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A B S T R A C T   

This study analyzes the relationship between clean and dirty energy sources and energy metals during the 
COVID-19 pandemic. We document a sharp increase in connectedness after the COVID-19 pandemic, that is 
asymmetric at the lower and upper quantiles, with stronger dependence among the variables at the upper 
quantiles. Among the energy metals, cobalt is the least connected to the energy markets. Finally, our empirical 
results show a switch in the net connectedness indexes of energy metals and clean energy after January 2021. 
Our results have implication for investors and policy makers for energy and metal under various market 
conditions.   

1. Introduction 

A gigantic energy transition is awaiting us, as the goal of limiting 
global temperature increases to 1.5 ◦C looms large. Intuitively, this en
ergy transformation will be primarily led by clean energy companies, 
which will lead to an increase in demand for specialized metals such as 
nickel, copper, and cobalt (International Energy Agency, 2021a). 
Consequently, leading to an increase in the interdependence between 
clean energy and metal prices, but also the interdependence between 
metal prices and fossil fuels, due to the importance of energy as an 
important input in metal production. 

Theoretically, the metal markets can be linked to the energy markets 
through both the supply and demand channels. On the supply side, 
metal production is an energy-intensive industry, which requires a large 
amount of energy. Most metal production relies on fossil fuels such as 
coal, oil, and natural gas.1 Thus, increasing fossil fuel prices can 
significantly alter the cost structure of metal production, thereby 

influencing the returns and volatilities of metal prices. Given the sig
nificance of fossil fuels in metal production, the role of fossil fuel prices 
in determining metal prices has been documented in previous studies.2 

On the demand side, the recent transition to clean energy technology 
implies that demand for metals used in clean energy technologies will 
likely increase. It is projected that the lithium reserve will deplete by 
2040. Coupled with a low recycling rate, clean energy industries are 
reducing their reliance on lithium. Therefore, cobalt is set to enjoy a 
meteoric rise in demand by 2040 and possibly beyond (up to 1074%) 
(Månberger and Stenqvist, 2018). Moreover, silver used inside the paste 
of the cells will be replaced entirely by nickel‑copper plating (Rehman 
and Lee, 2014). Thus, producing and deploying future clean energy 
technologies rely on a stable supply of energy metals such as cobalt, 
nickel, and copper. The COVID-19 pandemic has disrupted both the 
supply and demand channels through which metals and energy are 
linked, because of large fluctuations in fossil fuel prices coupled with the 
supply chain issues during this period. In particular, many clean energy 
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producers have suffered from supply chain glitches throughout the 
COVID-19 pandemic (Eroğlu, 2020). 

Motivated by the aforementioned events, this paper investigates the 
connectedness between energy metal, clean energy, and dirty energy 
prices. Understanding this connectedness is central to risk measurement 
and management (Diebold et al., 2017). This is particularly relevant in 
the case of the metal and energy markets, as they rely heavily on one 
another through both the supply and demand channels. Given the 

catastrophic effect of the recent pandemic on financial markets, we 
zoom in on the relationship between metal and energy prices throughout 

Fig. 1. (1.1.) Daily closing prices. (1.2.) Daily returns series. 
Fig. 1(1.1 and 1.2) presents the prices and returns, respectively, of the energy and metal markets under study, where returns are calculated by log-differencing. ICLN 
and IXC stand for the iShares Global Clean Energy ETF and the iShares Global Dirty Energy ETF. Nick, Copp, and Cob stand for nickel, copper and cobalt, respectively. 
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various phases of the COVID-19 pandemic.3 Our motivation to study the 
relationship between metal and energy prices during extreme events like 
the COVID-19 crisis is based on several reasons. First, the pandemic has 

increased the level of uncertainty in energy markets, as illustrated by the 
high fluctuations in fossil fuel prices during this period. Highly volatile 
fossil fuel prices influence metal prices by making it difficult for metal 
producers to forecast their energy costs accurately. At the same time, 
highly volatile fossil fuel prices increase the volatility of clean energy 
prices, as fossil fuels and clean energy are considered substitutes. 
Moreover, the recent trends during the pandemic suggest an increasing 
inclination towards renewable energy firms (Wan et al., 2021). Thus, the 
transition to cleaner production amidst extreme events like the 

Fig. 1. (continued). 

3 A number of studies have documented the impact of Covid-19 pandemic on 
various financial markets including socially responsible investments (See Karim 
et al., 2022; Umar and Gubareva, 2021a, 2021b; Gubareva and Umar, 2020; 
Umar et al., 2021c) 
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COVID-19 pandemic may shift the linkage between metal, clean and 
dirty energy prices. Therefore, understanding the metal-clean ener
gy-dirty energy nexus during an extreme period like the COVID-19 crisis 
allows investors to adjust their strategies. This also provides valuable 
information for metal and energy producers to forecast their production 
costs. 

To study the relationship between metal, clean and dirty energy 
prices during the COVID-19 period, we collect daily price data from 31st 
December 2019 to 19th January 2022. Specifically, we use the iShares 
Global Energy ETF(IXC) which is benchmarked against S&P Global 1200 
Energy Sector Index as a proxy for fossil fuel energy or dirty energy, and 
the iShares Global Clean Energy ETF (ICLN) which is benchmarked 
against S&P Global Clean Energy Index as a proxy for clean energy. In 
addition, we consider closing prices of three metals namely cobalt, 
copper, and nickel, due to their significance in clean energy production, 
as explained above. Methodologically, we apply a generalised forecast 
error variance decomposition to a quantile vector autoregression model 
to study how the metal-clean energy-dirty energy nexus varies between 
extreme downward and upward movements. 

Our results suggest that the connectedness among energy metal, 
clean energy, and dirty energy markets sharply increases at the extreme 
quantiles, compared to at the median quantile. This implies an increase 
in the contagion across the markets under extreme events. Moreover, on 
average, clean energy and dirty energy markets are shock transmitters 
while the energy metals are net shock receivers across all the quantiles. 
This highlights the importance of energy markets in the shock trans
mission patterns between energy and metal markets. Our results also 
show that the clean energy and dirty energy markets are highly con
nected to each other, while the three metal markets (nickel, copper, and 
cobalt) are highly connected to one another. Among the energy metals, 
the cobalt market is the least connected to the energy markets, thereby 
suggesting its potential hedging capacity for energy investments, 
particularly at the median quantile. Using a rolling window analysis to 
analyze how the market connectedness changes over time, we find that 
the connectedness across the markets sharply increased after the COVID- 

19 fallout, which is consistent with previous studies in other markets.4 In 
addition, we find evidence of asymmetric connectedness at the lower 
and upper quantiles, with stronger dependence among the variables at 
the upper quantiles. This suggests that an extreme increase in energy 
and metal prices significantly increase the contagion across these mar
kets. Finally, our empirical results show a switch in the roles of clean 
energy and metal markets after January 2021. Specifically, metal mar
kets become the net shock transmitter while clean energy becomes the 
net shock receiver. This is consistent with the widening shortage of 
energy metals after January 2021, as a result of supply chain issues and 
increasing public preferences towards clean energy. 

Our paper contributes to the literature in the following aspects. First, 
we contribute to the scant empirical evidence on the linkage between 
clean energy prices and energy metal prices. Specifically, we explore 
how the clean energy-metal relationship varies across quantiles. Our 
goal is to capture the tail and median dependence between clean energy 
stock and energy metal markets, which has implications for risk and 
portfolio management. Second, previous research has either considered 
the bi-sector nexus between clean energy – energy metal prices or be
tween fossil fuel – energy metal prices, we consider the linkage between 
clean energy prices, dirty energy prices, and energy metal prices through 
a multivariate network framework, thereby identifying the primary 
shock receivers and transmitters in the system. Finally, our paper is 
among the first studies to document the evolution of the clean energy- 
dirty energy-energy metal nexus during the COVID-19 pandemic.5 

The paper proceeds as follows. Section 2 reviews the relevant liter
ature. Section 3 presents the research methodology and data. Section 4 
presents the empirical results and their implications, and section 5 
concludes. 

Table 1 
Descriptive statistics.  

1.1. Summary statistics of each variable  

ICLN IXC Nick Copp Cob 

Mean 19.4 19.5 9.7 8.9 10.7 
Variance 36.30 36.72 0.03 0.05 0.14 
Skewness − 0.603*** − 1.426*** − 1.249*** − 2.262*** − 0.346*** 
Kurtosis 7.370*** 20.856*** 63.157*** 38.035*** 0.385* 

JB 1601.08* 12,720.95 114,689.32 42,119.60 17.99*** 
ERS − 13.549** − 15.425** − 12.047** − 19.342** − 16.720*** 

Q (10) 156.155** 153.984** 100.123** 175.011** 359.166*** 
Q2(10) 391.000** 188.725** 318.407** 374.760** 106.732***   

1.2. Correlation matrix.  

ICLN IXC Nick Copp Cob 

ICLN 1     
IXC 0.566451 1    
Nick − 0.0347 − 0.04549 1   
Copp − 0.04111 − 0.01453 0.24815 1  
Cob − 0.02067 − 0.01484 0.026614 0.001086 1 

ICLN and IXC stand for the iShares Global Clean Energy ETF and the iShares Global Dirty Energy ETF. Nick, Copp, and Cob stand for nickel, copper and cobalt. JB stands 
for the Jarque-Bera test statistics, ERS stands for the Elliott, Rothenberg and Stock Unit Root test statistics. Q (10) and Q2(10) stand for the Ljung-Box test statistics on 
returns and squared returns. ***, **, * indicate statistical significance at 1, 5, and 10% level. 
ICLN and IXC stand for the iShares Global Clean Energy ETF and the iShares Global Dirty Energy ETF. Nick, Copp, and Cob stand for nickel, copper and cobalt, 
respectively. 

4 For example, Baker et al. (2020), Bissoondoyal-Bheenick et al., 2021, Umar 
et al., 2022. 

5 Most studies that focus on the COVID-19 period have focused on the link
ages in other markets, such as stock, oil, bonds, for example, Bissoondoyal- 
Bheenick et al., 2021; Umar et al., 2021; Costa et al., 2021; Youssef and 
Mokni, 2021; Umar et al., 2021; So et al., 2021; Bouri et al., 2021; Zhang et al., 
2020; Umar et al., 2022; Umar et al., 2021. 
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2. Literature review 

We segregate literature review into three main domains. We start 
with a discussion of the literature documenting the relationship of fossil 
fuels and metal markets, followed by literature documenting clean en
ergy and metal markets. Lastly, we present discuss literature on spillover 
and extreme events. 

2.1. Fossil fuel prices and metal markets 

The empirical literature on the link between fossil fuel prices and 
metal markets can be summarized into three main themes. 

First, a large literature documents the relationship between fossil 
fuel prices and precious metals such as silver, platinum, gold, and 
palladium, using various empirical approaches. For example, Shahzad 
et al. (2019) study the impact of oil price volatilities on precious metal 
prices using the VAR for VAR and the cross-quantilogram methods. 
Husain et al. (2019) study the connectedness among oil, stock, and 
precious metal markets and documented higher volatility spillovers 
during the global financial crisis. Using a DECO-GARCH model in a 
connectedness network framework. Yıldırım et al. (2020) study the time 
varying spillover between oil price and precious metal prices and find 

that oil prices Granger cause precious metal prices in both returns and 
volatilities. Shafiullah et al. (2021) show that the causality between oil 
and metal prices is variable across quantiles and precious metals. Ahmed 
et al. (2022) document the tail spillovers between oil and precious 
metals and find that precious metals experience lower tail risks during 
the COVID-19 pandemic, with gold having the lowest tail risks. Naeem 
et al. (2022) examine the safe-haven and hedging ability of oil and gold 
against commodities and show that oil is a safe haven for metals and 
agricultural commodities and has higher hedging effectiveness than 
gold. Mensi et al. (2021) study the asymmetric connectedness between 
oil, gold and sectoral stock markets in China and Europe. 

Second, the literature also documents the relationship between fossil 
fuel prices and industrial or base metals such as aluminum, copper, lead, 
nickel, steel, tin, or zinc. Reboredo and Ugolini (2016) use copulas to 
characterize the dependence between oil and metal prices. They find 
that oil prices have spillover effects on the prices of six industrial and 
four precious metals both before and after the Global Financial Crisis. 
Cagli et al. (2019) study the short- and long-run behavior of energy and 
metal markets and find a non-linear relationship between futures and 
spot prices in these markets. They also show that energy and metal 
markets are informationally efficient. Umar et al. (2019) show that 
copper is a shock transmitter, while zinc is a shock receiver. Umar et al. 
(2021a, 2021b, 2021c, 2021d, 2021e, 2021f, 2021g) explore the dy
namic return and volatility connectedness between metals and oil 
shocks. They show that oil demand shocks are transmitters of shocks 
while oil risk shocks are receivers of shocks. Tiwari et al. (2021) explore 
the frequency connectedness among oil, stock, and metal prices. They 
show that platinum, gold, palladium, and stock prices are net contrib
utors of volatility, while oil, silver, steel, and titanium are net receivers. 
Shahzad et al. (2019) employ a rolling window autoregressive lag model 
and find varying cointegrations between oil and metal prices over time 
and across types of metal. Wang (2022) studies the efficiency and 
connectedness of energy, industrial metal, and financial markets and 
shows evidence for a relationship between market efficiency and 
connectedness. With respect to the evolution of the fossil fuel and metal 
markets during COVID-19, Cunado et al. (2021) analyze the connect
edness between fossil fuel, precious and industrial metals markets dur
ing COVID-19 and find an increase in the connectedness across the 
markets during the pandemic. Farid et al. (2022) explore the quantile 
dependence between energy, metal and agriculture commodities during 
COVID-19 and find evidence of a stronger transmission pattern between 
these markets at the tails. 

Recently, growing preferences for clean energy have led to higher 
demand for metals used in clean energy production, also known as clean 
energy metals. This has motivated several researchers to investigate the 
relationship between fossil fuels and clean energy metal prices. For 
example, Shao and Zhang et al. (2020) find evidence of spillovers from 
crude oil prices to clean energy metal prices at different time scales. 
Shao et al. (2021)explore the effect of oil price uncertainty and clean 
energy metal stocks in China. 

2.2. Clean energy prices and metal markets 

The literature on the relationship between fossil fuels and metal 
markets has been extensive, which documents the fossil fuel-metal nexus 
across a wide range of metals and market conditions (e.g. mean and tail 
dependence). In light of the increasing preference for clean energy, 
recently, researchers have started documenting the relationship be
tween metals and clean energy prices. However, the majority of research 
so far has focused on the relationship between precious metals and clean 
energy, specifically the hedging and safe haven properties of precious 
metals against clean energy prices. Ahmad et al. (2018) is among the 
first to study the nexus between clean energy and gold prices and suggest 
that gold is not an effective hedge for clean energy stocks. Dutta (2019) 
shows the negative responses of solar energy stock prices to silver 
volatility. Dutta et al. (2020) examine the relationship between gold, 

Table 2 
Average quantile connectedness.  

2.1. Average connectedness for Quantile Q = 0.2  

ICLN IXC Nick Copp Cob FROM 

ICLN 47.72 23.92 9.64 9.23 9.49 52.28 
IXC 24.03 49.1 8.9 9.68 8.29 50.9 
Nick 10.85 11.78 45.35 20.92 11.1 54.65 
Copp 11.09 12.8 20.63 45.29 10.19 54.71 
Cob 8.35 8.94 12.5 10.92 59.3 40.7 
TO 54.32 57.44 51.67 50.75 39.07 253.25 

Inc. own 102.04 106.54 97.02 96.04 98.36 TCI = 45% 
NET 2.04 6.54 − 2.98 − 3.96 − 1.64    

2.2. Average connectedness for Quantile Q = 0.5  

ICLN IXC Nick Copp Cob FROM 

ICLN 63.45 22.96 6.57 4.41 2.6 36.55 
IXC 22.1 66.53 3.98 3.37 4.02 33.47 
Nick 8.7 8.82 64 15.16 3.32 36 
Copp 9.05 8.22 15.67 63.13 3.93 36.87 
Cob 4.95 4.93 4.93 3.35 81.84 18.16 
TO 44.79 44.94 31.15 26.29 13.87 161.05 

Inc. own 108.24 111.47 95.15 89.43 95.71 TCI = 35% 
NET 8.24 11.47 − 4.85 − 10.57 − 4.29    

2.3. Average connectedness for Quantile Q = 0.8  

ICLN IXC Nick Copp Cob FROM 

ICLN 46.44 25.56 11.17 8.67 8.17 53.56 
IXC 24.96 50.02 7.99 8.44 8.59 49.98 
Nick 12.28 11.16 44.31 19.78 12.46 55.69 
Copp 12.78 13 18.1 45.58 10.54 54.42 
Cob 11.17 9.82 10.22 9.57 59.22 40.78 
TO 61.19 59.54 47.48 46.46 39.76 254.43 

Inc. own 107.63 109.57 91.79 92.04 98.98 TCI = 58% 
NET 7.63 9.57 − 8.21 − 7.96 − 1.02  

ICLN and IXC stand for the iShares Global Clean Energy ETF and the iShares 
Global Dirty Energy ETF. Nick, Copp, and Cob stand for nickel, copper and co
balt. Each cell represents the amount of spillovers from the market listed in the 
column to the market listed in the row. The column ‘FROM others’ captures the 
spillovers from all other variables to each row variable. The row ‘TO others’ 
captures the spillovers from each column variable to all other variables. The row 
‘Inc. own’ captures the spillovers from each column variable to all variables, 
including itself. The row ‘NET’ captures the net connectedness, where a positive 
(negative) value indicates a shock transmitter (receiver). 
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silver, and oil volatilities and clean energy stock prices and show a 
negative relationship between the volatilities and clean energy stock 
prices. They conclude that gold, silver and oil volatilities can hedge 
against clean energy stock prices. In contrast, Erdoğan et al. (2022) 
analyze the causal relationship between precious metals and clean en
ergy stocks and conclude that precious metals cannot be used to hedge 
the downside risk of clean energy stock investments. 

As clean energy production continues to expand, it is expected that 
the demand for clean energy metals will increase.6 This implies that the 

relationship between these metals and clean energy prices will become 
more significant, thus studying this relationship has important impli
cations for environmentally conscious investors to effectively manage 
their portfolios, and for policymakers to stabilize the prices of clean 
energy. Gustafsson et al. (2022) study the hedge and safe-haven prop
erties of energy metals against clean energy stock prices and find limited 
hedging capacity of energy metals against clean energy stock prices, 
because of the positive linkage between these markets. This is in line 
with the findings by Islam et al. (2022), who test the relationship be
tween mineral import demand and the clean energy transition in 29 
OECD countries. They find a significant response of mineral import 
demand to increasing solar and wind energy capacities. 

Fig. 2. Network plots of the quantile connectedness. (2.1.) Quantile = 0.2. (2.2.) Quantile = 0.5. (2.3.) Quantile = 0.8. 
Note: The figure presents a network plot for the connectedness across the market across quantiles. Blue (yellow) nodes indicate net shock transmitters (receivers) and 
the size of the nodes corresponds to the absolute values of the NET connectedness index. The direction of the arrows indicates the direction of spillovers between two 
variables and the thickness of the arrows indicates the strength of these spillovers. IXC denotes the iShares Global Energy ETF (benchmarked against S&P Global 1200 
Energy Sector Index); ICLN denotes iShares Global Clean Energy ETF (benchmarked against S&P Global Clean Energy Index). Cob, Copp, and Nick stand for cobalt, 
copper, and nickel. 

6 We define clean energy metals as those who are used in the production of 
clean energy, for example, nickel, cobalt and copper. See https://www.iea.or 
g/reports/the-role-of-critical-minerals-in-clean-energy-transitions/executive- 
summary for examples of clean energy metals. 
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2.3. Spillovers under extreme events 

In the wake of the extreme events since the emergence of COVID-19 
in 2020, a booming literature is documenting the short- and long-term 
spillovers across financial markets under extreme market conditions.7 

As these extreme events alter investor risk appetite in energy and metal 
markets (Qadan and Nama, 2018; Qadan, 2019; Qadan and Idilbi-Bayaa, 
2020; Umar et al., 2020), the analysis of the energy-metal linkage under 
extreme market movements provides useful information for effective 
portfolio management strategies. In the case of the clean energy market, 
studying the linkage between clean energy and energy metal prices has 
important implications for upholding the resilience of clean energy 
producing during turbulence periods. While several studies have shed 
lights on the relationship between energy markets and various metal 

markets such as precious metals and industrial metals during this 
period,8 the linkage between energy and energy metal prices in the post- 
COVID-19 era has not been fully documented in the literature. 

Our paper contributes to the scant empirical evidence on the linkage 
between clean energy prices and energy metal prices. First, previous 
studies on the clean energy-energy metal relationship have focused on 
documenting this relationship at a specific part of the return distribution 
(Gustafsson et al., 2022). We expand the empirical evidence by 
exploring how the clean energy-metal relationship varies across quan
tiles. Our goal is to capture how the dependence between clean energy 
stock and energy metal markets varies between normal and extreme 
market conditions. Our results show that the relationship among the 
variables vary across quantiles. This implies the necessity of changing 
investment strategies under different market conditions. Second, pre
vious research has primarily focused on bi-sectoral relationships in the 
clean energy-dirty energy-energy metal nexus, while the interlinkage 
across all three sectors have not been fully explored. By exploring the 
clean energy-fossil fuel-energy metal price relationship in a multivari
able network, our study shows the direct and indirect relationships 
among these markets and identifies the main drivers of shock trans
mission in the system. Finally, by focusing on the evolution of the clean 
energy-dirty energy-energy metal nexus during the COVID-19 
pandemic, our paper provides useful information for the transition of 
finance towards cleaner economic activities.9 

3. Research methodology 

3.1. Empirical framework 

Our methodology employs a modification of the connectedness 
framework by Diebold and Yilmaz (2012, 2014). Following Ando et al. 
(2022), we use quantile vector autoregression to study the connected
ness among clean energy, dirty energy, and energy metal prices across 
the extreme lower, median, and extreme upper quantiles. This approach 
allows us to accommodate the extreme market movements during the 
COVID-19 pandemic.10 The estimation of quantile vector autore
gression, QVAR(p) is given as: 

yt(τ) = μ(τ)+
∑p

j=1
φj(τ) yt− j + ut(τ) (1)  

where, t denotes time and τ denotes the quantiles; yt is a vector of n 
endogenous variables, including clean energy, dirty energy, and energy 
metal prices μ(τ); φj(τ) denote coefficient matrices while ut(τ) represents 
the error vector. The maximum lag length p is 4 (Blanchard and Perotti, 
2002; Linnemann and Winkler, 2016). Using Wold's theorem, we 
transform the QVAR(p) in eq. (1) to a quantile vector moving average 
representation, QVMA(∞): Qτ (Ft− 1) = μ(τ) +

∑
i=0
∞ Ai(τ)ut− i(τ), with 

Ai(τ) = Θ1(τ)Ai− 1(τ) + Θ2(τ)Ai− 2(τ) + … for i = 1, 2,.…; A0(τ) = In and 

Table 3 
Network plot analysis. (Refer to Figs. A.1-A.3 in the Appendix for the network 
plot)  

Quantile 
(1) 

Nodes 
(2) 

Node 
Size (3) 

Asset 
(4) 

Interpretation (5) 

Q1–0.20 

Blue 

Large IXC 

Significant net transmitter of 
shocks; high weighted average net 
total directional connectedness 

Medium ICLN 

Moderate net transmitter of 
shocks; moderate weighted 
average net total directional 
connectedness 

Yellow 

Medium Copper 
Moderate net receiver of shocks; 
moderate weighted average net 
total directional connectedness 

Small 

Cobalt Low net receiver of shocks; low 
weighted average net total 
directional connectedness Nickel 

Q2–0.50 

Blue 

Large IXC 

Significant net transmitter of 
shocks; high weighted average net 
total directional connectedness 

Medium ICLN 

Moderate net transmitter of 
shocks; moderate weighted 
average net total directional 
connectedness 

Yellow 

Large Copper 
Significant net receiver of shocks; 
high weighted average net total 
directional connectedness 

Small 

Cobalt Low net receiver of shocks; low 
weighted average net total 
directional connectedness Nickel 

Q3–0.80 

Blue 

Large IXC 

Significant net transmitter of 
shocks; high weighted average net 
total directional connectedness 

Medium ICLN 

Moderate net transmitter of 
shocks; moderate weighted 
average net total directional 
connectedness 

Yellow Medium 

Copper Moderate net receiver of shocks; 
moderate weighted average net 
total directional connectedness Nickel  

Small Cobalt 

Low net receiver of shocks; low 
weighted average net total 
directional connectedness 

Note: IXC denotes the iShares Global Energy ETF (benchmarked against S&P 
Global 1200 Energy Sector Index); ICLN denotes iShares Global Clean Energy 
ETF (benchmarked against S&P Global Clean Energy Index). This table sum
marizes the findings of the network graphs in Figs. A.1-A.3. Column (1) indicates 
the quantiles, column (2) indicates node colors where ‘Blue’ (‘Yellow’) indicates 
that an asset is a shock transmitter (receiver). Column (3) indicates the node 
sizes (Large, Medium, Small), which corresponds to the size of the net 
connectedness index for each variable. Column (4) lists the assets and column 
(5) summarizes the interpretation for each asset in the network. 

7 For example, see Baker et al. (2020); Chowdhury et al. (2022); Chortane 
et al. (2022); Yarovaya et al. (2022); Cheema et al. (2022); Boubaker et al. 
(2022). 

8 For example, Chen et al. (2022), Gustafsson et al. (2022), Erdogan et al. 
(2022), Fu et al. (2022), Jiang and Chen (2022). 

9 Most studies that focus on the COVID-19 period have focused on the link
ages in other markets, such as stock, oil, bonds, for example, Bissoondoyal- 
Bheenick et al. 2021; Umar et al., 2021; Costa et al., 2021; Youssef and 
Mokni, 2021; Umar et al., 2021; So et al., 2021; Bouri et al., 2021; Zhang et al., 
2020; Umar et al., 2022; Umar et al., 2021; Umar et al., 2022.  
10 Our choice of methodology stems from its simple and intuitive framework 

to account for spillover and interdependence between the variables under 
various market conditions. Moreover, this framework can simultaneously 
accommodate more than two variables with relatively low computational costs. 
This allows us to identify the direct and indirect linkages across all the variables 
in a multivariate system, and to identify the main sources of shock transmission 
across the variables. This approach has been used to study the extreme spill
overs across different markets before and during the COVID-19 pandemic. For 
example, see Farid et al. (2022), Chen et al. (2022a), Chen et al. (2022b), Zhou 
et al. (2022). 
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Ai(τ) = 0 for i < 0. In is an n × n identity matrix. From the QVMA(∞) 
representation, we calculate the H-step ahead generalised forecast error 
variance decomposition (GFEVD) as follows: 

ψg
i,j,τ(H) =

σ− 1
jj
∑H− 1

h=0

(
eT

i Ah(τ)Σej
)2

∑H− 1
h=0

(
eT

i Ah(τ)ΣAh(τ)T ei
) (2)  

where Σ is the variance matrix of the error term vector; σjj denotes the 
standard deviation of the error term of variable j. ei is a n × 1 vector that 
takes the value 1 for element i and 0 otherwise. Next, we compute the 
normalized generalised forecast error variance decomposition (GFEVD) 
(Koop et al., 1996; Pesaran and Shin, 1998). 

ψ ͂ gij,τ(H) =
ψg

ij,τ(H)
∑k

j=1φg
ij,τ

(3) 

ψ ͂ij, τ
g (H) illustrates the percent of forecast error variance in variable i 

that is explained by variable j when variable i is in quantile τ. Next, we 
calculate the following spillover indexes to capture the overall spillovers 
across the variables: 

FROMi,τ(H) =

∑n
j=1,j∕=iψ ͂

g
ij,τ(H)

n
× 100 (4)  

TOi,τ(H) =

∑n
j=1,j∕=iψ ͂

g
ji,τ(H)

n
× 100 (5)  

NETi,τ(H) = TOi,τ(H) − FROMi,τ(H) (6)  

TCIτ(H) =

∑n
i,j=1,j∕=iψ ͂

g
ji,τ(H)

n
× 100 (7) 

Fig. 3. Time-varying total connectedness indexes. (3.1.) Quantile = 0.2. (3.2.) Quantile = 0.5. (3.3)Quantile = 0.8.  
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The TO connectedness index indicates the overall impact variable i 
has on all other variables j. The FROM connectedness index illustrates 
the impact of shocking all other variables j on variable i. The NET 
connectedness index captures the net spillovers from variable i to all 
other variables j, where a positive (negative) value indicate variable i is a 
shock transmitter (receiver) in the system. Finally, the total connect
edness index (TCI) is capture the overall connectedness among the 
variables in the system and is used a proxy for market risk contagion. 

In the empirical analysis, we focus on documenting the quantile 
connectedness at the 0.2, 0.5 and 0.8 quantiles. These quantiles capture 
the connectedness among metal and energy markets at the extreme 
negative, median and extreme positive movements. In addition to the 
static connectedness, we analyze the time-varying connectedness by 
calculating the rolling spillover indexes with a rolling window of 200 
days. 

3.2. Data 

We choose the iShares Global Energy ETF (IXC) which is bench
marked against S&P Global 1200 Energy Sector Index as a proxy for 
fossil fuel energy or dirty energy markets. Further, the iShares Global 
Clean Energy ETF (ICLN) which is benchmarked against S&P Global 
Clean Energy Index as a proxy for clean energy markets. Both IXC and 
ICLN data have been procured from Bloomberg. To measure the per
formance of metal markets, we collect data on the daily closing prices of 
cobalt, copper, and nickel from Bloomberg. These metals are selected 
because of their significant use in the clean energy market (Boer et al., 
2021b, 2021a). Since our goal is to capture the movements of energy 
and metal markets during the COVID-19 pandemic, our sample period 
ranges from 1st January 2019 to 19th January 2022. We calculate 
returns on the variables by log-differencing. 

Fig. 4. Time-varying net connectedness. (4.1.) Quantile = 0.2. (4.2.) Quantile = 0.5. (4.3.) Quantile = 0.8. 
Note: The figure captures the time-varying NET connectedness index, which is estimated from a dynamic quantile connectedness model with a 200-day rolling 
window. Positive (negative) values indicate that a market is a net shock transmitter (receiver). IXC denotes the iShares Global Energy ETF (benchmarked against S&P 
Global 1200 Energy Sector Index); ICLN denotes iShares Global Clean Energy ETF (benchmarked against S&P Global Clean Energy Index). Cob, Copp, and Nick stand 
for cobalt, copper, and nickel. 
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Figure 1(1.1 and 1.2) display the time series of the prices and returns, 
respectively. Table 1(1.1 and 1.2) provides the descriptive statistics and 
correlation matrix, respectively. The average returns for all series are 
positive, which is in line with the increasing energy and metal prices 
throughout our sampling period. The clean energy and dirty energy 
indexes have the highest standard deviations, while the metal series 
have the lowest standard deviations. This is consistent with the large 
fluctuations in energy prices during the COVID-19 pandemic, which 
stems from unpredictable energy demand and the excess supply from the 
2020 Russia-Saudi Arabia oil price war. All returns are negatively 
skewed. In addition, kurtosis is higher than 3 for most variables except 
Cobalt. Since most values of kurtosis are distanced from a typical mes
okurtic distribution, all return series are not normally distributed, as 
illustrated by the Jarque-Bera test statistics. Finally, the ERS unit root 
tests indicate that all returns are stationary, while the Ljung-Box test 
statistics provide evidence of volatility clustering in returns. Table 1 
(1.2.) shows positive correlations between the two energy indexes and 

between the three metal markets. However, the correlations between 
energy and metal markets are negative. Fig. 1 shows the evolution of the 
asset returns over time. The figure depicts sudden increase in volatility 
in copper and nickel prices following the International Energy Agency's 
COP26-Net Zero summit at the end of 2021. 

4. Empirical results and interpretations 

In this section, we report the results of our study followed by a dis
cussion. We start this section with a review of the static (average) 
connectedness followed by dynamic (time-varying) connectedness. 

4.1. Static quantile connectedness 

The static contentedness analysis shows the average connectedness 
pattern of the variables using data from the entire sample period. To 
account for asymmetric connectedness, we quantify the average 
connectedness across various quantiles and report the results for the 
20th, 50th, and 80th quantiles (Q = 0.2, 0.5 and 0.8) in Table 2 
(2.1–2.3), and respectively. We notice that the total connectedness index 
(TCI) has a sizable difference across various quantiles, thus underscoring 
the use of quantile connectedness approach. Interestingly, the highest 
connectedness is at Q = 0.8, implying the level of comovement is 
exhibited during bullish market conditions. We attribute this to the 
interlinkage between energy and energy metal markets on both the 
demand and supply side. An increase in fossil fuel prices will increase 
the cost of production for metals, which in turn increase the volatility of 
clean energy prices. 

Table 2(2.1). shows that at the lower quantile, cobalt receives the 
smallest amount of shock from the system (FROM spillover index =
40.7%), while the amount of shock received by other variables from the 
system exceeds 50%. Similarly, cobalt also transmits the least amount of 
shock to the system (TO spillover index = 39.07%). The NET connect
edness index, which indicates whether a variable is a net shock trans
mitter or receiver, is closest to 0 for cobalt (− 1.64%). Altogether, these 
results suggest the hedging potentials of cobalt for other assets under 
downward market movements, given its small connectedness to the 
system. Our results also shows that dirty energy prices are the largest net 
shock transmitter, with a NET connectedness index of 6.54%. Among the 

Fig. 4. (continued). 

Fig. 5. Relative tail dependence. 
The figure shows the difference between the TCI at the 80th quantile and 20th 
quantile, computed based on the dynamic quantile connectedness with a rolling 
window of 200 days. 
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pairwise connectedness, the two energy indexes (ICLN and IXC) are 
closely connected to each other, and nickel and copper are closely 
related to each other. The directional spillover indexes for these pairs of 
assets exceed 20%. In contrast, other pairwise spillover indexes are 
around 10%. Table 2(2.2. and 2.3). present the connectedness matrix at 
the median and upper quantile. Overall, the findings from Table 2(2.1). 
still hold, however, the connectedness indexes are smaller at the median 
quantile, than at the extreme quantiles. 

To identify the role of each variable as a transmitter or receiver of 
spillover, we look at the row named (NET) of Table 2(2.1–2.3). We 
notice that across all quantiles the equity ETFs are net transmitters of 
spillover, whereas the metals are net recipients of spillover. Further
more, the dirty energy ETF is the highest transmitter of spillover, which 
underscores its influential role in the dirty energy-energy metal-clean 
energy nexus. This is expected, as fossil fuels are an important input to 
metal production. Given that energy metals are an input to clean energy 
production, any shock to dirty energy will spill over directly or indi
rectly to all other markets. 

Overall, our static analysis partially supports the findings of previous 
research on the increasing spillovers across markets under extreme 
conditions (e.g. Baker et al., 2020; Farid et al., 2022). Our result shows 
the importance of dirty energy as a shock transmitter to clean energy 
and energy metals. By studying the dirty energy-energy metal-clean 
energy nexus in a multivariate setting, our paper documents the direct 
and indirect linkage between fossil fuels and other markets. 

The above analysis shows the overall connectedness and the role of 
each variable as a transmitter and receiver of spillover by accounting for 
the overall relationship of all the variables. To gain further insight, we 
look at the pairwise relation between different variables employed. We 
employ a network graph approach to distinguish between net trans
mitter and recipient of pairwise spillover across various quantiles, Q =
0.2, 0.5, 0.8, reported in Figs. 2(2.1–2.3), respectively. For ease of 
interpretation, we summarize the pairwise connectedness results in 
Table 3. This network plot analysis depicts the intensity and direction of 
shocks in this network. Both dirty and clean energy are found to prop
agate shocks to the system, where dirty energy is the largest net shock 
transmitter across all three quantiles. Metals were the net receiver of 
shocks, though the degree varies over the three quantiles and across 
metals. For example, copper is the largest net shock receiver across all 
three quantiles, while cobalt is the smallest net shock receiver across the 
quantiles. Interestingly, we notice that at the lower quantile, the clean 
energy and dirty energy ETFs seem to be unconnected, implying po
tential diversification benefits during periods of bearish market 
conditions. 

4.2. Dynamic quantile connectedness 

The previous section reported the average connectedness across 
various quantiles. In this section, we report the time-varying connect
edness across various quantiles by estimating a dynamic quantile 
connectedness model with a rolling window of 200 days. 

We start our discussion by analyzing the time-varying total 
connectedness (TCI) across Q = 0.2, 0.5, 0.8, which are depicted in 
Figs. 3(3.1.–3.3.), respectively. The TCI of all the variables (clear and 
dirty energy ETF and metals) exhibits sizable deviation both across time 
as well as across quantiles, thus underscoring the importance of time- 
varying and quantile connectedness analysis. 

Overall, as expected, the connectedness across the extreme quantiles 
is higher compared to the median quantile. For the lower extreme 
quantile (Q1 = 0.2), we notice that the TCI increases steadily until April 
2021, and fluctuates around 70% between April and October 2021, 

before dropping to 45% at the beginning of 2022.11 One explanation for 
the increasing connectedness before October 2021 relies on the various 
events that influence the energy and metal markets during this period. 
For example, most countries implement varying degrees of travel re
striction during this period. In addition, the high oil price volatilities 
caused by the Russia-Saudi Arabia oil price war, coupled with supply 
chain issues, increase the uncertainty and contagion across the markets. 
By October 2021, the acceleration of COVID-19 vaccination distribu
tions partly contributes to the decline in spillovers across markets, as 
travel restrictions are lifted in many countries. Note that the emergence 
of the Omicron variant around the same time may not increase the 
spillovers across the markets, as this variant is more contagious but less 
deadly than the previous Delta variant, which is believed by many at the 
time to signal the end of the pandemic. Similar observations can be made 
for the upper quantile (Fig. 3(3.3)), however, the TCI tends to be higher 
at the upper quantile than at the lower quantile. The TCI in the upper 
quantile (Q = 0.8) remains relatively high and exhibits relatively less 
visible upward or downward trends during this period, compared to the 
TCI in the lower quantiles. 

At the median quantile (Q2 = 0.5), the TCI exhibits a spike from 38 to 
60% in April 2020, which corresponds to the first wave of the COVID-19 
pandemic and the Russia-Saudi Arabia oil price war. Subsequently, it 
becomes relatively rangebound during both the Delta and Omicron 
phases (45–35%). 

In summary, it is evident that TCI surged almost immediately after 
the declaration of COVID-19 as a pandemic in February 2020. This 
shows that COVID-19 has significantly impacted the connectedness be
tween dirty energy, clean energy and energy metal markets. However, 
the TCI varies widely in magnitudes across quantiles, which implies an 
asymmetric impact of the pandemic on the connectedness among the 
variables. Note that any spike in the TCI at the median quantile is short 
term and reverts to their average value quickly. In contrast, the TCI at 
the extreme quantiles remains high for a long period of time. This sug
gests that shocks dissipate more quickly during normal market condi
tions, compared to bullish or bearish conditions. Thus, the 
diversification benefits among clean energy, dirty energy, and energy 
metal markets are larger at the median quantiles than at the extreme 
quantiles. 

Next, we analyze the time-varying dynamics of the net connected
ness indexes across the quantiles and report the results for quantiles Q =
0.2, 0.5, 0.8 in Fig. 4(4.1–4.3), respectively. A positive value indicates 
that a variable is a net shock transmitter. At the lower quantile (Fig. 4 
(4.1.)), the clean energy and dirty energy markets are the net shock 
transmitters until January 2021. After that, the clean energy market 
becomes the net shock receiver, while the dirty energy market fluctuates 
between being a net shock transmitter and receiver. Copper and nickel 
are the net shock receivers until January 2021 and become net shock 
transmitters afterwards. The switch in the roles of clean energy, copper 
and nickel before and after January 2021 can be explained by the 
increasing preferences towards clean energy, which increases the de
mand for energy metals. This is consistent with International Money 
Fund's prediction that copper consumption would double, and nickel 
would quadruple, in line with International Energy Agency's 2050 net- 
zero roadmap (International Energy Agency, 2021b). After 2021, the 
emergence of serious supply chain issues implies that energy metal 
supply does not keep up with increasing demands, thus, any volatility in 
energy metal prices is transmitted into clean energy prices. Note that the 
net connectedness index for cobalt is the closest to 0 throughout the 
sampling period, which suggests its potential as a hedging instrument 
for other markets. We notice similar results at the median quantile 
(Fig. 4(4.2.)). At the upper quantile (Fig. 4(4.3.)), the markets exhibit 

11 The first wave of COVID-19 happens during the first half of 2020, the Delta 
variant starts in late 2020 until mid-2021, while the Omicron variant starts in 
late 2021. 
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similar patterns as at the lower and median quantiles until January 
2021. However, after January 2021, while the roles of the markets as net 
shock transmitters and receivers are relatively stable at the lower and 
median quantiles, they fluctuate more frequently at the upper quantile. 
This provides evidence for asymmetric spillover effects across the mar
kets between upward and downward market movements. In addition, 
our results also illustrate the more unpredictable nature of the spillover 
patterns during extreme increases in energy and metal prices. 

To further identify and highlight the importance of asymmetric 
connectedness, we report the relative tail dependence (RTD) in Fig. 5 
computed by taking difference of the TCI for the Q = 0.8 and Q = 0.2. 
We notice that the RTD is predominantly non-zero, which highlights the 
asymmetry in connectedness across quantiles. Positive RTD values 
indicate higher connectedness during bullish market conditions, 
whereas negative values indicate higher connectedness during bearish 
market conditions. Three lowest points (April 2020, February 2021 and 
October 2021) of RTD corresponds to the three phases of the COVID-19 
pandemic: the first wave, the emergence of the Delta variant, and the 
emergence of the Omicron variant. The RTD is predominantly negative 
during August–December 2020, January–June 2021 and October 
2021–January 2022, indicating stronger connectedness in the extreme 
lower quantiles. In contrast, they tend to be positive during other pe
riods. Altogether, Fig. 4 shows evidence of asymmetric spillovers among 
clean energy, dirty energy and energy metal markets. However, the 
relative strength of the spillovers at the upper and lower quantiles varies 
throughout the sampling period. This implies that a timely forecast of 
market movements is important for effective risk and portfolio man
agement. Our findings are in line with the findings of Bouri et al. (2021), 
who document similar results for cryptocurrencies under similar 
extreme conditions. Furthermore, similar risk transmission is observed 
between clean energy and dirty energy (crude oil) (Saeed et al., 2021). 
The divergent pattern in dynamic total connectedness index (TCI) for 
the three quantiles corroborates their findings. 

We perform several robustness checks for the results. Specifically, we 
estimate the quantile connectedness models for other extreme quantiles 
such as the 5th and 95th quantiles. Our results in Appendix A shows that 
the extreme quantile connectedness becomes stronger at the 5th and 
95th quantiles than at the 20th and 80th quantile, thereby confirming 
our conclusion of a stronger dependence among energy and energy 
metal markets at the tails. Moreover, our dynamic connectedness results 
at the 5th and 95th quantile also shows an increase in the connectedness 
at the early phase of the COVID-19 pandemic and during the Delta and 
early Omicron phases. We summarize the total connectedness indexes at 
various quantiles in Table A.3 and Fig. A.5. The table shows a higher 
total connectedness among the markets at the extreme quantiles 
compared to that at the median quantile. Table A.3 also presents evi
dence of asymmetric quantile connectedness, where the connectedness 
among the markets is higher at the upper extreme quantiles than at the 
lower extreme quantiles. Finally, we estimate the dynamic quantile 
connectedness using alternative rolling windows of 150 and 200 days. 
We find that the results are qualitatively similar under these alternative 
specifications (Table A.4). 

Notes: The figure presents the time-varying total connectedness in
dexes across the quantiles, which are estimated using a rolling-window 
analysis of the quantile connectedness model. The size of the rolling 
window is 200 days, which corresponds to a trading year. The blue line 
captures the raw total connectedness index (Eq. (7)), while the orange 
line captures the adjusted total connectedness index, which is obtained 
by replacing the denominator n in Eq. (7) with n-1. n = 5 is the number 
of variables. 

4.3. Discussion 

The results reported in the previous sections underscore the impor
tance of accounting for the asymmetric connectedness among clean 
energy, dirty energy, and energy metal markets across various quantiles. 

Our results have several implications for investors and policymakers. 
First, our result shows that on average, the markets are more con

nected at the upper quantile, which suggests an increase in the conta
gion across the market in the event of an extreme increase in energy or 
metal prices. However, the relative strength of the connectedness be
tween the extreme upper and lower quantiles varies over time 
throughout the sampling period. This implies that a timely forecast of 
market movements is important for effective portfolio management 
(Aharon et al., 2022; Bossman et al., 2022; Zhao et al., 2021). Moreover, 
since the spillovers across markets are stronger at the extreme quantiles 
than at the median quantiles, our results imply that policy efforts at 
stabilizing energy and metal prices under extreme market movements 
may lower the contagion across markets, thereby improving the hedging 
and diversification benefits between energy and metal markets. This, in 
turn, contributes to the direction of funding towards environmentally 
friendly economic activity. 

Second, our results indicate that dirty energy is the main net trans
mitter of shocks across all quantiles and throughout most of the sam
pling period. This indicates the significance of dirty energy in the dirty 
energy-energy metal-clean energy nexus. Thus, movements in fossil fuel 
prices can be used to forecast movements in the energy metal and clean 
energy markets. The predominant role of dirty energy as the shock 
transmitter also implies that the energy metal and clean energy markets 
have not been fully independent from fossil fuels. Thus, to promote 
environmentally friendly activities, policy should promote the devel
opment technologies that increases the independence of energy metal 
and clean energy production from fossil fuels. 

Third, our results show that the role of clean energy and energy 
metals switch before and after January 2021. Specifically, clean energy 
is the net shock transmitter before January 2021, while energy metals 
are the net shock transmitters after January 2021. As supply chain issues 
become more serious in 2021, this implies the importance of a stable 
energy metal supply for the production of clean energy. Our results also 
highlight the relevance of development in advanced materials that re
duces the excessive reliance of clean energy production on energy 
metals. Finally, the low connectedness of cobalt to other markets across 
quantiles implies the potential use of cobalt as a hedging and diversifi
cation tools for energy and energy metal markets. 

5. Concluding remarks 

This study aims to understand the relationship between energy 
metals and clean/dirty energy assets during the periods around the 
COVID-19 pandemic. Using the quantile connectedness method, we find 
that dirty energy, clean energy, and energy metal markets are more 
connected at the extreme quantiles than at the median quantile. This 
indicates more contagion among these markets under bearish and 
bullish market conditions. Moreover, we find evidence of asymmetry in 
the connectedness among energy metals and energy markets, where on 
average, the connectedness is larger at the upper quantiles than at the 
lower quantiles. Thus, an extreme increase in energy or metal prices 
causes a significant increase in the spillovers across the markets. In 
addition, we find that dirty energy assets are the main transmitter of 
shocks across the quantiles. Finally, we find that copper and nickel are 
net transmitters of shocks in response to the supply chain issues and the 
increasing clean energy demand in early 2021. This is consistent with 
the IEA's projection of an increase in demand for copper and nickel in the 
transition from dirty to renewable energy. 

Our paper contributes to the empirical evidence on the linkage be
tween clean/dirty energy prices and energy metal prices. First, we 
document the dependence across these assets at various quantiles, 
thereby capturing their relationships under various market conditions. 
Second, by using a network approach, we identify the linkage between 
clean energy, dirty energy, and energy metal prices in a multivariate 
framework, thereby capturing the main receiver and transmitter of 
shocks in the system. Compared to other approaches such as wavelet 
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coherence or quantile-on-quantile models, this framework also allows us 
to capture the direct and indirect spillovers across the markets under 
various movements (extreme upward, normal, extreme downward). 
Finally, by focusing on the most recent crisis, namely the COVID-19 
pandemic, our paper unravels the recent dynamics among clean en
ergy, dirty energy, and energy metals, which have important implica
tions for the sustainable recovery of the economy post-COVID-19. 

Our empirical results have several implications for investors and 
policymakers. First, our results show that the connectedness among 
energy metals and clean/dirty energy equity assets increases during 
extreme periods. Therefore, investors and policymakers should not limit 
their analyses of these markets at the middle of the return distributions, 
since doing so would mask the asymmetric tail dependence among the 
markets. Second, the stabilization of energy and metal prices, particu
larly during periods of extreme upward market movements, will help 
stabilize the spillovers across the markets. This, in turn, improves the 
diversification benefits of an energy/energy metal portfolio. Third, as 
energy metals will play an important role in the transition to a carbon 
free economy, increasing the predictability of energy metal prices will 
be essential in attracting investors to the clean energy markets. More
over, technological development that reduces the dependence of clean 
energy on metals and fossil fuels can foster the growth of clean energy 
markets. Fourth, our results indicate that cobalt is the least connected to 
other markets across quantiles. Thus, it can be used as a hedging tool for 
clean energy, dirty energy and other energy metals under a wide range 
of market conditions. Finally, the time-varying spillovers among the 
markets also provide important information for investors to adjust their 
investment positions across various market conditions. Future studies 
can extend our work by quantifying the portfolio implications and 

associated welfare effects for investors with various investment horizons 
and various risk aversion levels (Spierdijk and Umar, 2014). Another 
extension would be to study the relationship between energy and energy 
metal markets during other extreme events. Moreover, an analysis of the 
role of technologies on the nexus among clean energy, dirty energy and 
energy metal markets can provide useful information for the decar
bonization of the economy. Finally, while the quantile connectedness 
model allows us to capture the spillovers across markets under various 
market conditions, our use of daily data may not fully account for the 
behavior of these markets at other time horizons. Future research can 
address this limitation by using data at other frequencies (intraday, 
weekly, monthly) and accounting for the heterogeneity in the nexus 
among energy and metal markets across investment horizons. 
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Appendix A. Robustness checks

Fig. A.1 Total connectedness index plot for the extreme right quantile (Quantile = 0.95). 
Notes: The figure presents the time-varying total connectedness indexes at the 95th quantile, which are estimated using a rolling-window analysis of the quantile 
connectedness model. The size of the rolling window is 200 days, which corresponds to a trading year.  
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Fig. A.2. Total Connectedness Index Plot for the extreme left quantile (Quantile = 0.05). 
The figure presents the time-varying total connectedness indexes at the 5th quantile, which are estimated using a rolling-window analysis of the quantile 
connectedness model. The size of the rolling window is 200 days, which corresponds to a trading year. 

Fig. A.3. Net total directional connectedness at the extreme left quantile (Quantile = 0.05).  

The figure captures the time-varying NET connectedness index, which is estimated from a dynamic quantile connectedness model with a 200-day 
rolling window. Positive (negative) values indicate that a market is a net shock transmitter (receiver). IXC denotes the iShares Global Energy ETF 
(benchmarked against S&P Global 1200 Energy Sector Index); ICLN denotes iShares Global Clean Energy ETF (benchmarked against S&P Global Clean 
Energy Index). Cob, Copp, and Nick stand for cobalt, copper, and nickel. 
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Fig. A.4. Net total directional connectedness at the extreme right quantile (Quantile = 0.95).  

The figure captures the time-varying NET connectedness index, which is estimated from a dynamic quantile connectedness model with a 200-day 
rolling window. Positive (negative) values indicate that a market is a net shock transmitter (receiver). IXC denotes the iShares Global Energy ETF 
(benchmarked against S&P Global 1200 Energy Sector Index); ICLN denotes iShares Global Clean Energy ETF (benchmarked against S&P Global Clean 
Energy Index). Cob, Copp, and Nick stand for cobalt, copper, and nickel.

Fig. A.5 Varying TCI values across quantiles (graphical depiction of Table A.3). 
The figure presents the total connectedness index across the quantiles.  

Table A.1 Average connectedness for Quantile Q = 0.05.   

ICLN IXC Nick Copp Cob FROM others 

ICLN 30.34 22.27 15.76 16.22 15.41 69.66 
IXC 23.07 32.23 15.25 15.07 14.37 67.77 
Nick 14.91 14.63 32.1 21.98 16.38 67.9 
Copp 15.66 15.56 22.14 30.39 16.25 69.61 
Cob 15.8 15.18 17.22 16.65 35.15 64.85 

TO others 69.44 67.63 70.38 69.91 62.41 339.78 
Inc. own 99.78 99.87 102.48 100.31 97.56 TCI = 77% 

NET − 0.22 − 0.13 2.48 0.31 − 2.44  
ICLN and IXC stand for the iShares Global Clean Energy ETF and the iShares Global Dirty Energy ETF. Nick, Copp, and Cob stand for nickel, copper and cobalt. Each cell 
represents the amount of spillovers from the market listed in the column to the market listed in the row. The column ‘FROM others’ captures the spillovers from all 
other variables to each row variable. The row ‘TO others’ captures the spillovers from each column variable to all other variables. The row ‘Inc. own’ captures the 
spillovers from each column variable to all variables, including itself. The row ‘NET’ captures the net connectedness, where a positive (negative) value indicates a shock 
transmitter (receiver). 
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Table A.2 Average connectedness for Quantile Q = 0.95.   

ICLN IXC Nick Copp Cob FROM others 

ICLN 32.95 24.29 14.08 14.87 13.8 67.05 
IXC 24.12 33.03 14.66 15.2 12.98 66.97 
Nick 15.28 15.36 31.93 23.12 14.31 68.07 
Copp 15.25 15.64 22.7 32.39 14.03 67.61 
Cob 14.61 14.59 15.99 16 38.82 61.18 

TO others 69.26 69.87 67.43 69.2 55.11 330.88 
Inc. own 102.21 102.91 99.36 101.59 93.93 TCI = 82% 

NET 2.21 2.91 − 0.64 1.59 − 6.07  
ICLN and IXC stand for the iShares Global Clean Energy ETF and the iShares Global Dirty Energy ETF. Nick, Copp, and Cob stand for nickel, copper and cobalt. Each cell 
represents the amount of spillovers from the market listed in the column to the market listed in the row. The column ‘FROM others’ captures the spillovers from all 
other variables to each row variable. The row ‘TO others’ captures the spillovers from each column variable to all other variables. The row ‘Inc. own’ captures the 
spillovers from each column variable to all variables, including itself. The row ‘NET’ captures the net connectedness, where a positive (negative) value indicates a shock 
transmitter (receiver).  

Table A.3. Total Connectedness Index 
(TCI) across various quantiles.  

Quantile TCI 

0.05 77% 
0.1 60% 
0.2 45% 
0.3 36% 
0.5 35% 
0.7 38% 
0.8 58% 
0.9 63% 
0.95 82% 

The table summarizes the total connect
edness indexes at various quantiles.  

Table A.4 TCI values across alternative rolling windows.  

Rolling Window (Days) TCI (Q = 0.2) TCI (Q = 0.5) TCI (Q = 0.8) 

150 45% 21% 43% 
250 42% 20% 43% 

The table summarizes the average total connectedness indexes at various quantiles using a dynamic quantile 
connectedness model at alternative rolling windows (150 and 250 days). 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.eneco.2022.106420. 
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