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P H Y S I C S

Entangling free electrons and optical excitations
Andrea Konečná1,2, Fadil Iyikanat1, F. Javier García de Abajo1,3*

The inelastic interaction between flying particles and optical nanocavities gives rise to entangled states in which 
some excitations of the latter are paired with momentum changes in the former. Specifically, free-electron entan-
glement with nanocavity modes opens appealing opportunities associated with the strong interaction capabili-
ties of the electrons. However, the achievable degree of entanglement is currently limited by the lack of control 
over the resulting state mixtures. Here, we propose a scheme to generate pure entanglement between designated 
optical-cavity excitations and separable free-electron states. We shape the electron wave function profile to select 
the accessible cavity modes and simultaneously associate them with targeted electron scattering directions. This 
concept is exemplified through theoretical calculations of free-electron entanglement with degenerate and non-
degenerate plasmon modes in silver nanoparticles and atomic vibrations in an inorganic molecule. The generated 
entanglement can be further propagated through its electron component to extend quantum interactions be-
yond existing protocols.

INTRODUCTION
Although entangled states in the context of quantum optics are gen-
erally relying on photons (1, 2), the exploration of entanglement with 
other types of information carriers could open a wealth of possibilities 
to find previously unexplored phenomena and materialize disruptive 
protocols for quantum metrology and microscopy (3–5). In particular, 
free electrons are advantageous candidates because they can undergo 
substantial inelastic scattering by nanostructures (6), which is an attribute 
enabling electron energy-loss spectroscopy (EELS) performed in 
electron microscopes to reveal the presence, strength, and spatial 
distribution of optical excitations down to the atomic scale (7–13). 
Actually, low-loss EELS has been extensively used to study atomic 
vibrations in low-dimensional materials (14, 15) and molecules (16–19), 
collective excitations such as plasmons (20–24) and phonon polari-
tons (11, 25–27), and photon confinement in optical cavities (28–30).

In momentum-resolved EELS, each excitation event produced by a 
traversing electron is individually identified through an electron 
measurement as a function of the deflection angle and energy loss 
(31–33), and therefore, this configuration already generates entan-
glement between electron states with different energy/momentum 
and excitations in the sampled structure. Consequently, the post-
interaction electron-sample state has the form

	​ ∣​​ f​​ 〉  = ​ ∑ 
n
​ ​​∫ ​d​​ 2​ ​Q​  f​​ ​ ​​Q​ f​​,n​ f  ​∣​Q​ f​​ 〉 ⊗∣n〉​	 (1)

where n and Qf run over final sample and electron-wave-vector 
states, respectively, and ​​ ​​Q​ f​​,n​ f  ​​ are complex scattering amplitudes (13). 
In some simple scenarios, such as the interaction with translationally 
invariant structures supporting surface polaritons, the excitation 
of these modes is associated with the transfer of definite amounts of 
energy and momentum, thus producing electron entanglement with 
a continuum of optical modes, which reveals their dispersion rela-
tion when measuring the electrons as a function of energy loss and 
deflection angle (31, 33–36). Entangled states produced by interaction 

with a polaritonic band in a translationally invariant specimen can 
even include the creation of multiple surfaces modes (32, 37, 38), as 
reported in the first experimental evidence of surface plasmons (37). 
However, for localized modes and, generally, in the interaction with 
photonic cavities, the resulting electron-specimen mixture of states 
is too complex to be of practical interest for quantum technologies.

Free-electron waves can be manipulated with great precision 
thanks to an impressive series of advances that occurred in electron 
microscopy over the past decades. Now, electron beams (e-beams) 
can be collimated and focused with sub-ångstrom spatial precision 
(39), as well as monochromatized and energy-filtered within a few 
millielectronvolt energy resolution (11, 25). In addition to tradi-
tional electron-optics elements such as lenses (40) and beam split-
ters (41–43), electron waves can be laterally shaped into on-demand 
profiles through static (44, 45) and programmable (46) plates, as 
well as through interaction with spatially modulated optical fields 
(47–51). The manipulation of the longitudinal electron wave func-
tion component is also possible in ultrafast electron microscopes (52), 
which enable temporal electron-pulse compression down to atto-
second (53–55) time scales, and further endows free electrons with 
the ability to transfer quantum coherence among different systems 
(56, 57). The field is thus ripe for the exploitation of free electrons 
as additional elements in the quantum technology Lego, but as im-
pressive as these advances may seem, they have not yet been lever-
aged to generate pure entanglement between light and free electrons 
in which only a few quantum states are involved in Eq. 1.

Here, we demonstrate through rigorous quantum theory that 
pure entanglement between electrons and confined optical modes 
can be generated by suitably patterning the transverse incident elec-
tron wave function. As schematically illustrated in Fig. 1A, the elec-
tron undergoes a change in the direction of propagation after being 
inelastically scattered by a specimen, and we prepare the incident 
electron wave profile (amplitude and phase) in such a way that only 
a few sample excitations are accessible (two in the figure), leading to 
separable transmission directions (transverse wave vectors Q1 and 
Q2). The two possible excitations created by the electron together 
with their different associated scattering directions form an entan-
gled state. In essence, we specify a finite volume in the configuration 
space of transmitted electrons defined by an energy-loss window ħ 
and a transverse momentum area ħQf in which the final state only 
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populates two well-defined spots (Fig. 1B). As we demonstrate be-
low, this approach can also be used to create heralded single sample 
excitations (Fig. 1C). In addition, manipulation of the electron com-
ponent in electron–sample entangled states through, for example, 
electron interference could be used to process quantum informa-
tion and imprint it on other (eventually macroscopic) objects via 
subsequent interactions.

RESULTS
Free-electron interaction with confined optical modes
We intend to synthesize an electron–sample state, as described by 
Eq. 1, with the free-electron component piled up at separate regions 
in momentum–energy space (Fig. 1B) and a different sample exci-
tation associated with each of those regions. The starting point is 
the initial combined state

	​ ∣​​ i​​ 〉 = ∣​​i​ 
el​ 〉  ⊗ ∣0〉​	

where the specimen is in its ground state ∣0〉 and the incident elec-
tron wave function, whose spatial dependence is given by

	​​ ​i​ 
el​(R ) = ∫ ​d​​ 2​ ​Q​ i​​ ​​​Q​ i​​​ 

i  ​(​e​​ i​Q​ i​​·R​ / 2)​	 (2)

is prepared as a combination of momentum states with coefficients 
​​​​Q​ i​​​ 

i  ​​ determined through the use of customized transmission masks 
(44, 45, 58) or phase imprinting based on electrostatic (46) and 
optical (47, 49) fields. We consider incident monochromatic electrons, 

such that the dependence of the electron wave function on two-
dimensional (2D) transverse coordinates R and its decomposition 
in 2D wave vectors Qi is everything we need to describe the electron 
in the interaction region without loss of generality.

The electron–specimen interaction operates a linear transforma-
tion relating the final coefficients ​​ ​​Q​ f​​,n​ f  ​​ in Eq. 1 to ​​​​Q​ i​​​ 

i  ​​ in Eq. 2. More 
precisely,

	​​ ​​Q​ f​​,n​ f  ​  =  ∫ ​d​​ 2​ ​Q​ i​​ ​M​ ​Q​ f​​ −​Q​ i​​,n​​ ​​​Q​ i​​​ 
i  ​​	 (3)

where MQf −Qi,n only depends on the momentum transfer ħ(Qi − Qf) 
for each excited state n (see Methods).

A connection can be readily established to EELS experiments, in 
which electron counts are recorded as a function of the energy loss 
ħ, thus yielding a frequency- and momentum-resolved loss prob-
ability ​​​ EELS​​(​Q​ f​​,  ) = ​∑ n​ ​​ ​∣​ ​​Q​ f​​,n​ f  ​∣​​ 2​ ( − ​​ n​​)​, where ħn is the exci-
tation energy of the sample mode n. Within first-order perturbation 
theory and further adopting the electrostatic and nonrecoil approx-
imations, the angle-resolved EELS probability can be expressed in 
terms of mode-dependent dimensionless spectral functions gn() as

​​                 ​ EELS​​(​Q​ f​​,  ) = ​  ​e​​ 2​ ─ 
4 ​​​ 3​ ħ ​v​​ 2​

 ​ ​∑ 
n
​ ​​ ​g​ n​​( )  

 
                                       × ​∣∫ ​d​​ 2​ R ​​i​ 

el​(R ) ​e​​ −i​Q​ f ​​·R​ ​w​ n​​(R,  ) ∣​​ 
2
​​	 (4)

where v is the electron velocity and

	​​ w​ n​​(R,  ) ∝ ∫ ​d​​ 2​ Q ​e​​ iQ·R​ ​M​ Q,n​​​	 (5)

describes the spatial profile of mode n [see details in Methods, in-
cluding expressions for the quantities gn() and wn(R, ) associated 
with plasmons and atomic vibrations].

Here, we are interested in determining the incident electron wave 
function profile (i.e., the momentum-dependent coefficients ​​​​Q​ i​​​ 

i  ​​) 
such that different sample modes n are associated with final wave 
function coefficients ​​​​Q​ f,n​​​ f  ​​ within well-separated regions in momen-
tum space (see Fig. 1B). To demonstrate the feasibility of this con-
cept in the synthesis of electron–sample entanglement, we invert Eq. 3 
with a predetermined choice of ​​​​Q​ f​​,n​ f  ​​, which we set to designated 
values for each sample excitation n within a targeted finite-size re-
gion in Qf space (see details in Methods). This simple procedure is 
sufficient for the proof-of-principle demonstration that we pursue in 
this work. However, in one of the examples, we present further im-
provement of the results when using an iterative method. Other 
schemes for incident electron wave function optimization could rely 
on neural-network training (59).

Selected excitation of individual plamons
As a preliminary step before addressing electron–sample entangle-
ment, we tackle the problem of selectively exciting a single plasmon 
in a metallic nanoparticle. Although this can be achieved through 
post-selection of a small range of scattered electron wave vectors (42), 
we formulate a solution in which the plasmon-exciting electrons emerge 
within a relatively large region in momentum space, and this solu-
tion is generalized below to create entanglement. We consider a silver 
triangle that sustains five plasmon modes in the spectral region between 
2.4 and 3.7-eV spectral region (60): two sets of doubly degenerate dipolar 
(blue curve and circles, n = 1,2) and quadrupolar (red, n = 4,5) plasmons 

Fig. 1. Proposed scheme for the generation of entangled electron–cavity states. 
(A) A preshaped electron interacts with a nanostructure (a triangular plasmonic 
cavity) supporting well-defined optical or vibrational modes. The incident electron 
wave function ​∣​​i​ 

el​ 〉​ is tailored such that we obtain entangled states after interac-
tion, correlating different specimen excitations (colored triangles) with separated 
electron scattering directions (final electron state having components of trans-
verse wave vectors Q1 and Q2). A maximally entangled electron-specimen state is 
thus produced as the sample is in a superposition of excited states correlated with 
different electron scattering directions. (B) Electrons are emerging along separate 
spots within a finite region of size ħ × ħQf in the configuration space of ener-
gy-loss and transverse-momentum transfers. (C) Momentum filtering at the elec-
tron detector allows us to project on the desired sample mode and eventually 
explore its dynamics through subsequent interrogation, for example, by exposure 
to a synchronized light pulse.
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and one nondegenerate hexapolar mode (green, n = 3), as revealed 
by the spatial and spectral functions plotted in Fig. 2 (A and B) (see 
details of the calculation in Methods). We then optimize the inci-
dent electron wave function over a finite Qi region discretized with 
1257 pixels and defined by a convergence half-angle φi = 1.5 mrad, 
such that either n = 1,2 or n = 3 is the only mode excited when the 
scattered electrons are collected over a Qf region spanning a half-
angle φf = 0.75 mrad (discretized with 49 pixels) and energy-filtered 
between 2.4 and 3.3 eV. Incidentally, modes n = 1 and 2 are dipolar, 
so they can be effectively excited in the aloof configuration, while 
mode n = 3 is hexapolar and requires the electron to pass closer to 
the particle to be excited.

The resulting real-space profiles of ​​​i​ 
el​(R)​ are shown in the insets 

of Fig. 2C (circular color plots; see also fig. S6A for the incident 
electron wave functions in Qi space), along with the color-matched 
EELS probability curves obtained from Eq. 4 by collecting only elec-
trons that emerge within the indicated Qf and energy region. In a 
typical experimental scenario with an unshaped electron beam, multiple 

modes are excited by the incident electron because they have over-
lapping spatial distributions (Fig. 2A), and the EELS probability in-
tegrated over all possible Q f ′s is rigorously given by the incoherent 
average over incident electron positions R, weighted by the electron 
probability ​​∣​​i​ 

el​(R ) ∣​​ 2​​ (see Methods) (6, 61). However, our simple 
optimization procedure is capable of placing the weight of the exci-
tation of either n = 1,2 or n = 3 mode preferably inside the Qf  region 
defined by a collection half-angle φf = 0.75 mrad. Such an optimiza-
tion can be performed for smaller or larger convergence and collec-
tion angles as shown in fig. S1.

Generation of electron–plasmon entangled states
We now apply the principle of ​​​i​ 

el​​ shaping to demonstrate the gener-
ation of electron–sample entanglement for the same triangular par-
ticle as considered above. Specifically, we focus on the lowest-energy 
degenerate plasmons n = 1,2 (i.e., we consider post-selection of these 
final states by an energy filter) and aim at correlating these excitations 
with final electron momentum states along separate Qf directions 
(Fig. 3A). By maximizing the fraction of the signal associated with 
the targeted excitation in each respective Qf direction through the 
steepest-descent method, we find the optimized electron wave func-
tion shown in real space in Fig. 3B (and in momentum space in fig. 
S6B), from which we obtain the actual scattered electron distribu-
tion plotted in Fig. 3C in Qf space for components corresponding to 
the excitation of n = 1 (top) and n = 2 (bottom) modes.

When examining the resulting degree of entanglement, we ex-
press the final electron–sample state after energy filtering and mo-
mentum post-selection by two apertures defined by the orange 
circles in Fig. 3C as

​                        ∣​​ f​​ 〉  =  (​p​ 11​​∣​Q​ 1​​ 〉 + ​p​ 12​​∣​Q​ 2​​ 〉 ) ⊗ ∣1〉  
                                   + (​p​ 22​​∣​Q​ 2​​ 〉 + ​p​ 21​​∣​Q​ 1​​ 〉 ) ⊗ ∣2〉​	 (6)

where we assume that the apertures are small enough so that each of 
them captures coherently scattered electrons characterized by a well-
defined state ∣Qf〉 with f = 1,2 (in practice, each of them can be a 
coherent superposition of plane waves transmitted through the fi-
nite solid angle region spanned by each aperture). To achieve pure 
entanglement, we require pnm → 0 for n ≠ m terms in Eq. 6, which 
happens after the noted numerical optimization: We obtain values ​​
p​11​ 2 ​  / (​p​11​ 2 ​  + ​p​21​ 2 ​  ) = 0.999991​ and ​​p​22​ 2 ​  / (​p​22​ 2 ​  + ​p​12​ 2 ​  ) = 0.999779​, confirm-
ing a high degree of entanglement (62). Incidentally, a more direct 
inversion procedure without optimization still yields a level of en-
tanglement exceeding 90% (fig. S2).

We note that the symmetry of the selected degenerate plasmons 
plays a similar role as photon polarization in light-based entangle-
ment schemes (1). In the present instance, the electron wave function 
profiles are strongly affected by the threefold symmetry of the plas-
monic nanoparticles and the choice of correlated electron output 
angles. Optimized profiles for more symmetric nanoparticles also 
become more symmetric, as shown for silver disks in fig. S3, where 
a high degree of entanglement (>99% mode separation) is achieved 
by direct inversion.

Electron entanglement with atomic vibrational states
The electron–sample entanglement scheme under consideration can 
be applied to sample excitations of different nature. We illustrate 
this versatility by considering atomic vibrations in a hexagonal boron 

Fig. 2. Selective excitation of plasmon modes in a silver nanotriangle. (A and B) 
Spatial profiles (A) and spectral functions (B) associated with plasmons in a silver 
nanotriangle with a thickness of 2 nm and a side length of 10 nm. We find two sets 
of degenerate modes (blue and red peaks) and one nondegenerate mode (green; see 
color labels matched with the index n). (C) Electron energy-loss spectra for two opti-
mized incident electron wave function profiles ​​​i​ 

el​(R)​. The insets show maps of the 
probability density and phase of the incident wave functions in the space of trans-
verse coordinates R, framed in color-matched circumferences. The optimization is 
carried out for 100 keV electrons, an electron detector consisting of 49 pixels, an 
incident convergence half-angle φi = 1.5 mrad, and a collection half-angle φf = 
0.75 mrad. The nanotriangle contour is indicated by thin dashed lines in (A) and (C).



Konečná et al., Sci. Adv. 8, eabo7853 (2022)     25 November 2022

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 8

nitride (hBN) molecule (Fig. 4), which we simulate from first prin-
ciples (see Methods) (63) assuming passivation of the edges with 
hydrogen atoms. This structure supports a number of vibrational 
excitations up to energies ∼450 meV, including a set of triply de-
generate N─H bond-stretching modes at 440 meV (see EELS spec-
trum in fig. S4), on which we focus our analysis. We again optimize 
the incident electron wave function to achieve entanglement be-
tween final electron states and vibrational modes of the molecule [see 
the resulting ​​​i​ 

el​(R)​ and ​​​i​ 
el​(​Q​ i​​)​ profiles in figs. S5 and S6C]. Because 

of the strong spatial confinement of vibrational modes, the angular 
ranges that need to be used for the incident and scattered electron 
wave functions are now considerably larger than for plasmons 
(cf. angle scales in Figs. 3 and 4). The achieved electron–sample 
state, illustrated in Fig. 4B, exhibits a decent degree of entanglement 
when selecting electrons scattered along the colored circles in Qf 
space, also revealed through the partial probabilities contributed by 
each of the three vibrational modes to each of the regions enclosed 
by those circles (see table in Fig. 4C).

DISCUSSION
By entangling the transverse momenta of free electrons with local-
ized optical excitations in a nanostructure, we could selectively mea-
sure one of the corresponding outgoing electron directions, thus 
providing a way to herald the creation of single designated excitations 
in the studied specimen. This should allow us to follow the dynamics 
of the latter and gain insight into the state-dependent decay path-
ways, for example, by subsequently probing the evolution of the 
specimen through scattering of laser pulses that are synchronized 
with the electron in an electron-pump/photon-probe approach. 
An additional possibility is offered by correlating the angle-resolved 
electron signal with traces originating in the decay of excited states of the 
specimen (e.g., an electrical signal produced by coupling to electron- 
hole pairs in a proximal semiconductor or also the polarization- 
and angle-resolved cathodoluminescence emission associated with 
radiative decay). The present scheme could further be extended to 
incorporate gain processes similar to those in photon-induced near- 

field electron microscopy (PINEM) (54) upon illumination of the sam-
ple with symmetry-matched optical pulses that can simultaneously 
excite a subset of its supported excitations.

We remark that the proposed approach holds elements of novel-
ty with respect to traditional quantum optics methods because one 
of the entangled particles (the free electron) can be highly energetic 
and, therefore, capable of undergoing subsequent strong collisions 
with other objects. These collisions could, for instance, trigger chem-
ical reactions that would then be entangled with optical modes in the 
specimen with which the electron has previously interacted.

Although we have illustrated some possibilities based on heuristic 
electron wave function designs and a straightforward application of 
the steepest-descent maximization method, improved solutions to 
the problem of entanglement optimization could be obtained through 
neural-network training (59), possibly combined with iterative phys-
ical improvement of the wave function profile based on currently 
explored tunable electron phase plates (46–51). As an alternative to 
the use of aloof interaction with the optical modes of the sampled 
nanostructure to avoid strong electron collisions with atomic po-
tentials, this type of adaptive improvement could potentially be used 
to compensate for the effect of these potentials and morphological 
imperfections. In addition to the investigated examples of plasmons 
in nanoparticles and atomic vibrations in molecules, we envision 
the entanglement of free electrons with optical modes in dielectric 
cavities (30) and photons guided along optical waveguides (64), 
which together configure a vast range of possibilities for leveraging 
the quantum nature of free electrons in the design of improved mi-
croscopy and metrology schemes.

METHODS
Transfer matrix for inelastic electron–sample scattering
The time-dependent electron–sample system can be generally described 
by a wave function of the form ​∣(t )〉  = ​ ∑ 

n
​ ​​∫ ​d​​ 3​q ​​ q,n​​(t) ​e​​ −i(​ϵ​ q​​+​​ n​​)t​

∣q〉 ⊗ ∣n〉​, where ∣q〉 and ∣n〉 are electron and sample eigenstates 
of the noninteracting Hamiltonian with energies ħq and ħn, 
respectively. In particular, electron states are labeled by the 3D 

Fig. 3. Creation of electron–sample states with a high degree of entanglement. (A) Pursued electron–sample entangled state, consisting of the superposition of se-
lected (by means of two apertures) electron momentum states within the white pixels in Qf space (left) and correlated degenerate dipolar plasmons in the silver nanotri-
angle sample considered in Fig. 2 (right). (B) Spatial profile of the optimized incident wave function ​​​i​ 

el​(R)​ required to produce the final state in (A). The contour of the 
triangular nanoparticle is indicated with dashed lines. (C) Resulting probability distributions ∣〈Qf, n∣f〉∣2 with n = 1 (top) and n = 2 (bottom) in Qf space, where each 
aperture (small circles) transmits nearly 100% of the targeted excitation n. The area outside the apertures (intended to be masked) is colored to emphasize the selected 
momentum regions of interest. The optimization is carried out for 100 keV electrons, 81 pixels in each of the detector apertures, φi = 4 mrad, and φf = 2 mrad.
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momentum ħq and satisfy the orthonormality relation 〈q∣q′〉 = 
(q − q′). The expansion coefficients q,n(t) are determined by solv-
ing the Schrödinger equation with an electron–sample interaction 
Hamiltonian  ​​  ​ℋ​ 1​​​​, which is generally weak for the energetic electrons 
that are typically used in electron microscopes, so we can work 
within first-order perturbation theory. Then, taking the sample to 
be initially prepared in its ground state n = 0, the post-interaction 
wave function has coefficients ​​​ q,n​​(∞) = (− 2i / ħ) ∫ ​d​​ 3​​q ′ ​  (​ϵ​ q​​ − ​ϵ​ ​q ′ ​​​ + ​
​ n​​ ) 〈n∣〈q∣ ​̂  ​ℋ​ 1​​​∣​q ′ ​〉∣0〉 ​​ ​q ′ ​,0​​(− ∞)​, where we set 0 = 0 without loss of 
generality. We further adopt the nonrecoil approximation (13) 
ϵq − ϵq′ ≈ (q − q′) · v under the assumption that the transverse electron 
energy is negligible compared with the longitudinal energy along the 
e-beam direction defined by the average electron velocity v. This 
condition is commonly satisfied in electron microscopes. In this ap-
proximation, the energy ħn transferred from the electron to the 
sample is fully absorbed by a change in the longitudinal electron wave 
vector given by −n/v, so for monochromatic incident electrons, the 
initial and final longitudinal components of the electron wave func-
tion play a trivial role and can be disregarded in the description of 
the present problem. Consequently, we can expand the final wave 
function as shown in Eq. 1, with coefficients ​​ ​​Q​ f​​,n​ f  ​  ≡ ​ ​ q,n​​(∞)​ that 
only depend on the transverse electron wave vector Qf  for each sam-
ple excitation n and are determined from the incident electron wave 
function coefficients ​​​​Q​ i​​​ 

i  ​  ≡ ​ ​ q,0​​(− ∞)​ through the linear relation ​​
 ​​Q​ f​​,n​ f  ​  =  ∫ ​d​​ 2​ ​Q​ i​​ ​M​ ​Q​ f ​​−​Q​ i​​,n​​ ​​​Q​ i​​​ 

i  ​​ (Eq. 3) with

	​​ M​ ​Q​ f ​​−​Q​ i​​,n​​  = ​  − 2i ─ ħv  ​ 〈n∣〈 ​q​ f​​∣​̂  ​ℋ​ 1​​​∣​q​ i​​ 〉∣0〉​	 (7)

We remark that the transfer matrix elements defined in Eq. 7 
involve just the difference between incident and scattered transverse 
wave vectors. In what follows, we develop a formalism to relate MQf −Qi,n 

to the EELS probability and obtain specific expressions for plasmonic 
and atomic-vibration modes.

EELS with shaped electron beams
We consider the configuration of Fig. 1A and assume the electron 
velocity and sample dimensions to be small enough as to neglect re-
tardation effects and work in the electrostatic regime. Further adopt-
ing the aforementioned nonrecoil approximation, we can disregard 
the longitudinal component of the electron wave function and only 
consider the dependence on transverse coordinates R = (x, y) (i.e., 
taking the electron velocity v along z). We can then write a general 
expression for the EELS probability EELS() in terms of the energy loss 
ħ, the transverse wave vector ​​Q​ f​​  ⊥ ​    z ​​ of the final ( f ) electron state 
(corresponding to a wave function ∝ eiQf · R), and the transverse com-
ponent of the initial (i) electron wave function, i(R). More precisely, 
using equation 17 of (6), we have EELS() = ∫ d2Qf EELS(Qf, ), where

​​                    ​ EELS​​(​Q​ f​​,  ) =  ​  ​e​​ 2​ ─ 
4 ​​​ 3​ ħ ​v​​ 2​

 ​ ∫ ​d​​ 2​ R∫ ​d​​ 2​​R ′ ​ ​​ i​​(R ) ​​i​ *​(​R ′ ​ )  
 
                                            × ​e​​ i​Q​ f​​  · (​R ′ ​−R)​ W(R, ​R ′ ​, )​	 (8)

is the momentum-resolved probability and

	​ W(R, ​R ′ ​,  ) = ​∫−∞​ 
∞

 ​​ dz​∫−∞​ 
∞

 ​​ d​z ′ ​ ​e​​ i(z−​z ′ ​)/v​ × Im { − W(r, ​r ′ ​,  ) }​	 (9)

is a transverse screened interaction obtained from the full screened 
interaction W(r, r′, ). The latter stands for the Coulomb potential 
created at r by a point charge of magnitude e−it placed at r′, includ-
ing the effect of screening by the environment. Now, as we show 
below for plasmonic and phononic structures, the transverse screened 
interaction in Eq. 9 is separable as

	​ W(R, ​R ′ ​,  ) = ​∑ 
n
​ ​​ ​g​ n​​( ) ​w​ n​​(R,  ) ​w​n​ * ​(​R ′ ​, )​	 (10)

Fig. 4. Entanglement of free electrons and atomic vibrations. (A) Pursued electron–sample entangled state, consisting of the superposition of selected (by means of 
three apertures) electron-momentum states within the white pixels in Qf space (left) and correlated triply degenerate 440-meV vibrational modes of an hBN molecule 
(right). (B) Resulting probability distributions ∣〈Qf, n∣f〉∣2 with n = 1 (top), n = 2 (middle), and n = 3 (bottom) in Qf space. The area outside the apertures (small circles) is 
colored to emphasize the selected momentum regions of interest. (C) Probability matrix showing the fractional contribution associated with the excitation of each of the 
three vibrational modes n = 1 to 3 to the energy-filtered electron signal contained within the three selected circular areas around final transverse wave vectors Q1, Q2, and 
Q3 in (A). The sum of the nine matrix elements is normalized to one. We consider 60 keV electrons, 29 detector pixels, and φi = φf = 100 mrad.
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where n runs over excitation modes characterized by spatial profiles 
wn(R, ) and dimensionless spectral functions gn(). Finally, insert-
ing Eq. 10 into Eq. 8, we readily find Eq. 4 in the main text. 
Incidentally, the angle-integrated inelastic electron signal (i.e., the 
integral of Eq. 8 over Qf) reduces to EELS() = (e2/ħv2)∑ngn() 
∫ d2R ∣i(R)∣2∣wn(R, )∣2, which is an average over transverse po-
sitions R weighted by both the incident electron probability (6, 61) 
and the mode spatial profile, and consequently, because the e-beam 
can generally excite different modes n, the optimization scheme 
that we pursue here to produce entanglement essentially consists in 
rearranging the Qf distribution of the scattered electron compo-
nents associated with the excitation of each of those modes.

We note that the spectral functions in this formalism can be gen-
erally approximated by Lorentzians

	​​​ g​ n​​( ) ≈ Im​{​​ ​  ​G​ n​​ /  ─  ​​ n​​ −  − i ​​ n​​ / 2 ​​}​​​​	

peaked at the mode energies ħn and having areas Gn and widths n 
(see below) that determine the spectral positions and strengths of 
the EELS features.

Numerical determination of ​∣​​i​ 
el​ 〉​ for creating selected 

excitations and entangled electron–sample states
Given a desired final state defined through the coefficients ​​ ​​Q​ f​​,n​ f  ​​, we 
numerically obtain ​​​​Q​ i​​​ 

i  ​​ by inverting Eq. 3 upon discretization of Qi 
using a finite number of points and pixels at the electron analyzer in 
the Fourier plane Qf, as noted in the main text. More precisely, we follow 
a simple procedure consisting in specifying target values of ​​ ​​Q​ f​​,n​ f  ​​ with-
in a region Q < Qf,max (effectively setting it to zero outside it) and 
obtain ​​​​Q​ i​​​ 

i  ​​ for Qi < Qi, max through the aforementioned numerical 
inversion method. The wave vector ranges are related to the maximum 
incidence|collection half-angle φi∣f through Qi∣f, max = (mev/ħ) 
sin φi∣f. In this scheme, to select a single sample excitation n = n0 
(Fig. 2), we set ​​ ​​Q​ f​​,n​ f  ​  =  C ​​ n​n​ 0​​​​ (​Q​ f,max​​ − ​Q​ f​​)​, where C is a constant 
and  is the step function. However, to produce electron–sample 
entanglement involving two (Fig. 3) or three (Fig. 4) sample states nj 
correlated with final electron wave vectors Qj (see Fig. 1B), we set ​​ ​​Q​ f​​,​n​ j​​​ 

f  ​​ to 
a constant at the Qf space pixel that contains Qj and zero elsewhere. 
We then construct ​∣​​i​ 

el​ 〉​ from the obtained coefficients ​​​​Q​ i​​​ 
i  ​​ (also 

setting them to zero for Qi > Qi, max) and insert this input wave function 
in Eq. 4 to generate the actual final probability distributions, plotted 
in the figures with a finer discretization in Qf space.

Transfer matrix from the spectral and spatial mode functions
An expression for the EELS probability analogous to Eq. 4 can be 
readily obtained from Eq. 3 as

	​​ ​ EELS​​(​Q​ f​​,  ) = ​∑ 
n
​ ​​ ​∣∫ ​d​​ 2​ ​Q​ i​​ ​M​ ​Q​ f​​ −​Q​ i​​,n​​ ​​​Q​ i​​​ 

i  ​∣​​ 
2
​ ( − ​​ n​​)​	 (11)

The connection between Eqs. 4 and 11 is established by adding 
finite mode widths n to the latter and expanding the incident elec-
tron wave function in the former as an integral over momentum 
components, as indicated in Eq. 2. Comparing the two resulting 
expressions, we find

	​​ M​ Q,n​​  = ​   e ─ 
4 ​​​ 2​ v

 ​ ​√ 
_

 ​ ​G​ n​​ ─ 
ħ ​ ​ ∫ ​d​​ 2​ R ​e ​​  –iQ·R​ ​w​ n​​(R, )​	 (12)

which provides a prescription to obtain the transfer matrix coeffi-
cients defined in Eq. 7 directly from the screened interaction, thus 
bypassing the need for a detailed specification of the interaction 
Hamiltonian. Then, the spatial profiles in Eq. 5 are simply given by 
the inverse Fourier transform of Eq. 12.

Transfer matrix and transverse screened interaction 
for plasmonic nanoparticles
In the electrostatic limit under consideration, we can recast the re-
sponse of an arbitrarily shaped homogeneous nanoparticle into an 
eigenvalue problem (65, 66). We then need to find the real eigenval-
ues n and eigenvectors n(s) of the integral equation 2nn(s) = 
∮ ds′F(s, s′)n(s′), where s and s′ run over particle surface coordinates, 
F(s, s′) = − ​​  n​​ · (s − s′)/∣s − s′∣3, and ​​  n​​ is the outer surface normal. Here, 
we solve this eigensystem for triangular particles using the MNPBEM 
toolbox (67) based on a finite boundary element discretization of the 
particle surface. Then, the spectral functions in Eq. 10 reduce to (65, 66)

	​​​ g​ n​​( ) = Im​{​​ ​  − 2 ───────────  
ϵ(1 + ​​ n​​ ) + (1 − ​​ n​​)

 ​​}​​​​	

whereas the spatial profiles become

	​​​ w​ n​​(R,  ) = 2∮ ds ​​ n​​(s ) ​e​​ −i​s​ z​​/v​ ​K​ 0​​​(​​ ​ ∣R − S∣ ─ v  ​​)​​​​	

with ​s  =  S + ​s​ z​​​   z​​. This expression neglects the contribution of bulk 
modes, which should be a reasonable approximation at loss ener-
gies well below the bulk plasmon. Inserting it into Eq. 12, the trans-
fer matrix elements reduce to

	​​ M​ Q,n​​  ≈ ​   e ─ πv  ​ ​√ 
_

 ​ ​G​ n​​ ─ πħ ​ ​ ​  ​1​​  ​ ─ 
​Q​​ 2​ + ​ω​n​ 2 ​ / ​v​​ 2​

 ​ ∮ ds ​σ​ n​​(s ) ​e​​ −i(Q+​   z​​ω​ n​​/v)⋅s​​	

where we have approximated  ≈ n. For silver, we model the di-
electric function as (6) ​ϵ  = ​ ϵ​ b​​ − ​​p​ 2 ​ / ( + i)​ with ϵb = 4.0, ħp = 
9.17 eV, and ħ = 21 meV, yielding mode frequencies ​​​ n​​  = ​ ​ p​​ / ​
√ 

_________________
  ​ϵ​ b​​ + (1 − ​​ n​​ ) / (1 + ​​ n​​) ​​, flat widths n ≈ , and spectral weights 

​​G​ n​​  =  ​​n​ 3 ​ / [​​p​ 2 ​(1 + ​​ n​​ ) ]​.

Transfer matrix and transverse screened interaction 
for atomic vibrations
For molecules or nanoparticles whose mid-infrared response is dom-
inated by atomic vibrations, we find the spectral and spatial depen-
dence of the modes in Eq. 10 to be governed by (63, 68).

	​​​ g​ n​​( ) = Im​{​​ ​  ​​n​ 2 ​ ─  
​​n​ 2 ​ − ( + i)

 ​​}​​​​	 (13)

and

	​​ w​ n​​(R,  ) = ​ 2 ─ ​​ n​​ ​ ​∑ 
l
​ ​​ ​   1 ─ 

​√ 
_

 ​M​ l​​ ​
 ​ ∫ ​d​​ 3​​r ′ ​ ​K​ 0​​(∣R − ​R ′ ​∣/ v ) ​e​​ i​z ′ ​/v​ [ ​e​ nl​​ · ​​ → ​​ l​​(​r ′ ​ ) ]​	

where n now runs over vibrational modes, n and enl are the corre-
sponding real frequencies and normalized atomic displacement 
vectors (∑l enl · en′l = nn′), respectively, the l sum extends over the atoms 
in the structure, Ml is the mass of atom l, ​​​ → ​​ l​​(r)​ denotes the gradient 
of the charge distribution associated with displacements of that 
atom, and we have incorporated a phenomenological damping rate 
 (here set to ħ = 1 meV). From Eq. 13, we have n ≈  for all 
modes and Gn ≈ n/2. Following (63), we use density functional 
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theory (DFT) to calculate ​​​ → ​​ l​​(r)​, n, and enl (see below). The prescrip-
tion ​∣R − ​R ′ ​∣→ ​ √ 

_______________
  ​∣R − ​R ′ ​∣​​ 2​ + ​​​ 2​ ​​ is also adopted with ​  =  0.2 ​A ̊ ​​ 

to approximately account for a cutoff ∼ħ/ in momentum transfer 
(6) and so avoid the unphysical divergence associated with close 
electron-atom encounters.

First-principles description of atomic vibrations
We use DFT and the projector augmented wave method (69) as im-
plemented in the Vienna Ab initio Simulation Package (70–72) with 
the Perdew-Burke-Ernzerhof–generalized gradient approximation 
for electron exchange and correlation (73). This method is applied to 
describe hBN flakes with hydrogen-passivated edges using a plane 
wave cutoff energy of 500 eV and a sufficient amount of vacuum 
spacing in all directions around the structure to avoid interaction 
among the periodic images. Atomic equilibrium positions are found 
by minimizing the total energy using the conjugate gradient meth-
od with convergence criteria between consecutive iteration steps set 
to 10−5 eV for the total energy and 0.02 eV/Å for the atomic forces. 
Vibrational frequencies and eigenmodes are found by diagonalizing 
the dynamical matrix, which is calculated for 0.01-Å displacements. 
The corresponding gradients ​​​ → ​​l​ 

 ​ (r)​ of the charge distribution are ob-
tained by treating core electrons and nuclei as point particles, while 
the contribution coming from valence electrons is directly taken 
from DFT using a dense grid.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abo7853
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