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A B S T R A C T

The pathogen diversity means that multiple strains coexist, and widely exist in the biology systems. The
new mutation of SARS-CoV-2 leading to worldwide pathogen diversity is a typical example. What are the
main factors of inducing the pathogen diversity? Previous studies indicated the pathogen mutation is the
most important reason for inducing the pathogen diversity. The traffic network and gene network are crucial
in shaping the dynamics of pathogen contagion, while their roles for the pathogen diversity still lacking a
theoretical study. To this end, we propose a reaction–diffusion process of pathogens with mutations on meta-
population networks, which includes population movement and strain mutation. We extend the Microscopic
Markov Chain Approach (MMCA) to describe the model. Traffic networks make pathogen diversity more likely
to occur in cities with lower infection densities. The likelihood of pathogen diversity is low in cities with short
effective distances in the traffic network. Star-type gene network is more likely to lead to pathogen diversity
than lattice-type and chain-type gene networks. When pathogen localization is present, infection is localized
to strains that are at the endpoints of the gene network. Both the increased probability of movement and
mutation promote pathogen diversity. The results also show that the population tends to move to cities with
short effective distances, resulting in the infection density is high.
1. Introduction

Pathogenic mutations allow viral species to frequently undergo
rapid evolution [1–3], leading to the phenomenon of pathogen diversity
in which multiple strains coexist. COVID-19 is a classic example. Specif-
ically, SARS-CoV-2 virus mutated into various strains such as Beta,
Delta, and Omicron [4] during the pandemic. Influenza, ebolavirus,
and HIV-1 have high mutation rates and are often described as having
significant variability and unpredictable behavior [5–7]. Frequent mu-
tations promote antigenic evolution of viruses, allowing them to evade
recognition by the human immune system [8].

Population travel, and strains mutation make epidemics pose a
great danger worldwide. Thus, it is important to predict, prevent and
control the spread of pathogens. In order to accurately track and
predict the spread of epidemics, existing studies attempted to model
multi-strain with mutations [9]. In particular, the important feature of
numerous viral species is cross-immunity, which is widely considered in
pathogens mutation transmission models [10,11]. Related studies have
found that cross-immunity can be approximated by the genetic distance
of the pathogen [12,13]. In the sub-discipline of multi-strain disease
modeling, existing models satisfy biological assumptions through ad-
justing modeling choices such as antigenic neighborhoods [14], age
structure [15], and decision capture immune status [9]. The influence
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of a potential genotypic network [16] was also explored in a multi-
strain model. Genotype network is an efficient way to represent the
genetic distances necessary for cross-immunity in multi-strain mod-
els [17]. The ability to control possible mutation paths between strains
is the most important feature of the network [18]. Also, the impact of
pathogen mutations on transmission is widely discussed. In two linked
models, Girvan et al. [18] investigate how the interaction between the
memory immune response and pathogen mutation impacts epidemic
dynamics [19]. Their main result is that pathogens must mutate rapidly
to remain viable in highly connected populations. To account for two
important pathways, Williams et al. [20] construct a disease model
with an underlying genetic network. They found that the four specific
features defined in the model do not affect the classical epidemic
threshold, but localize outbreaks around key strains and generate a
second threshold for immune invasion. Schwarzendahl et al. [21] gen-
eralized the popular susceptible–infection–recovery model to account
for mutations that cause recurrent new strains of bacteria. Their model
predicts that mutations can cause a hyper-exponential increase in the
number of infections at an early stage. Zhang et al. [22] present a com-
prehensive framework for epidemic spread under pathogen evolution
that demonstrates how mutations can fundamentally affect the spread
projection.
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Population mobility (such as travel among cities) and distribution
characteristics have important implications for the threshold and dura-
tion of epidemic outbreaks [23–25]. The meta-population model [26–
29] is commonly used to describe the spatial distribution of popu-
lations and to discuss the effects of population movements on epi-
demic transmission. In this model, the population is divided into
several sub-populations by geographic location. The different sub-
populations are linked by population movement. Unlike the contact
network model [30–33], the meta-population network is a coarse-
grained description, where each node in the network represents a
region (city). Individuals within the same node can react, for example,
e.g., transmitting diseases, and they move to neighboring nodes accord-
ing to certain rules. This reaction–diffusion [34,35] process portrays a
real-world scenario of epidemic spread. Balcan et al. [36] provided a
theoretical framework for analyzing contagion in a network of sites
where people remember their residence. They discovered a phase
transition between a regime where the infection impacts a significant
portion of the system and one where just a tiny portion is impacted.
Mata et al. [35] explore the effect of local population structure on meta-
population networks in a contact process reaction–diffusion model.
By analyzing several variations of the reaction–diffusion process, they
concluded that the critical nature of the contact process model is
independent of the population structure on the meta-population. Re-
cently, the meta-population model has also been utilized in real-world
virus transmission scenario construction [37,38], providing theoretical
support for the development of non-pharmaceutical interventions, such
as case isolation and the lockdown of entire populations.

The worldwide spread of pathogens with mutations has led to the
existence of two types of regions. In some regions there is pathogen
diversity, in others the infection is localized in few pathogens. We con-
sider an area to have pathogen diversity [39–41] if there are infections
caused by several different pathogens in that area. Existing studies
extend mathematical models to analyze pathogen diversity based on
host contact network structure [42], community structure [43], and
cross-immune competition [44,45]. Specially, Abu-Raddad et al. [46]
used a mathematical model to study the dynamics of antigenically
diverse infection factors. They concluded that the location of the thresh-
old is determined by the number of pathogens multiplying and the
intensity of cross-immunization. In antigenically distinct pathogens,
Gupta et al. [47] analyzed the impact of selection of host immune
responses on transmission dynamics. The results indicate that strong
selection can lead to stable isolation of pathogen populations into
discrete strains with non-overlapping antigenic libraries. In the con-
text of multi-pathogen transmission, Sridhar et al. [48] showed how
their work on multi-strain transmission models with mutations answer
some of the fundamental problems about COVID-19 transmission. They
demonstrated the possible effect of an improbable mutation into a
virulent strain using simulations. Based on COVID-19, the importance
of incorporating mutations and evolutionary adaptations in epidemic
models is also discussed [49].

In general, the effects of population movements (i.e. travel) and
gene mutations on pathogen diversity are lacking in depth exploration
in existing studies. Here, we therefore aim to introduce a more gen-
eral model, taking into account the effect of population mobility and
pathogen mutations on the localization of infection. Traffic network
and gene network are utilized to model population movements and
pathogen mutation pathways, respectively. The Microscopic Markov
Chain Approach is also extended to mathematically model the reaction–
diffusion process of multi-strain pathogens. The experimental results
show that cities with lower infection rates are more likely to have
pathogen diversity. In cities with short effective distances in traf-
fic network, infection is also more likely to be localized on certain
pathogens, leading to a lack of pathogen diversity. We also find that
star-type gene networks are more prone to pathogen diversity. The gene
network leads to a higher infection density of strains located at the
2

endpoints. Restricting population movement and strain mutation can
also make it more likely that infections in cities is localized to one
specific pathogen. Effective distance is used to measure the relationship
between population mobility and the infection density. Individuals tend
to move to cities with short effective distances, resulting in higher rates
of infection in these cities.

The remainder of the paper is laid out as follows. First, we analyzed
global data on SARS-CoV-2 variants in Section 2 and observed strain
diversity. Then we show the main features of the dynamical model
in Section 3. We handle the analytical derivation of the propagation
dynamics process in Section 4 once the model has been established. The
dynamic equations are also explained analytically in detail in Section 4.
In Section 5, theoretical experiments were implemented to observe the
phase transition phenomenon. Finally, in Section 6, we conclude the
article by outlining the principal results of the work.

2. Empirical analysis

The SARS-CoV-2 virus has mutated into several different strains
over the course of the pandemic. To get a clearer view of SARS-CoV-
2 variants diversity phenomenon, we use the data collected from the
GISAID [51] database to map the evolution of the percentage of SARS-
CoV-2 variants from June 2020 to June 2022, as shown in Fig. 1.
Strains diversity is clearly observed in most of the time periods. In a
small period of time, the strains are relatively single, and the infection
is localized on certain strains. To quantitatively measure the extent
of infection localization, we introduce Effective Participation Ratio
(EPR) [20]

EPR =
Meff

i
M

=
(
∑

x I
x∗
i )2

M
∑

x(I
x∗
i )2

, i ∈ [1,N], (1)

where 𝐼𝑥∗𝑖 is the final proportion of individuals infected with strain 𝑥
in region 𝑖, and 𝑀 represents the total number of strains. According to
Eq. (1), the EPR values are available for global SARS-CoV-2 variants.
As EPR → 1, the number of infections caused by each strain is equal.
At this time, the strains are diverse. As EPR → 0, infections are caused
by only one pathogen. We think that there is no pathogen diversity,
infection is localized to certain strains. Accordingly, the pathogen
diversity can be expressed mathematically as 1 − EPR. Apparently, the
EPR presents values converging to one after October 2021, indicating
that localization is prominent during this time period. In contrast, in
February 2021 and June 2021, the EPR values are larger, indicating
that the global SARS-CoV-2 variants show strong diversity at this time.

3. Model descriptions

In the previous section, we described the phenomenon of diver-
sity of pathogens in the real world. In this section, based on meta-
population network, we propose a Susceptible–Infectious–Recovered–
Susceptible (SIRS) infection model that allows for pathogenic mutations
to occur. Both traffic and gene networks exist in our model, as shown
in Fig. 2. The path of agents flowing between 𝑁 subpopulations is
defined by the traffic network. The mutation routes between 𝑀 strains
in the system are defined by the gene network. We describe the traffic
network and gene network in detail in Section 3.1 and Section 3.2,
respectively. The reaction–diffusion processes in the system involving
all agents are described specifically in Section 3.3.

3.1. Traffic network

Inspired by the fact that the spread of epidemics with mutation
is largely influenced by the structure of the traffic network [52,53],
we use 𝑁 subpopulations (nodes) constitute the traffic network in the
system, as shown in Fig. 2a. For each node 𝑖 ∈ [1, 𝑁], there are
𝑛𝑖 agents residing in the node, i.e., each agent has a corresponding
residence 𝑖. The connectivity network between 𝑁 nodes is described by

the adjacency matrix  , where 𝑖𝑗 represents the connection weights
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Fig. 1. Diversity of SARS-CoV-2 variants worldwide from June 2020 to June 2022. The graphic content can be divided into two parts. (1) The color block area. Each color row
corresponds to a different variant strain, as shown in the legend on the right side. The right vertical coordinates, e.g. 22C, 22B, are the nomenclature of Nextstrain [50] for the
SARS-CoV-2 mutant strain. The relative proportions of different strains are shown by the height of the color block area. (2) Green curve. The solid green line shows the EPR
values of the strains at different times, corresponding to the vertical coordinates on the right. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Fig. 2. Schematic diagram of traffic network and gene network. a. A traffic network with 𝑁 = 4 subpopulations. The large circles are different subpopulations (nodes). Small
circles of different colors in the subpopulations represent agents infected with different pathogens. Individuals move between different subpopulations, and the arrows are the
movement paths, while the thickness of the arrows represents the different path weights. b. Three different types of gene networks, containing a total of 𝑀 = 6 strains. c. One
possible mutation pathway in each of the three gene networks. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
between nodes 𝑖 and 𝑗. If 𝑖𝑗 ≠ 0, it means that the agents residing
in the node have a certain probability of moving to node 𝑗; otherwise,
𝑖𝑗 = 0. In our model, the population travels according to the matrix
 , i.e., moves to a certain destination.

3.2. Gene network

The topology of mutation network can affect the mutation pro-
cess [54]. In our model, the gene network allows us to specify potential
mutational pathways between 𝑀 strains. Fig. 2b shows three examples
of genetic networks, consisting of the well-known lattice, chain and
star models, respectively. Defined as an unweighted and undirected
network, the gene network is described by the symmetric matrix ,
which is a collection of possible mutations. 𝑥𝑦 = 1 means that there is
a mutation path between strain 𝑥 ∈ [1,𝑀] and strain 𝑦 ∈ [1,𝑀], i.e., the
3

strain 𝑥 can mutate to neighboring strain 𝑦, where 𝑥 ≠ 𝑦; otherwise
𝑥𝑦 = 0. Each mutation will only occur between two pathogens that are
directly adjacent to each other. As shown in Fig. 2c, taking mutations
on a chain network as an example, pathogen a can only mutate to
pathogen b, but not directly to pathogen e.

3.3. Reaction–diffusion process

There are three epidemic states for the agents residing in each node,
susceptible 𝑆, infected (strain 𝑥) 𝐼𝑥, and recovered (strain 𝑥) 𝑅𝑥, where
𝑥 ∈ [1,𝑀]. At each time step 𝑡, one agent can only be in one of the
three states mentioned above, and the reaction–diffusion process in the
model is as follows.
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(1) Firstly, agents move with probability 𝑝𝑑 to a node different
rom their residence, i.e., travel to another city. Then each agent has
robability 𝑝𝑑 to move and probability (1− 𝑝𝑑 ) to stay at the residence.

(2) If the movement occurs, the target node of each movement
s determined based on the network weight matrix  . Specifically,
𝑊𝑖𝑗

∑𝑁
𝑙=1 𝑊𝑖𝑙

represents the probability that an agent in node 𝑖 moves to node
𝑗. After all movements are completed, the entire population showed a
new spatial distribution at this time step.

(3) Based on the new spatial distribution of the meta-population,
the contagion and recovery processes occur. Contagion is restricted to
different nodes, i.e., the infection process of an agent is only relevant
to the situation within the node it is currently in. We assume that
the population within each node is well-mixed. The infection model
of three epidemic states is as follows.

(i) For 𝑆-state agent. Agents in the 𝑆-state are not immune to any
trains and can be infected by any of them. Then the 𝑆-state agent has
probability 𝛽 of converting to the 𝐼𝑥-state at each contact with an 𝐼𝑥-

tate individual. We assume that this basic rate of transmission remains
onstant for all strains.

(ii) For 𝐼𝑥-state agent, two state transitions may occur.
a. 𝐼𝑥-state agents are transformed to 𝑅𝑥-state with recovery prob-

bility 𝛾. We define an individual in the 𝑅𝑥-state to be completely
mmune to strain 𝑥 and partially immune to strain 𝑦 (𝑦 ≠ 𝑥), i.e., the
𝑥-state agent may still be infected by strain 𝑦 and transform into
𝑦-state.

b. Agents in the 𝐼𝑥-state mutate to the 𝐼𝑦-state with mutation
robability 𝜇, where 𝑦 ∈ 𝑥. 𝑥 is the set of direct neighbors of strain
in gene network .

(iii) For 𝑅𝑥-state agent, two state transitions are possible as well.
a. Agents in the 𝑅𝑥-state lose immunity with waning immunity rate

and shift to 𝑆-state.
b. 𝑅𝑥-state agents become 𝐼𝑦-state with a reduced rate 𝑇𝑥𝑦 of being

nfected by strain 𝑦 (𝑦 ≠ 𝑥). 𝑇𝑥𝑦 is defined as an exponential decay
unction with respect to the genetic distance between strain 𝑥 and strain
. Specially,

𝑥𝑦 = 1 − 𝑒−𝐿𝑥𝑦∕𝛥.

here, 𝐿𝑥𝑦 = 𝐿𝑦𝑥 is the genetic distance between strains 𝑥, 𝑦, which ap-
roximates the shortest path between strains 𝑥, 𝑦 in the gene network.
(0 < 𝛥 < ∞) is the characteristic length of immunity transcen-

ence [20], allowing us to investigate the immune characteristics of
ndividuals in the system. As 𝛥 → 0, then 𝑇𝑥𝑦 → 1, immunity is pathogen
pecific. As 𝛥 → ∞, then 𝑇𝑥𝑦 → 0, immunity becomes more widespread,
chieving universal protection against all pathogens.

(4) Finally, due to the commuting mobility patterns [28,55], all
gents returns to the subpopulation where it resides. And another time
tep begins, 𝑡 = 𝑡 + 1.

. Theoretical analysis

By extending the Microscopic Markov Chain Approach [31,33,56,
7], the dynamical process of our model can be described as the
ollowing time evolution equations.

Given 𝑁 nodes and 𝑀 strains, the variables 𝐼𝑥𝑖 (𝑡), 𝑅
𝑥
𝑖 (𝑡) and 𝑆𝑖(𝑡)

𝑖 = 1,… , 𝑁 ; 𝑥 = 1,… ,𝑀) represent the proportion of 𝐼𝑥-state, 𝑅𝑥-
tate and 𝑆-state individuals residing at node 𝑖 at time 𝑡, respectively.
e first introduce the time evolution of 𝐼𝑥𝑖 (𝑡), which has the evolution

quation:
𝑥
𝑖 (𝑡 + 1) = 𝑆𝑖(𝑡)𝛱𝑥

𝑖 (𝑡)

+ 𝐼𝑥𝑖 (𝑡)(1 − 𝛾 − 𝜇
𝑀
∑

𝑦=1
𝐴𝑥𝑦)

+
𝑀
∑

𝑦=1
𝐴𝑦𝑥𝐼

𝑦
𝑖 (𝑡)𝜇

+
𝑀
∑

𝑅𝑦
𝑖 𝑇𝑥𝑦𝛱

𝑥
𝑖 (𝑡).

(2)
4

𝑦=1
s shown on the right side of the equation, the four components
onstitute the evolution of 𝐼𝑥𝑖 (𝑡). The first term, 𝑆𝑖(𝑡)𝛱𝑥

𝑖 (𝑡) denotes the
raction of 𝑆-state agents residing at node 𝑖 that infected by strain 𝑥 and
ass to 𝐼𝑥 at time 𝑡 + 1. 𝛱𝑥

𝑖 (𝑡) is interpreted as the probability that an
ndividual residing at node 𝑖 is infected by strain 𝑥 at time 𝑡. The second
erm accounts for the fraction of 𝐼𝑥-state agents residing at node 𝑖 that
o not recover and mutation at time 𝑡+1. The third term, denoting the
robability that the 𝐼𝑦-state (𝑦 ≠ 𝑥) individual residing in node 𝑖, at
ime 𝑡+1, transforms to 𝐼𝑥-state due to pathogen mutation. The fourth
erm is the probability that an individual in 𝑅𝑦-state (𝑦 ≠ 𝑥), residing
n node 𝑖, is infected by strain 𝑥 and transforms to 𝐼𝑥-state at time 𝑡+1.
he probability 𝛱𝑥

𝑖 (𝑡) reads:

𝑥
𝑖 (𝑡) = (1 − 𝑝𝑑 )𝑃 𝑥

𝑖 (𝑡) + 𝑝𝑑
𝑁
∑

𝑗=1

𝑊𝑖𝑗
∑𝑁

𝑙=1 𝑊𝑖𝑙
𝑃 𝑥
𝑗 (𝑡), (3)

here 𝑊𝑖𝑗 is the weight of the link between nodes 𝑖 and 𝑗, while 𝑝𝑑
enotes the probability of moving. The first term on the right-hand side
ndicates the probability that the individual is infected by strain 𝑥 when
emaining at node 𝑖. The second one considers the probability that this
gent contract the strain 𝑥 when moving to any neighbor of 𝑖. The 𝑃 𝑥

𝑖 (𝑡)
epresents the probability that the agent is infected by strain 𝑥 in node
at time 𝑡. In particular, node 𝑖 is not necessarily the residence of this
gent. Under the well-mixed approximation for the subpopulations, this
robability is:

𝑥
𝑖 (𝑡) = 1 −

𝑁
∏

𝑗=1
[1 − 𝛽𝐼𝑥𝑗 (𝑡)]

𝑛𝑗→𝑖 , (4)

here 𝑛𝑗→𝑖 is the number of agents who move from node 𝑗 to node 𝑖.
he expression is:

𝑗→𝑖 = 𝛿𝑖𝑗 (1 − 𝑝𝑑 )𝑛𝑖 + 𝑝𝑑
𝑊𝑗𝑖

∑𝑁
𝑙=1 𝑊𝑗𝑙

𝑛𝑗 , (5)

if 𝑖 = 𝑗, 𝛿 = 1; otherwise 𝛿 = 0.
Then, the evolution process for 𝑅𝑥-state individual residing in node

𝑖 is presented. Mathematically, the time evolution equation of 𝑅𝑥
𝑖 (𝑡) is

written as:

𝑅𝑥
𝑖 (𝑡 + 1) = 𝐼𝑥𝑖 (𝑡)𝛾 + 𝑅𝑥

𝑖 (𝑡)[1 − 𝛼 −
𝑀
∑

𝑦=1
𝑇𝑥𝑦𝛱

𝑦
𝑖 (𝑡)]. (6)

he equation contains two parts. The first term on the right side of the
quation represents the probability that an 𝐼𝑥-state individual residing
t node 𝑖 revert to 𝑅𝑥-state at time 𝑡 + 1. The second term accounts

for the probability that individuals in the 𝑅𝑥-state residing at node
𝑖 do not transform to the 𝑆-state and infected by other pathogens,
i.e., pathogens that are not 𝑥, at time 𝑡 + 1.

Denoting 𝐼𝑖(𝑡) as the fraction of infected individuals residing at node
𝑖 at time 𝑡. There are 𝐼𝑖(𝑡) =

∑

𝑥 𝐼
𝑥
𝑖 (𝑡). Similarly, 𝑅𝑖(𝑡) =

∑

𝑥 𝑅
𝑥
𝑖 (𝑡) is the

roportion of agents residing in node 𝑖 that are in the recovery state at
ime 𝑡. In our model, there are 𝑆𝑖(𝑡) + 𝐼𝑖(𝑡) + 𝑅𝑖(𝑡) = 1.

Iterate the above equations until the dynamic achieves a stable
tate. The steady-state densities of 𝐼𝑥-state and 𝑅𝑥-state individuals are
efined as asymptotic value 𝐼𝑥∗𝑖 = lim𝑡→∞𝐼𝑥𝑖 (𝑡) and 𝑅𝑥∗

𝑖 = lim𝑡→∞𝑅𝑥
𝑖 (𝑡),

espectively. So there are 𝐼∗𝑖 =
∑

𝑥 𝐼
𝑥∗
𝑖 and 𝑅∗

𝑖 =
∑

𝑥 𝑅
𝑥∗
𝑖 in the

teady state. Based on the whole system perspective, defining 𝐼∗ as
he proportion of infected state individuals when system is stable, we
ave 𝐼∗ = 1∕𝑁

∑

𝑖 𝐼
∗
𝑖 . Then the 𝑅∗ = 1∕𝑁

∑

𝑖 𝑅
∗
𝑖 is the proportion of

ndividuals in the recovery state when the system is stable.
Analyzing the critical behavior of the dynamic system, we have

𝛾 + 𝜇
𝑀
∑

𝑦=1
𝐴𝑥𝑦)𝐼𝑥∗𝑖 = [1 −

𝑀
∑

𝑦=1
(𝐼𝑦∗𝑖 + 𝑅𝑦∗

𝑖 )]𝛱𝑥
𝑖

+
𝑀
∑

𝑦=1
𝐴𝑦𝑥𝐼

𝑦∗
𝑖 𝜇

+
𝑀
∑

𝑅𝑦∗
𝑖 𝑇𝑥𝑦𝛱

𝑥
𝑖 ,

(7)
𝑦=1
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and

(𝛼 +
𝑀
∑

𝑦=1
𝑇𝑥𝑦𝛱

𝑦
𝑖 )𝑅

𝑥∗
𝑖 = 𝐼𝑥∗𝑖 𝛾, (8)

where

𝛱𝑥
𝑖 = (1 − 𝑝𝑑 )

(

1 −
𝑁
∏

𝑗=1
(1 − 𝛽𝐼𝑥∗𝑗 )𝑛𝑗→𝑖

)

+ 𝑝𝑑
𝑁
∑

𝑗=1

𝑊𝑖𝑗
∑𝑁

𝑙=1 𝑊𝑖𝑙

(

1 −
𝑁
∏

𝑙=1
(1 − 𝛽𝐼𝑥∗𝑙 )𝑛𝑙→𝑗

)

,

(9)

nd 𝑛𝑗→𝑖 = 𝛿𝑖𝑗 (1 − 𝑝𝑑 )𝑛𝑖 + 𝑝𝑑
𝑊𝑗𝑖

∑𝑁
𝑙=1 𝑊𝑗𝑙

𝑛𝑗 . Injecting the solution into the

first equation after isolating 𝑅𝑥∗
𝑖 in the second equation, we have:

𝛾 + 𝜇
𝑀
∑

𝑦=1
𝐴𝑥𝑦)𝐼𝑥∗𝑖 = [1 −

𝑀
∑

𝑦=1
(𝐼𝑦∗𝑖 +

𝛾𝐼𝑦∗𝑖
𝛼 +

∑𝑀
𝑙=1 𝑇𝑦𝑙𝛱

𝑙
𝑖

)]𝛱𝑥
𝑖

+
𝑀
∑

𝑦=1
𝐴𝑦𝑥𝐼

𝑦∗
𝑖 𝜇

+
𝑀
∑

𝑦=1

𝛾𝐼𝑦∗𝑖
𝛼 +

∑𝑀
𝑙=1 𝑇𝑦𝑙𝛱

𝑙
𝑖

𝑇𝑥𝑦𝛱
𝑥
𝑖 .

(10)

Approaching the critical point, there are 𝐼𝑥∗𝑖 ≪ 1 for ∀𝑖. Ignoring
the higher order terms of 𝐼𝑥∗𝑖 in the above expression and linearize:

𝛱𝑖 ≃ (1 − 𝑝𝑑 )
𝑁
∑

𝑗=1
𝛽𝐼𝑥∗𝑗 𝑛𝑗→𝑖

+ 𝑝𝑑
𝑁
∑

𝑗=1

𝑊𝑖𝑗
∑𝑁

𝑙=1 𝑊𝑖𝑙

𝑁
∑

𝑙=1
𝛽𝐼𝑥∗𝑙 𝑛𝑙→𝑗 .

(11)

Substitute the expression of 𝑛𝑗→𝑖 into equation Eq. (11) and ignore the
igher-order terms of 𝐼𝑥∗𝑖 :

𝛱𝑖 ≃ 𝛽
𝑁
∑

𝑗=1
[(1 − 𝑝𝑑 )2𝛿𝑖𝑗𝑛𝑖 + 𝑝𝑑 (1 − 𝑝𝑑 )𝑛𝑗 (𝐹𝑖𝑗 + 𝐹𝑗𝑖)

+ 𝑝2𝑑

𝑁
∑

𝑙=1
𝑛𝑗𝐹𝑖𝑙𝐹𝑗𝑙]𝐼𝑥∗𝑗 .

(12)

Defining the row-stochastic matrix 𝐅 as

𝑖𝑗 =
𝑊𝑖𝑗

∑𝑁
𝑙=1 𝑊𝑖𝑙

. (13)

Then, substitute Eq. (12) into Eq. (10), and keeping up to first order
n 𝐼𝑥∗𝑖 , we obtain:

𝛾 + 𝜇
𝑀
∑

𝑦=1
𝐴𝑥𝑦)𝐼𝑥∗𝑖

= 𝛽
𝑁
∑

𝑗=1
[(1 − 𝑝𝑑 )2𝛿𝑖𝑗𝑛𝑖 + 𝑝𝑑 (1 − 𝑝𝑑 )𝑛𝑗 (𝐹𝑖𝑗 + 𝐹𝑗𝑖)

+ 𝑝2𝑑

𝑁
∑

𝑙=1
𝑛𝑗𝐹𝑖𝑙𝐹𝑗𝑙]𝐼𝑥∗𝑗 +

𝑀
∑

𝑦=1
𝐴𝑦𝑥𝐼

𝑦∗
𝑖 𝜇.

(14)

To simplify the solution, assume that 𝐼𝑥∗𝑖 = 𝐼𝑦∗𝑖 , where 𝑥, 𝑦 = 1,… ,𝑀
and 𝑥 ≠ 𝑦. Therefore Eq. (14) can be rewritten as:

𝛾𝐼𝑥∗𝑖 = 𝛽
𝑁
∑

𝑗=1
[(1 − 𝑝𝑑 )2𝛿𝑖𝑗𝑛𝑖 + 𝑝𝑑 (1 − 𝑝𝑑 )𝑛𝑗 (𝐹𝑖𝑗 + 𝐹𝑗𝑖)

+ 𝑝2𝑑

𝑁
∑

𝑙=1
𝑛𝑗𝐹𝑖𝑙𝐹𝑗𝑙]𝐼𝑥∗𝑗

= 𝛽
𝑁
∑

𝑀𝑖𝑗𝐼
𝑥∗
𝑗 .

(15)
5

𝑗=1
Therefore, Eq. (15) can be written as
𝛾
𝛽
𝐼𝑥∗𝑖 = (𝐌 ⃗𝐼𝑥∗)𝑖, (16)

here,

𝑖𝑗 = (1 − 𝑝𝑑 )2𝛿𝑖𝑗𝑛𝑗 + 𝑝𝑑 (1 − 𝑝𝑑 )𝑛𝑗 (𝐹 + 𝐹 𝑇 )𝑖𝑗
+ 𝑝2𝑑𝑛𝑗 (𝐹𝐹 𝑇 )𝑖𝑗 .

(17)

n epidemic outbreak only occurs when 𝛾
𝛽 is an eigenvalue of the

matrix 𝐌. Thus, the critical point is

𝛽𝑐 =
𝛾

𝛬max(𝐌)
, (18)

where 𝛬max(𝐌) is the largest eigenvalue of matrix 𝐌. And the crit-
cal point 𝛽𝑐 is approximately equal to the reciprocal of the Basic
eproduction Number (R0) [58].

. Numerical validation

In this section, we present experimental results by iteratively com-
uting the equations of Section 4 to investigate the impact of traffic
nd gene networks on pathogen diversity. To understand the effects of
ity location and population movement on mutant pathogen diversity
n the real world, we refer to the population distribution data of the city
f Cali, Colombia, for traffic network construction. The network data
btained from A. Arenas team and presented in Ref. [27]. The city has
.4 × 106 inhabitants, who are formally divided into 𝑁 = 22 districts
ccording to their residential location. We construct the matrix 
ased on the movement patterns between these 𝑁 = 22 subpopulations.
n the traffic network constructed from the population distribution
ata of Cali, except for cities 3 and 14 corresponding to Fig. 3, the
ther cities are not completely connected, that is, only individuals
n cities 3 and 4 may move to any other cities, and individuals in
ther cities may also move to cities 3 and 14. In addition, paying
ttention to the connection weights between 22 cities, we can see that
he sum of the connection weights pointing to cities 3 and 5 is the
argest, indicating that individuals are more likely to move to these
wo cities. In addition, in order to learn as much as possible about how
ene networks affect pathogen diversity, we worked to keep the gene
etworks themselves simple, using the well-known graphical toy model
onsisting of lattices, chains, and stars to construct the gene networks.
ll three gene networks contain 𝑀 = 25 strains and define mutational
athways between them.

To fully and clearly explore the impact of the traffic and the gene
etwork, the specific pathogen infections in each subpopulation are
ncluded in the study. We first observe the results of infection in
ifferent cities. As shown in Fig. 3, in the results based on either gene
etwork, we find a higher density of infection in city 6, city 13, and city
4. Afterwards, we observe the infection of different strains in each city
nder three gene networks. When the gene network is star-type, we find
hat the proportion of arbitrary pathogens is almost uniform in the same
ity. This phenomenon is due to the fact that the central node of the star
etwork balances the mutations of various pathogens very well. When
ooking at the lattice-type gene network, as in Fig. 3(e), we find that
he infection is almost localized around strains 𝑎, 𝑒, 𝑓 , 𝑗, 𝑘, 𝑝, 𝑢, 𝑦, i.e. the
nfection rate is relatively greater in these strains. These strains are
ust at the edge of the gene network. The phenomenon indicates that
he gene network structure leads to outbreak localization on certain
iruses to some extent. Also, we observe that pathogen localization is
articularly evident in city 6, city 13, and city 14, where infection den-
ities are high. Pathogen diversity is more pronounced in the remaining
reas with infection. This suggests that the traffic network and genetic
etwork together influence pathogens transmission and variation. With
nhanced movement probabilities 𝑝𝑑 , as shown in Fig. 4(g) and (h),

the likelihood of individuals going outside increases, promoting the
occurrence of pathogen diversity. At this point, infection rates between
cities become close, and traffic networks play a smaller role. The gene
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Fig. 3. Infection by different 𝑀 = 25 strains in all subpopulations. The horizontal coordinates of the graph indicate the different pathogens and the vertical coordinates are
all cities. The color represents the infection rate of a particular pathogen in a certain area. Figs (a)–(d), Figs (e)–(h), and Figs (i)–(l) show the results based on the star-type,
lattice-type and chain-type gene networks, respectively. We set movement rate 𝑝𝑑 = 0.1, mutation rate 𝜇 = 0.01 in Figs (a)(e)(i); 𝑝𝑑 = 0.1, 𝜇 = 0.05 in Figs (b)(f)(j); 𝑝𝑑 = 0.4,
𝜇 = 0.01 in Figs (c)(g)(k); and 𝑝𝑑 = 0.4, 𝜇 = 0.05 in Figs (d)(h)(l). The remaining parameters are 𝛽 = 0.0001, 𝛥 = 10, 𝛾 = 0.08, and 𝛼 = 0.02. For ease of observation, the values of
infections on the star-type gene network (first row) are magnified by a factor of 100. The results on the lattice as well as on the chain gene network are magnified by a factor of
10. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
network still allows for a high infection density of endpoint strains
𝑎, 𝑒, 𝑓 , 𝑗, 𝑘, 𝑝, 𝑢, 𝑦. In addition, the increases of mutation probability 𝜇
also promotes pathogen diversity, as shown in Fig. 3(f). In this case,
the gene network effect is reduced and the infection rate tends to
be consistent between strains. The traffic network still plays a role,
allowing a high infection density in city 6, city 13, and city 14. Finally,
when looking at the infection results on the chain-type gene network,
as shown in Fig. 3(i), in the results for city 6, city 13, and city 14 we can
clearly observe that the infection is localized on pathogen 𝑎 and strain
𝑦. These two pathogens are at the both ends of the gene network. The
phenomenon again shows that the gene network and the traffic network
have a significant effect on the localization of pathogens.

Next, the effects of traffic network and gene network on pathogens
diversity are further explored. For a more visual view, we first plot the
infection results in the map for 𝑁 = 22 cities. As shown in Figs. 4(a)–(c),
we find that the infection density is higher in all regions when the gene
network is based on chain-type. Obviously, city 6, city 13, and city 14
are always the regions with the highest infection density. By observing
Figs. 4(d)–(f), we find that in the star-type gene networks, the area of
various color sectors in each subpopulation is almost the same, which
indicates that the infection rate of various pathogens does not differ
much. In the lattice-type gene network, there are tiny differences in the
area of every sector, and they are not very obvious. Pathogen diversity
is present in all cities in the star-type gene network. And in the lattice-
type gene network, it can be find that the proportion of pathogen 𝑎
and strain 𝑦 is significantly higher than that of other pathogens. This
phenomenon suggests that lattice-type and chain-type gene networks
are more likely to lead to pathogen localization (lower diversity) for
the same population movements on the traffic network.

We introduce Effective Distance (ED) to discuss the reasons for the
appearance of pathogen diversity. The effective distance from a node 𝑖
6

to a connected node 𝑗 is defined as [59] :

𝑑𝑖𝑗 = (1 − log𝑅𝑖𝑗 ), (19)

where 𝑅𝑖𝑗 = 𝑊𝑖𝑗
∑

𝑗 𝑊𝑖𝑗
. In generally, 𝑑𝑖𝑗 ≠ 𝑑𝑗𝑖. We assume that there are

𝐿 = {𝑃1,… , 𝑃𝐿} paths between arbitrary two nodes 𝑖 and 𝑗 in the
network. The effective length 𝑁𝑙 , 𝑙 ∈ [1, 𝐿] of path 𝑃𝑙 , 𝑙 ∈ [1, 𝐿] is the
sum of effective distances along the legs of the path. Mathematically,
𝑁𝑙 = 𝑑𝑖𝑘 + 𝑑𝑘𝑗 , when path 𝑃𝑙 covers legs 𝑖 → 𝑘 and 𝑘 → 𝑗. For the paths
of two nodes 𝑖 and 𝑗, 𝛤 = {𝑁1,… , 𝑁𝐿} is the set of effective length.
Then the effective distance D𝑖𝑗 from an arbitrary node 𝑖 to another node
𝑗 in the network is defined as:

D𝑖𝑗 = min(𝛤 ). (20)

So, in our model, the effective distance EDi for node 𝑖 is defined as:

EDi =
N
∑

j
Dji, i = [1,N]. (21)

This indicator is a measure of the importance of a city in the traffic
network to a certain extent. That is, a smaller EDi indicates a greater
tendency for the population to move to city 𝑖.

The relationship between the effective distance (ED) and the in-
fection density (𝐼∗) of each city are discussed. As shown in Fig. 5,
the relationship between infection density and effective distance can
be fitted by a straight line with negative slope. This result indicates
that the greater the effective distance, the lower the infection density
of the city. Specifically, the long effective distance of the city makes
the inflowing population relatively small, which reduces the risk of
population infection to a certain extent, and eventually leads to a low
infection density. However, most individuals flow into cities with short
effective distances, which increases the possibility of inflow of infected
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Fig. 4. Infection of 22 cities in Cali. Figs (a)–(c) show the results of infection in every city when the gene network is based on star, lattice, and chain, respectively. The colors
in the graph represent the prevalence of infection in a particular region. Figs (d)–(f) show the percentage of different pathogens infections in each city when the gene network is
star, lattice, and chain, respectively. The different colors in the pie chart represent different pathogens. The parameters of the experiment are 𝛽 = 0.001, 𝑝𝑑 = 0.1, 𝜇 = 0.01, 𝛥 = 10,
𝛾 = 0.08, and 𝛼 = 0.02. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. The correlation between 𝐼∗ and ED for the 22 cities. (a)–(c) show the results on the star-type, lattice-type and chain-type gene networks, respectively. The data in the
figure are normalized for ease of side observation. Each small blue dot in the diagram represents a city. The blue line is the linear fit of the scattered points. We set the confidence
interval to 95%, as shown in the blue shaded interview. The experiment parameters are consistent with Fig. 4.
individuals, resulting in higher infection density in cities with short
effective distances. So, the greater infection density in cities 6, 13, 14
in Fig. 4 can be explained by their short effective distance in the traffic
network. The above phenomenon is found in all three different gene
networks.

The pathogen localization phenomenon, i.e. lack of pathogen diver-
sity, is also discussed in depth. We calculate the EPR for 22 subpop-
ulations and the results are displayed in Fig. 6. We find that on the
star-type network, there are EPR → 1 in all cities. The phenomenon
verifies the conclusion in Fig. 3, indicating that star-type gene network
lead to pathogen diversity without infection localization. EPR values
7

are smaller in cities 6,13,14,15 when the gene network is lattice-
type and chain-type, suggesting the presence of pathogen localization,
i.e., lack of pathogen diversity, in these cities.

The effective distance is also used to further explore the reason
why the pathogen localization is only evident in certain cities. The
correlation between Effective Participation Ratio (EPR) and effective
distance (ED) for the 22 cities is plotted in Fig. 7. It can be found
that the EPR values of pathogens in cities are essentially distributed
in a positive correlation with the effective distance, indicating that the
smaller the effective distance from the city, the greater the probability
of pathogen localization happening, i.e., no pathogen diversity. This
phenomenon is due to the fact that the population is more likely
to move to a city with a short effective distance, which makes the
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Fig. 6. The EPR of 22 cities. (a)–(c) show the calculated results of EPR in each city when the gene network is star-type, lattice-type, and chain-type, respectively. The color in the
graph is the EPR value for a region, representing the degree of localization of the infection. The parameters in this experiment are fixed as 𝛽 = 0.001, 𝑝𝑑 = 0.1, 𝜇 = 0.01, 𝛥 = 10,
𝛾 = 0.08, and 𝛼 = 0.02. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 7. The correlation between EPR and ED for the 22 cities. The effective participation ratio is positively correlated with the effective distance. The legend meanings and
experimental parameters are consistent with Fig. 6.
Fig. 8. Theoretical calculation results for 𝐼∗ and 𝑅∗ on the three gene networks. We fix the recovery rates 𝛾 = 0.08, the mutation rate 𝜇 = 0.01, waning immunity rate 𝛼 = 0.02,
transcending immunity 𝛥 = 10 and vary the infection rate 𝜆 under three values of movement rates: 𝑝𝑑 = 0.1 (Left), 𝑝𝑑 = 0.4 (Center), and 𝑝𝑑 = 0.7 (Right). In this experiment, the
value of 𝛽 is scaled by the equation 𝜆 = 𝛽∕𝜇.
population in the city more likely to be infected, the infection density
is high, and the pathogen localization is more obvious. However, few
individuals flow to cities with long effective distances, so that few
individuals are infected by any strain in these cities, resulting in less
obvious localization of pathogens.

This phenomenon is due to the fact that the population prefers to
move to cities with short effective distances, which leads to a high
density of infection and more pronounced pathogen localization in
that city. When the gene network is chain-type, this phenomenon is
particularly evident.

We finally wonder the impact of pathogen mutation profiles under
different genetic networks on the infection of the whole system. The
final fraction of individuals in the infected state 𝐼∗ and the recovered
state 𝑅∗ versus the infection rate 𝜆 under three different gene networks
are shown in Fig. 8. An important feature of the meta-population
8

model is population mobility, which can have a significant impact on
epidemic transmission. Fig. 8 also simultaneously explores infections
and recovery at different rates of population movement 𝑝𝑑 at the
same time. We find that the infection range of gene network based
on chain is wider than that of gene network based on lattice. And the
infection rang is smallest when gene network based on star structure.
This phenomenon demonstrates the influence of genetic networks on
the outcome of infection. The percentage of recovery state population
is just the opposite of the above phenomenon. We detect a maxi-
mum in 𝑅∗ (solid line) around the inflection point of every 𝐼∗ curve
(dashed line). Then as the infection rate 𝜆 increases, the fraction of
𝑅∗ decreases. This is the result of a combination of infection rates
𝜆 and transcending immunity 𝛥. When 𝜆 increases to a sufficiently
large value, it counteracts the immunity brought by 𝛥, causing the
recovery state individuals to shift to the infection state. When focusing
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on the effect of the movement probability 𝑝𝑑 on the infection, we find
a significant increase in the proportion of 𝐼∗ as 𝑝𝑑 increased. This
uggests that population movements can cause an increase in infections.

. Conclusion

To explore the factors of pathogen diversity, in that work, we
ntroduce pathogenic mutations in the meta-population model. Traffic
etwork is used to model the population movement in the meta-
opulation. And the potential mutation pathways of pathogens are
efined by the gene network. To explore the effect of traffic network
nd gene network on the pathogen diversity under strains mutation
cenarios, a Markov chain theoretical framework based on the SIRS
nfection model is proposed. Real population distribution data of Cali
ity are used to construct the traffic network, and construct three toy
ene networks—the star, lattice, chain.

The impact of traffic network on pathogen diversity is discussed
irst. We find that pathogen localization is more likely to occur in
ities with higher infection densities. In contrast, pathogen diversity is
resent in cities with lower infection densities. The underlying structure
f the gene network also has an impact on pathogen diversity. We find
hat compared with star-type gene network, lattice-type and chain-type
ene network are more likely to cause pathogen localization (i.e., lack
f diversity). The mutational pathways defined by the gene network
ive a high probability that the localization at the endpoint position.

Both the increase of individual movement probability and strain
utation rate are found to contribute to pathogen diversity. As the
robability of movement increases, the role of traffic network decreases
nd the infection density tends to be consistent between cities. The
ene network still causes slightly greater infection densities in endpoint
trains. An increase in mutation probability leads to a decrease in
he role of gene networks for localization. That is, the infection rate
ecomes the same across strains and there is no pathogen localization.

Effective distance is also introduced to measure the relationship
etween localization and population mobility. We find that effective
istance is negatively associated with infection density. A short effec-
ive distance makes the population tend to move towards the city,
hich results in the higher infection density in the city 6, city 13,
nd city 14. In addition, the positive correlation between effective
articipation ratio and effective distance suggests that cities with short
ffective distances are more likely to have pathogen localization.

Overall, our study provides some theoretical basis for exploring the
ffects of population movement and variation on pathogen diversity. In
he future, this research could be extended to analyze the transmission
volution of real-world viruses with mutations, such as COVID-19. Con-
idering the fact that SARS-CoV-2 mutation and population travel make
nfectious diseases prevalent globally, based on the existing studies with
utations, this study includes the impact of population movement on

pidemic transmission into the discussion, and further completes the
pidemic spreading model. Our results may provide some insight into
roposing effective epidemic contain strategies. On the other hand,
nlike the classical setting for studying mutation and evolution, our
roposed model assumes equal infection rate and recovery rate for
ach mutant strain, which weakens the difference in infection between
trains to a certain extent, resulting in a distance from the real result
f transmission in reality. Also, the model we propose is a theoretical
odel, lacking real data support, and a more realistic data-driven

pidemic model can be constructed in the future.
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