene sequence was higher than that of the mt-CO1 (0.00255) gene sequence. In addition,
haplotype diversity was assessed to evaluate the uniqueness of haplotypes within the
population. In our study, the values of the mt-CO1 (0.640) and mt-ND1 (0.639) gene
sequences were very similar.

In total, 34 haplotypes were identified in our analysis of the mt-CO1 gene sequences.
The main haplotype constituted 59.39% of the total network, and there were 23 single
haplotypes. Thirty-seven different haplotypes were identified in our analysis of the mt-
ND1 gene sequence. The main haplotype constituted 59.28% of the total network, and there
were 28 single haplotypes. The major haplotypes represent a single ancestor.

In total, 31 different mutations were detected across the 401 bp mt-CO1 gene sequences,
and 100 different mutations were detected within the 407 bp mt-ND1 sequences. The higher
mutation rates may reflect the long and complex evolutionary history of E. granulosus. The
genetic diversity within E. granulosus s.s. (G1 genotype) is very high worldwide, and
the observed complex phylogeographic patterns emerging from the phylogenetic and
geographic analyses suggest that the current distribution of E. granulosus s.s. (G1 genotype)
has been shaped by the intensive animal trade [46]. The high number of haplotypes
detected in some Asian and Middle Eastern countries (China, Mongolia, Pakistan, Iran,
etc.) in this study may indicate that E. granulosus s.s. (G1 genotype) has existed in these
countries for many years compared to some western countries (Finland and Spain).
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5. Conclusions

E. granulosus s.s. (G1 genotype) poses an important problem in communities where
sheep breeding is common. Although different molecular studies have been conducted
to date, this study is the first bioinformatics study to evaluate the genetic structure and
gene flow of human isolates of the E. granulosus s.s. (G1 genotype) collected worldwide.
In this study, all the sequence data reported from humans related to E. granulosus s.s.
(G1 genotype), the most common species in humans were screened, and aggregated data
were given comparatively. We think that this study can fill the knowledge gaps on the sub-
ject. Our findings also represent an important step in future epidemiological, bioecological,
vaccine and diagnostic studies that could yield efficient treatments for species/strains.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11111346/s1, Table S1: Nucleotide variation positions
of the mt-CO1 (401 bp) gene among 34 haplotypes analyzed; Table S2: Nucleotide variation positions
of the mt-ND1 (407 bp) gene among 37 haplotypes analyzed.
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