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Abstract: In the capillary walls, vascular endothelial cells are covered with mural cells, such as
smooth muscle cells and pericytes. Although pericytes had been thought to play simply a structural
role, emerging evidence has highlighted their multiple functions in the embryonic, postnatal, and
adult brain. As the central nervous system (CNS) develops, the brain’s vascular structure gradually
matures into a hierarchical network, which is crucial for the proper development of neural lineage
cells by providing oxygen and nutrients. Pericytes play an essential role in vascular formation and
regulate blood-brain barrier (BBB) integrity as a component of the neurovascular unit (NVU), in
collaboration with other cells, such as vascular endothelial cells, astrocytes, neurons, and microglia.
Microglia, the resident immune cells of the CNS, colonize the brain at embryonic day (E) 9.5 in mice.
These cells not only support the development and maturation of neural lineage cells but also help
in vascular formation through their extensive migration. Recent studies have demonstrated that
pericytes directly contact microglia in the CNS, and their interactions have a profound effect on
physiological and pathological aspects. This review summarizes the function of pericytes, focusing
on the interplay between pericytes and microglia.

Keywords: blood–brain barrier; blood vessel; brain development; cortex; endothelial cell; microglia;
neurovascular unit; pericyte; vascular structure

1. Introduction

As the central nervous system (CNS) develops, the brain’s vascular system gradually
matures into a hierarchical network, which is crucial for the proper development of neural
lineage cells by providing oxygen and nutrients. The formation of blood islands, which
is known as vasculogenesis, is initially observed in the extraembryonic yolk sac around
embryonic day (E) 6.5 in mice [1]. Vasculogenesis includes mesoderm formation, the
differentiation of mesoderm-derived angioblasts into endothelial cells (ECs), and their
organization into vascular tubes [2,3]. In the embryonic brain, similar to other embryonic
tissues, once angioblasts differentiate into ECs, they enter the perineural epithelium of the
embryonic brain [4,5]. Next, vascular ECs form a primary perineural vascular plexus that
encompasses the neural tube, and are dispersed in the whole brain structure on E7.5–E8.5
in mice [6]. Vascular elongation, branching, and remodeling start at E9.5 and continue to
the postnatal stage [1,7]. Subsequently, mural cells, such as pericytes and smooth muscle
cells (SMCs), are recruited to the vascular endothelium, and they encompass the vascular
tube [5]. Such complicated processes finally lead to the establishment of a functional
vascular system.

Pericytes are the cells that cover vascular ECs throughout the body, including the
brain [8]. These cells are different from vascular ECs and SMCs. Pericytes are multi-
functional cells that play essential roles in vascular formation and the maintenance of
blood-brain barrier (BBB) integrity.

Microglia are resident immune cells in the CNS. Microglia originate from ery-
thromyeloid progenitors (EMPs) in the yolk sac in the early embryonic stage, and these
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progenitors then colonize the CNS through their extensive migration and proliferation
during development. Recent studies have demonstrated that pericytes directly interact
with microglia in the CNS. This review describes the function of pericytes, especially
focusing on the interplay between pericytes and microglia.

2. What Is a Pericyte?

Pericytes were first identified by Charles-Marie Benjamin Rouget in the 1870s. These
cells were described as rouget cells [9]. In the 1920s, they were later called pericytes by
Zimmermann, who stated that he defined various cellular morphologies as pericytes [8].
Pericytes are mural cells that surround the vascular ECs in capillaries and directly commu-
nicate with ECs through tight connections [10,11] (Figure 1). In collaboration with vascular
ECs, neural lineage cells, and the extracellular matrix, pericytes form the neurovascular
unit (NVU) to maintain a highly selective BBB and establish cerebral homeostasis. Recent
studies have revealed that pericytes not only function in a structural role but also play a
critical role at various points. For example, pericytes contribute to the rigorous integrity
of the BBB, which limits the invasion of harmful substances and provides a suitable ionic
environment that supports neuronal activity, regulates vascular formation and cerebral
blood flow (CBF), and facilitates neuronal inflammation. In addition, a growing body of
evidence indicates that pericytes directly interact with neural lineage cells and microglia.
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Pericytes have been studied for almost 150 years, but their ambiguous identification
makes it difficult to investigate their characteristics and function. Pericytes express several
specific markers, such as chondroitin sulfate proteoglycan (neuron-glial antigen 2; NG2),
platelet growth factor receptor beta (PDGFRβ), Desmin, RGS5, CD13, CD146, and RGS5 [12],
but do not have unique molecular markers. Some of these markers are also expressed in
other cells, such as ECs and SMCs. However, the detection of multiple markers is useful.
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For example, pericytes can be identified by the expression of two cell surface proteins:
PDGFRβ and NG2. Neither marker is specific to pericytes: PDGFRβ is expressed by
fibroblasts, whereas NG2 is expressed by oligodendrocyte progenitor cells (OPCs). Both
of them are expressed at lower levels by vascular SMCs [13]. However, the combination
of other markers that are specific for oligodendrocyte progenitors and SMCs helps us to
identify pericytes. SMCs also express alpha smooth muscle actin (α-SMA), CD13, CD146,
and Desmin, whereas OPCs express platelet growth factor receptor alpha (PDGFRα). A
very recent paper showed that mural cells are represented in both glucagon-like peptide-
1 receptor (Glp1r)+ and glucose-dependent insulinotropic polypeptide receptor (Gipr)+

populations. Glp1r+ mural cells are largely SMCs, while the majority of Gipr+ mural cells
are pericytes, indicating that Gipr may be a useful marker of pericytes [14].

Little is known about the exact embryonic origin of pericytes, but several studies
using lineage tracing methods have suggested distinct developmental sources. During
ontogenesis, pericyte subtypes mainly belong to two embryonic germ layers: neural crest
cells and the mesoderm. Quail chick chimeras and lineage tracing studies demonstrated that
pericyte origins differ among pericytes that are localized in a region: pericytes positioned
in the forebrain arise from neural crest cells, while those in the brainstem, spinal cord, and
mid-brain are derived from the mesoderm [15–17]. Recent single-cell RNA sequencing
studies revealed the heterogeneity and multitasking ability of pericytes [18–22]. A previous
study based on cell linage tracing analysis using several transgenic mice revealed that
pericytes have more heterogenous characteristics than previously thought [23]. Another
work demonstrated that pericytes exhibited heterogeneous properties within the same
tissue [24]. Thus, more detailed analyses of the relationship between pericyte origin and
heterogenic function may help to better understand pericytes’ characteristics.

3. The Functions of Pericytes in Vascular Formation

Pericytes contribute to vascular stability, angiogenesis, and the maintenance of cerebral
microcirculation in the physiological and pathological conditions. This section describes
their functional roles in blood vessel formation.

3.1. Vascular Development

First, pericytes play an essential role in the generation of nascent blood vessels
(Figure 2). Pericytes first detach from the ECs that form the blood vessel wall. Their detach-
ment triggers the migration of vascular ECs toward the surrounding matrix to generate
new blood vessels [25,26]. Following this, pericytes are again recruited to ECs and then
remodel the vascular tubes and stabilize the structure [27–29]. A recent study demonstrated
that the single-cell depletion of pericytes by laser ablation caused pericytes to extend their
processes toward the pericyte-uncovered regions surrounding ECs to stabilize the vascular
structure and vessel diameter [30].
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Figure 2. The functions of pericytes on blood vessels. Pictures summarize the suggested functions
of pericytes on blood vessels. Pericytes play a key role in vascular development, blood–brain
barrier (BBB) integrity, and neuroinflammation. Their contribution to cerebral blood flow (CBF) is a
controversial issue so far.

ECs release growth factors to attract pericytes to newly formed blood vessels in order
to stabilize the vascular structure [10,29]. Previous studies have demonstrated that the
PDGFB/PDGFRβ axis plays an essential role in pericyte recruitment. Mice that lacked
PDGF-B or PDGFRβ showed severe deficits in the pericyte coverage of blood vessels,
endothelial hyperplasia, and abnormal vascular morphogenesis, including microaneurysm,
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which led to widespread microvascular leakage and edema [25,27,31,32]. Mice with null
and hypomorphic alleles of Pdgfrb, which had defects in pericyte generation, showed that
pericytes were required for BBB formation and that pericyte coverage with the blood vessels
determined vascular permeability [33]. Transforming growth factor-β (TGF-β) induces
the differentiation of mesenchymal cells toward an SMC/pericyte lineage. A recent study
tested the hypothesis that TGF-β not only induced SMC differentiation but also stabilized
capillary-like structures in a three-dimensional (3D) model of in vitro angiogenesis [34].
Another study showed that fluorescence-activated cell sorting (FACS)-isolated myeloid
cells and their progenitors from embryonic skin differentiated into pericytes through TGF-
β signaling in culture [23]. The researchers demonstrated that type 2 TGF-β receptor
(TGFBR2) mutants exhibited deficient pericyte development in the skin vasculature. Fur-
thermore, another study demonstrated that extracellular vesicles released from ECs, driven
by inflammation, affected the cellular status of pericytes [35].

On the other hand, pericytes also regulate EC proliferation, survival, and differen-
tiation. Pericytes promote angiogenesis by releasing vascular endothelial growth factor
(VEGF) and neurogenic locus notch homolog protein (NOTCH) 3 in the adult brain [36,37].
These cells also induce the sprouting and stabilization of ECs by secreting VEGF, TGFβ, and
angiopoietin 1 (ANGPT1) [38–43]. Another study showed that silencing Tie2 in pericytes,
which express the functional Tie2 receptor, resulted in a promigratory phenotype of ECs in
human and murine models, indicating that Tie2 expression on pericytes controls sprout-
ing angiogenesis, as determined by in vitro sprouting and in vivo spheroid assays [43].
Pericytes also control the cell cycle of ECs [39]. These factors affect each other’s mitotic
rates, differentiation, and growth arrest. Pericytes have also been suggested to suppress EC
growth. In cocultures, pericytes inhibited all EC proliferation. These results suggest that
pericytes can modulate EC growth via a mechanism that requires contact or proximity.

Overall, the bidirectional interaction of vascular ECs and pericytes is substantially
required for vascular formation and stabilization.

3.2. BBB Integrity

The tight and adherens junctions forming the BBB tightly control the influx and efflux
of biological substances, such as ions and molecules, and the infiltration of circulating
cells between the bloodstream and the brain parenchyma, thereby providing a favorable
environment for brain cells [44,45]. This rigorous integrity of the BBB is controlled by
the NVU, a collection of various cell types, such as ECs, pericytes, astrocytes, neurons,
microglia, and perivascular macrophages [46–49].

In the physiological state, pericytes contribute to BBB integrity. First, pericytes regulate
tight junction integrity and/or maintain EC alignment. Pericytes adjust the number of ECs
and modulate astrocyte endfeet positioning through their release of signaling factors [50].
Pericyte loss causes the failure of the formation of tight junctions between ECs, leading
to an abnormal increase in BBB permeability [51]. Pericyte damage leads to late endothe-
lial changes and ultimately choriocapillaris loss [52]. Pericyte depletion using a double
promoter strategy for PDGFRβ and NG2 led to acute blood–brain barrier breakdown,
which was associated with rapid neuronal loss due to the decrease in pericyte-derived
pleiotrophin, a neurotrophic growth factor [53].

Second, pericytes regulate the endothelial transcytosis of vesicles and contribute to
the clearance of toxic species from the brain [54]. Adult pericyte-deficient mice demon-
strated that pericyte loss caused BBB breakdown, associated with the accumulation of
serum proteins, several vasculotoxic molecules, and neurotoxic substances, which led to
secondary neurodegenerative changes [36]. Third, pericytes directly regulate the infiltration
of immune cells. Pericytes inhibit the expression of molecules that cause an increase in
immune cell infiltration [33].

In the pathological context, pericytes impact BBB integrity through their activation.
First, pericytes produce inflammatory molecules, which leads to BBB breakdown. Pericytes
exposed to hyperglycemia and advanced glycation and products (AGEs) displayed dimin-
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ished expression of integrin a1, PDGFRβ, and connexin 43, leading to BBB injury [55,56].
BBB compromise was demonstrated in ex vivo, in vitro, and in vivo diabetes mellitus
models, and the combination of human immunodeficiency virus type 1 (HIV1) and dia-
betes enhanced BBB injury via effects on the brain endothelium and pericytes. Second,
pericytes replenish the cells in the NVU to maintain the environment through their stem
cell-like properties and activities [20]. Under ischemic/hypoxic conditions, pericytes can
acquire multipotential stem cell activity and differentiate into major components of the
NVU in the BBB [57,58]. Thus, pericytes contribute to BBB integrity by regulating per-
meability and display a complementary role/replenishment in both physiological and
pathological conditions.

3.3. Neuroinflammation

Neuroinflammation is primarily instigated by the abnormal activation of microglia,
astrocytes, and infiltrating leukocytes [59,60]. In collaboration with these cells, pericytes
produce several mediators that trigger leukocyte infiltration [61]. In adult pericyte-deficient
Pdgfbret/ret mice, pericytes limited leukocyte extravasation and/or transmigration into
the CNS, not only in the physiological state but also in a pathological context [62]. In
Pdgfrb-Cre:Ccl2fl/fl mice, an increase in excitatory synaptic transmission caused by LPS
administration was markedly diminished, suggesting that PDGFRβ+ cells sense the foreign
invasion and transmit the inflammation to the CNS by secreting CCL2 (chemokine CC
chemokine ligand 2, MCP1) [63]. A study using a 3D model of the human BBB demonstrated
that pericytes can enhance the secretion of granulocyte colony stimulating factor (G-CSF)
and interleukin-6 (IL-6) when co-cultured with endothelium [64]. Other studies have
demonstrated that the immunomodulatory factors secreted by pericytes, including IL-
1β, TNF-α, interferon-γ (IFN-γ), and IL-6, induce a proinflammatory state in astrocytes,
microglia, and ECs, and cause apoptotic neuronal death [65,66]. A recent study showed
that chondroitin sulfate proteoglycans (CSPGs), which are extracellular matrix proteins
enriched within inflamed perivascular cuffs, increased the levels of proinflammatory
chemokines/cytokines in pericytes in culture. Furthermore, pericytes stimulated with
CSPGs enhanced macrophage migration [67]. The brain’s immune-privileged status is
compromised when pericytes are lost or lymphatic vessels are dysregulated [68].

3.4. CBF Modulation

Rouget regarded pericytes as contractile cells [9]. Although SMCs that are positioned
at arterioles were traditionally thought to regulate CBF [69], it is a controversial issue so far
whether pericytes also regulate vessel diameter and CBF via their contractility or not.

Previous studies have reported that pericytes can flexibly contract and relax to modu-
late CBF in response to surrounding environmental changes [46,70–73]. Pericytes, when
they react to neurotransmitters, dilate capillaries and increase the local amount of CBF [74].
Another study demonstrated that pericytes have an impact on CBF by altering the stiffness
of the capillary wall, thereby changing the capillary transit time [75]. In Pdgfrb-deficient
mice, pericyte loss reduced the CBF, with rapid neurovascular uncoupling [36,76].

Using two-photon microscopy, pericyte stimulation induced increases in synaptic
activity and capillary dilation, supporting an active role of pericytes in cerebrovascular
control [77]. A previous study using inducible pericyte-deficient mice obtained from a
pericyte-specific PDGFRβ-Cre mouse line crossed with Cre-inducible diphtheria toxin
receptor mice (iDTR mice) demonstrated the functional role of pericytes in CBF regulation,
suggesting that pericyte loss may lead to stroke, Alzheimer’s disease (AD), and other neu-
ronal disorders [72]. Furthermore, another study reported that pericytes act as regulators
of CSF at the border between arterioles and capillaries by controlling the length and width
of the enclosed vessel segment [78].

In contrast, several recent papers raised the possibility that pericytes do not have con-
tractile properties. Although pericytes have been reported to express contractile proteins,
including α-SMA, tropomyosin, and myosin [79,80], difficulty in discrimination between
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pericytes and SMCs may lead to different interpretations. Fernández-Klett et al. reported
that SMCs but not pericytes were responsible for the CBF increase [81]. Another report also
supported this idea, and proposed that arteriolar SMCs mainly control CBF [82]. Thus, the
establishment of new techniques to enable us to separately evaluate pericytes’ functions
from other cells is required.

4. The Interplay between Microglia and Pericytes
4.1. Microglia to Pericytes

Microglial cell bodies are positioned along small blood vessels in the healthy mouse
brain. The number of papers that have investigated the interaction between microglia and
pericytes is still relatively low, but recent evidence has demonstrated the importance of the
association of pericytes with microglia [83]. This section summarizes the papers that have
investigated how microglia contribute to or affect pericyte function.

First, microglia are known to induce pericyte apoptosis. IL-1β, which is produced
by ECs and microglia, induced pericyte apoptosis via nuclear factor-kappa B (NF-kB)
activation under high-glucose conditions, thereby increasing endothelial permeability in
diabetic retinopathy [84]. TNF-α is a potent inducer of pericyte apoptosis in diabetic retinas
based on gene expression analysis, and signal transducer and activator of transcription
3 (STAT3) activation in microglia increases TNF-α expression in diabetic retinas. TNF-
α released from microglia induced pericyte apoptosis by downregulating AKT/p70S6
kinase signaling. Using microglia-specific STAT3-deficient mice, the researchers showed
that STAT3 ablation in microglia downregulated TNF-α expression and reduced pericyte
apoptosis in diabetic retinas, indicating that STAT3 activation in microglia was essential for
pericyte apoptosis in diabetic retinas through increased TNF-α expression [85].

Second, microglia modulate pericyte maturation and change their phenotype. The
presence of maturation transition and stemness features in pericytes could maintain blood-
brain barrier functionality during different pathologies. In vitro culture of rat pericytes with
conditioned media of microglia that were induced to an anti-inflammatory state promoted
pericyte maturity [86]. Another study showed that APOE4 derived from microglia not
only disturbed lipid homeostasis in macrophages and SMCs, leading to exacerbated sys-
temic inflammation and atherosclerotic plaque formation, but also contributed to pericyte
activation, disturbing BBB integrity [87].

Third, microglia regulate the number of pericytes. Administration of liposomal clo-
dronate over 5 weeks increased the number of activated CD74+ microglia and subsequently
led to pericyte loss on the capillaries. Activated microglia induced the pleiotropic protective
pathways that support vasoprotection [88].

Fourth, microglia disturb pericyte-mediated microcirculation. Microglia release TNF-α
after traumatic brain injury, which promotes neuroinflammation and oxidative stress by
activating downstream inducible nitric oxide (iNOS)/NF-kB signaling, leading to pericyte-
mediated disturbances in cerebral microcirculation [89].

Thus, microglia can regulate pericyte function in physiological and pathological states.

4.2. Pericytes to Microglia

In contrast, pericytes reciprocally regulate microglial function. This section summa-
rizes recent evidence showing the contribution of pericytes to microglial development
and function.

4.2.1. Pericytes as Sensors of Systemic Inflammation

Pericytes release inflammatory mediators in response to systemic inflammation, and
alter the characteristics of surrounding cells, including microglia [63,90,91] (Figure 3).
In the mouse brain, pericytes alter the motility of microglia that are positioned along
blood vessels by secreting CCL2, which triggers microglial activation in infection [63,92].
Moreover, pericytes release other cytokines, such as TNF-α, IFN-γ, IL-1β, and IL-6, to
induce an inflammatory state in the surrounding cells, including microglia, and cause
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neuronal apoptosis [65,66]. Pericytes also secrete anti-inflammatory molecules and induce
microglia to acquire anti-inflammatory properties, and microglia produce interleukin 33
(IL-33) and C-X3-C motif ligand 1 (CX3CL1) in a mouse model [90,93–95]. Furthermore,
the depletion of pericytes induced inflammatory responses in ECs and the perivascular
infiltration of macrophages in mouse retinal vessels, suggesting that pericytes exert anti-
inflammatory effects on these cell types in the physiological state [96]. Clinical evidence has
revealed the accumulation of pericytes with altered morphology in the cerebral vasculature
of patients with interactable epilepsy [97,98]. Experimental studies using an epilepsy animal
model showed that cerebrovascular pericytes changed their phenotypes in response to
proinflammatory cytokines such as IL-1β, TNF-α, and IL-6, and underwent redistribution
and remodeling.
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4.2.2. Pericytes Acquire Microglial Properties

Through in vitro and in vivo studies, pericytes have been shown to differentiate into
multiple cell types, including angioblasts, neural progenitors, vascular cells, microglia, and
other glial cells, in response to stimuli and environmental changes [20,57,99–101].

Baron et al. initially raised the possibility that pericytes had high plasticity and could
transform into microglia via the astrocytic activation process [102]. Previous studies have
reported that pericytes, in response to external stimuli, can convert into mesenchymal stem
cells, which have the potential to differentiate into various cell types: neurons, astrocytes,
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microglia, and fibroblast progenitors [20,57]. Both mouse pericytes isolated from ischemic
brains and human pericytes cultured under oxygen/glucose deprivation developed stem
cell properties through reprogramming. These pericytes have their original mesenchymal
properties and multipotential ability to differentiate into both a neural and vascular lin-
eage [57]. Other studies reported that pericytes under ischemic conditions in vitro and
in vivo acquired a microglial phenotype with increased phagocytic properties, indicating
that pericytes immediately react to environmental changes and contribute to tissue remod-
eling [58,99]. However, these findings are exclusively based on experiments performed
on cells cultured in vitro or on observations made in animals that received transplants of
pericytes that were previously propagated in vitro. A very recent study demonstrated that
α-SMAlow/undetectable pericytes, but not vascular SMCs or fibroblasts, differentiated into
microglia-like and macrophage-like cells after stroke [103]. However, there have been no
reports showing that pericytes possess multipotency to differentiate into tissue-resident
cells in vivo.

However, the cell fate and plasticity of pericytes in vivo is a controversial issue. A
previous study reported that FACS-isolated cells expressing Tbx18, a transcription factor
that is selectively expressed in pericytes and vascular SMCs in multiple organs of adult mice,
behaved similarly to mesenchymal stem cells in vitro, but lineage tracing experiments using
an inducible Tbx18-CreERT2 line revealed that pericytes and vascular SMCs maintained
their identity with age and in diverse pathological settings, suggesting that these cell types
did not significantly contribute to other cell lineages [104]. This study has challenged the
current concept of pericyte multipotency and suggests that the plasticity observed in vitro
or following transplantation in vivo arises from artificial cell manipulation ex vivo.

As mentioned in the previous section, emerging evidence has demonstrated that
pericytes are a heterogeneous population. Accordingly, their origin, diverse functions,
and/or various cellular subtypes should be taken into consideration to better understand
the complexity of pericytes’ biology.

4.2.3. Pericytes Support Microglial Survival and Proliferation

In the embryonic brain, immunohistochemistry showed that around half of the mi-
croglia were attached to capillaries. The proportion of the pericyte coverage area of the
capillaries in the E14 mouse cerebral wall was approximately 80% [105]. Importantly, mag-
nified observations revealed that microglia tend to selectively associate with the regions
covered with pericytes, raising the possibility that pericytes facilitate microglial devel-
opment and/or distribution. Indeed, the in vivo pericyte depletion model and in vitro
coculture experiment suggested that pericytes promoted microglial survival and prolifera-
tion in the brain parenchyma at the embryonic stage.

The blockade of PDGFRβ signaling by the intraventricular injection of anti-PDGFRβ
neutralizing antibodies induced pericyte apoptosis. Pericyte loss led to a decrease in
microglial density in the cerebral wall. An in vitro cell culture experiment of microglia
and pericytes, which were isolated as NG2+PDGFRα− cells, demonstrated that the density
of microglia was increased in microglia cultured together with pericytes as compared to
microglia cultured alone, suggesting that pericytes promote microglial proliferation.

Moreover, pericytes support microglial homeostasis and facilitate microglial function
by promoting the differentiation of neural stem cells into intermediate progenitors. In the
pericyte-depleted cerebral wall, the numbers of Sox2+ neural stem cells and Tbr2+ inter-
mediate progenitors were increased and decreased, respectively, suggesting that pericytes
indirectly support microglia to efficiently promote the differentiation of neural progenitors.

5. Conclusions

This review summarized current research on pericyte function, such as their contri-
butions to vascular formation, BBB integrity, neuroinflammation, and CBF. In the latter
part, recent studies on the interplay between pericytes and microglia were described. Per-
icytes play profound roles not only in blood vessel conformation and BBB integrity but
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also in proper microglial function and homeostasis in the brain. Since pericytes do not
have specific markers that are unique to them, it is difficult to identify and distinguish
pericytes from surrounding cells, such as ECs, SMCs, and OPCs. This problem makes
it difficult to investigate the characteristics and functions of pericytes. However, recent
advancements in techniques and the establishment of transgenic mice have enabled us to
more strictly distinguish pericytes from other cells, such as through characterizations using
double-specific markers. These newly emerging techniques may become strong tools for
pericyte studies. Although there is a controversial issue regarding pericytes’ functions, es-
pecially their contribution to CBF or their contractile capacity, in vivo live imaging and/or
cell isolation to analyze gene and protein expression using these tools may allow us to
investigate whether pericytes indeed have these functions. In addition, recent studies using
single-cell RNA sequencing have shown that pericytes have heterogeneity. Lineage tracing
experiments demonstrated that pericytes have different origins, such as the mesoderm and
neural crest cells. Thus, more detailed analyses of the relationship between pericyte origin
and heterogenic function may support a better understanding of pericytes’ characteristics
and their specific interactions with other cells. The identification of pericyte dysfunction in
pathological and dysfunctional states will offer new perspectives on cell subtype-specific
therapeutic approaches.
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