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Abstract 
Chromosome conformation capture methodologies have provided 
insight into the effect of 3D genomic architecture on gene regulation. 
Capture Hi-C (CHi-C) is a recent extension of Hi-C that improves the 
effective resolution of chromatin interactions by enriching for defined 
regions of biological relevance. The varying targeting efficiency 
between capture regions, however, introduces bias not present in 
conventional Hi-C, making analysis more complicated. Here we 
consider salient features of an algorithm that should be considered in 
evaluating the performance of a program used to analyse CHi-C data 
in order to infer meaningful interactions. We use the program 
CHICAGO to analyse promotor capture Hi-C data generated on 28 
different cell lines as a case study.
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Introduction
Chromosome conformation capture (3C) methodologies1–3 
have provided insight into the effect of 3D genomic architec-
ture on gene regulation4–6. They preserve chromatin interac-
tions by cross-linking followed by fragmentation, ligation and 
sequencing of interacting genomic regions. Hi-C exploits high-
throughput paired-end sequencing to retrieve a short sequence 
from each end of each ligated fragment, allowing all pairwise  
interactions between fragments to be tested7 (Figure 1).

Chromatin interactions can result from biological functions, 
such as promoter-enhancer interactions, or from random poly-
mer looping, whereby undirected physical motion of chroma-
tin causes loci to collide. To identify ‘true’ interactions, it is  
necessary to identify the contribution from the null hypothesis, 
largely attributed to constrained Brownian motion and noise8. 
While not completely eliminating background noise, the devel-
opment of in situ Hi-C, which preserves the integrity of the 
nucleus during Hi-C library generation, has gone some way to  
reducing it3.

Analysis of Hi-C libraries involves filtering of invalid di-tags 
such as self-ligated pairs or adjacent fragment di-tags9 before 
determining statistically significant and biologically important  
di-tag interactions. The expected frequency of interactions 
between two fragments decreases with their genomic distance,  
especially if the fragments lie in different chromosomes8.  
Hence, reliable estimates of the dependence on distance are a  
prerequisite to any analysis.

While Hi-C allows for genome-wide characterization of chro-
matin contacts detection its effective resolution is determined by 
both restriction fragmentation and sensitivity of the experiment. 
Capture Hi-C (CHi-C) is a recent extension of the Hi-C meth-
odology that improves resolution by enriching defined regions 
of biological significance10 (Figure 1). Analysis of CHi-C data 
is, however, more complicated than conventional Hi-C because:  
(1) varying targeting efficiency between capture regions intro-
duces a bias not present in Hi-C8; (2) contact maps in CHi-C arise 
from two distinct sources that have innately different visibility  
profiles - between the two captured fragments and between  

Figure 1. Work-flow for the generation of CHi-C library and downstream analysis. Herein we consider data based on restriction 
enzyme digestion using the 6bp cutter Hind III, Sequencing of Chi-C library, alignment and filtering of valid di-tags using HiCUP9 and 
identification of significant di-tag interactions using CHiCAGO8.
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captured and non-captured fragments; (3) null hypotheses for 
each di-tag pair are not independent as these are tested simulta-
neously, requiring an alternative statistic instead of reliance on  
raw p-values from hypothesis tests. 

CHi-C, especially in the guise of promotor capture Hi-C (PCHi-C)  
is increasingly being used to decipher the genetic basis of aber-
rant gene expression in cancer. Since cancers rarely have 
diploid genomes, the analysis of PCHi-C from tumours is  
further complicated by copy number variation (CNV)11 and  
presence of inter-chromosomal translocations12.

Here we examine a number of features of an algorithm that 
should be considered in evaluating the performance of a  
program used to analyse CHi-C data. Specifically, (i) the 
appropriateness of the distance-correction used in the model;  
(ii) relative importance of weights assigned to model param-
eters; (iii) whether the null is accurately reproducing the distri-
bution of the large majority of contacts and how thresholds for 
declaring significant interactions are obtained; (iv) whether the 
underlying model leads to asymmetry in test statistics of bait-
bait pairs; and (v) how an algorithm behaves processing CHi-C  
cancer cell line data. As an illustration we consider CHiCAGO8 
as a case study since it is a widely-used program for analysing  
PCHi-C data13,14. The algorithm features a novel background cor-
rection procedure using a two-component convolution model 
designed to account for real but expected interactions as well 
as experimental and sequence-based artefacts. Additionally,  
CHiCAGO implements a p-value weighting procedure, based  
on parameters that can be estimated from the data.

Results
Cell lines and PCHi-C data
We made use of publicly accessible PCHi-C cell line data 
- 18 human primary hematopoietic cells (lymphoblastoid - 
GM12878; activated and non-activated total CD4+ - ACD4 and 
NACD4, respectively; endothelial precursors – EP; erythrob-
lasts - Ery; foetal thymus – FoeT; macrophage - Mac0, Mac1, 
Mac2; megakaryocytes – MK; monocytes – Mon; naive and 
total B, CD4+, CD8+ – NB, NCD4, NCD8, TB, TCD4 and  
TCD8 respectively; and neutrophils – Neu) and 10 cancer cell 
lines (glioma - BLN2, BLN3, N16; colorectal cancer - HT29, 
LoVo; multiple myeloma - KMS11, KM12BM, MM1S; Hodg-
kin lymphoma - L428; testicular germ cell tumor - NTERA2);  
detailed in Supplementary Table 1 (see Extended data15).

Raw sequencing data was processed using HiCUP v0.6.19 to 
obtain only valid interaction di-tags aligned to build 38 of the 
human genome.Summary statistics for each PCHi-C dataset 
are provided in Supplementary Data 1 (see Extended data15).  
Significance of interaction frequencies for di-tags, both ends 
baited (bait-bait) and where only one end was baited (bait-other  
end) were estimated using CHiCAGO v1.1.88.

Model considerations
We initially considered PCHi-C libraries from the 18 non-tumour 
cell lines. In CHiCAGO, background interactions are modelled 
by the following components of a Delaporte distribution, which 

are assumed to be independent: (1) Brownian collisions – mod-
elled by a negative binomial random variable with expected lev-
els a function of genomic distance, adjustment for biases  
associated with individual fragments and size parameter inde-
pendent of the interacting pair; (2) assay artefacts/technical 
noise (i.e. sequencing errors) – modelled by a Poisson random 
variable, whereby the mean of Poisson random variable depends 
on the properties of interacting fragments, but is independent  
of genomic distance between fragments.

We examined the validity of the model and estimation of  
central parameters. Assuming that in ‘small’ distance bins tech-
nical noise is low, as per CHiCAGO specifications, test statis-
tics and corresponding p-values for the Kolmogorov-Smirnov  
(KS) test (testing probability that data observed is generated 
by the model specified, aggregated over distance bins) were  
generated for ACD4 (Table 1) and the other 17 cell lines  

Table 1. Discrete KS test applied to the null 
distribution for ACD4. Bin-wise D statistics and 
the corresponding Monte Carlo p-value for the 
ACD4 cell line.

Distance Bin Test Statistic P value

(0,2e+04] 0.228 <0.001

(2e+04,4e+04] 0.208 <0.001

(4e+04,6e+04] 0.191 <0.001

(6e+04,8e+04] 0.180 <0.001

(8e+04,1e+05] 0.172 <0.001

(1e+05,1.2e+05] 0.166 <0.001

(1.2e+05,1.4e+05] 0.162 <0.001

(1.4e+05,1.6e+05] 0.155 <0.001

(1.6e+05,1.8e+05] 0.148 <0.001

(1.8e+05,2e+05] 0.142 <0.001

(2e+05,2.2e+05] 0.137 <0.001

(2.2e+05,2.4e+05] 0.130 <0.001

(2.4e+05,2.6e+05] 0.124 <0.001

(2.6e+05,2.8e+05] 0.118 <0.001

(2.8e+05,3e+05] 0.113 <0.001

(3e+05,3.2e+05] 0.107 <0.001

(3.2e+05,3.4e+05] 0.100 <0.001

(3.4e+05,3.6e+05] 0.095 <0.001

(3.6e+05,3.8e+05] 0.091 <0.001

(3.8e+05,4e+05] 0.086 <0.001

(4e+05,4.2e+05] 0.078 <0.001

(4.2e+05,4.4e+05] 0.078 <0.001
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(Supplementary Table 2, Extended data15). In most cell lines the 
p-values associated with the small distance bins were effectively 
zero but rapidly increased to near-unity in the larger distance 
bins. The notable outlier was GM12878, which was typified  
by near zero p-values across all distance bins. The exact esti-
mates of bin-wise p-values are not necessarily important, since 
they will be impacted by true interactions, bait specific biases per-
mitted by the model, the effect of which is expected to be small, 
and the distribution of distances within each bin. Nevertheless,  
the fact that there was no rejection of the null hypothesis at large 
distance bins implies that the negative binomial model fits the 
data well for broad-scale behaviour. As technical noise is pro-
portionally greater at large distances, the discrepancy in how 
well the negative binomial fits over distance cannot be attributed  
to the KS test ignoring the Poisson component.

The ‘distance function’, a key component of CHiCAGO’s imple-
mentation of a genomic distance dependence into the mean of 
the negative binomial, was generated for each cell line. Coef-
ficients of distance fit curves and plots of estimates of the  
distance function f(d) for the 18 cell lines are shown in Supple-
mentary Table 3 and Supplementary Figure 1 (see Extended data15).  
In all 18 cases the cubic spline fitted by CHiCAGO provides a 
good fit to the data. With the exception of GM12878, there was 
strong concordance between the theoretical, linear and cubic fit, 
and the curvature of the cubic spline K further shows GM12878 
as an outlier, which may well reflect GM12878 Hi-C librar-
ies being prepared by dilution rather than in situ ligation. In 
view of GM12878 being an outlier, a linear model Linear Inter-
cept ~ Linear Gradient was fitted with and without GM12878  
(y = –0.776 – 14.681x and y = 1.067 – 12.919x, respec-
tively), with the second having a lower residual square sum 

Distance Bin Test Statistic P value

(4.4e+05,4.6e+05] 0.079 <0.001

(4.6e+05,4.8e+05] 0.083 <0.001

(4.8e+05,5e+05] 0.084 <0.001

(5e+05,5.2e+05] 0.086 <0.001

(5.2e+05,5.4e+05] 0.090 <0.001

(5.4e+05,5.6e+05] 0.089 <0.001

(5.6e+05,5.8e+05] 0.090 <0.001

(5.8e+05,6e+05] 0.091 <0.001

(6e+05,6.2e+05] 0.093 <0.001

(6.2e+05,6.4e+05] 0.094 <0.001

(6.4e+05,6.6e+05] 0.098 <0.001

(6.6e+05,6.8e+05] 0.100 <0.001

(6.8e+05,7e+05] 0.102 <0.001

(7e+05,7.2e+05] 0.101 <0.001

(7.2e+05,7.4e+05] 0.105 <0.001

(7.4e+05,7.6e+05] 0.106 <0.001

(7.6e+05,7.8e+05] 0.112 <0.001

(7.8e+05,8e+05] 0.111 <0.001

(8e+05,8.2e+05] 0.113 <0.001

(8.2e+05,8.4e+05] 0.115 <0.001

(8.4e+05,8.6e+05] 0.114 <0.001

(8.6e+05,8.8e+05] 0.118 <0.001

(8.8e+05,9e+05] 0.119 <0.001

(9e+05,9.2e+05] 0.121 <0.001

(9.2e+05,9.4e+05] 0.122 0.001

(9.4e+05,9.6e+05] 0.124 0.012

(9.6e+05,9.8e+05] 0.126 0.478

(9.8e+05,1e+06] 0.126 >0.999

(1e+06,1.02e+06] 0.129 >0.999

(1.02e+06,1.04e+06] 0.129 >0.999

(1.04e+06,1.06e+06] 0.131 >0.999

(1.06e+06,1.08e+06] 0.131 >0.999

(1.08e+06,1.1e+06] 0.134 >0.999

(1.1e+06,1.12e+06] 0.135 >0.999

(1.12e+06,1.14e+06] 0.136 >0.999

(1.14e+06,1.16e+06] 0.137 >0.999

(1.16e+06,1.18e+06] 0.138 >0.999

(1.18e+06,1.2e+06] 0.141 >0.999

Distance Bin Test Statistic P value

(1.2e+06,1.22e+06] 0.143 >0.999

(1.22e+06,1.24e+06] 0.143 >0.999

(1.24e+06,1.26e+06] 0.143 >0.999

(1.26e+06,1.28e+06] 0.147 >0.999

(1.28e+06,1.3e+06] 0.148 >0.999

(1.3e+06,1.32e+06] 0.150 >0.999

(1.32e+06,1.34e+06] 0.149 >0.999

(1.34e+06,1.36e+06] 0.149 >0.999

(1.36e+06,1.38e+06] 0.152 >0.999

(1.38e+06,1.4e+06] 0.154 >0.999

(1.4e+06,1.42e+06] 0.154 >0.999

(1.42e+06,1.44e+06] 0.155 >0.999

(1.44e+06,1.46e+06] 0.157 >0.999

(1.46e+06,1.48e+06] 0.158 >0.999

(1.48e+06,1.5e+06] 0.160 >0.999
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(RSS), so correspondingly providing for a better fit. This linear  
fit is consistent with interactions detected primarily being  
cis-chromosomal.

The assumption that assay artefacts have minimal effect on 
expected reads in small distance bins was confirmed by calcu-
lating the mean technical noise parameter λ  and mean number 
of trans pairs observed per bait for each cell line. Box plots 
of the parameter estimate per bait or other-end pool, shown in  
Supplementary Figure 2 (see Extended data15), adhere largely 
to the patterns expected as laid out in the CHiCAGO vignette8, 
where it is stated that to interpret the noise box plots one needs 
to check that “distributions’ median and variance should  
trend upwards as we move from left to right”.

Score statistic
CHiCAGO implements a novel score statistic as a proxy for 
the strength of evidence supporting an interaction8. We investi-
gated the suitability of this statistic and the threshold advocated 
for declaring significance. Initially, we compared CHiCAGO 
interaction scores between bait-bait pairs. Intuitively it might 
be assumed that the score for baits AB will be identical to BA.  
However, this is not the case as evidenced by plots of score

ij
 

against score
ji
 statistics for ACD4 (Figure 2) and the other 17 

cell lines (Supplementary Figure 3). The asymmetry arises 

because when CHiCAGO constructs bait-end biases and other  
end biases, the former are assumed to be fixed for each bait, 
whereas the other-end bias is assumed to be drawn from a  
random distribution, resulting in a different number of expected 
reads for the pair (mean correlation 0.4854, interquartile range  
(IQR) 0.0970). To further understand this asymmetry, we 
define an interaction as ‘reversible’ if, for a given threshold, the  
significance of the interaction did not depend on the direction in 
which the score was calculated. The mean percentage of revers-
ible interactions was only 23.06% (IQR = 4.06%); the presence of 
non-reversible interactions representing failure of the algorithm  
to assign biological relevance to a bait-bait interaction.

Significance threshold
The threshold advocated by the developers of CHiCAGO for 
declaring a significant interaction is a score

ij
 > 58 - referred to 

as the normal score threshold (NST). We investigated power 
and false-discovery rate (FDR) at this threshold. To evaluate 
power, or equivalently the false-negative rate, (FNR) we cal-
culated the proportion of interactions with log(p) < –10 (con-
sidering the null hypothesis of the Delaporte distribution) and 
score >5. log(p) < –10 (i.e. ‘robust’ interactions) was used as in 
the mathematical specification of CHiCAGO it is suggested that 
reproducible interactions are those that pass this threshold in all  
replicates8.

Figure 2. Plots of the score statistics for bait-bait pairs in ACD4. The five pairs with the largest deviation, (Score – Reverse Score)2, are 
labelled with their IDs from the rmap file. The significance threshold of 5 is indicated by orange lines, with the blue line corresponding to 
the theoretical fit of Score=Reverse Score.
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Because the principle underlying the CHiCAGO score statis-
tic precluded simply using p-values to identify true interactions, 
except for in extreme cases, we used the Jaccard index as a proxy 
for FDR (assuming interactions passing the score threshold in 
all replicates are true). To quantify the suitability of the score  
as a statistic at alternate thresholds, we calculated alternate score 
thresholds with the aim of improving the FNR, FDR, as well 
as the family-wise error rate (FWER) (Table 2). Across all 18 
cell lines the threshold to fix the theoretical FWER was a score 
≳15; however, this limited discovery to O(104) interactions per 
cell line, compared with O(105) interactions when imposing a  
score threshold of 5.

Weighting procedure
CHiCAGO scores are computed from raw p-values corrected for 
the prior probability of true interaction, fitted by a four-parameter  
logistic regression model8. The parameters can be calculated  
from the reproducibility of interaction frequencies at differ-
ent genomic distances for the cell line, otherwise by default 

the program uses estimates from macrophage data. To inves-
tigate the appropriateness of the estimation method and the 
extent to which the choice of weighting affects the identifica-
tion of significant interactions, we used CHiCAGO’s pre-built  
method to calculate parameters for each cell line.

CHiCAGO uses the observed interactions to fit a curve of true-
interaction prior probability that decreases monotonically with 
distance. The monotonicity of the model is intuitive because 
in general baits that have a greater separation distance will have 
a lower prior probability of interacting. The lack of the monoto-
nicity of the observed data, a measure with range of 0 to 1, with 
0 corresponding to perfect monotonicity, had mean 0.3222,  
IQR 0.0917 (4.d.p). While it is not possible to quantify how  
much of the lack of monotonicity is due to expected vari-
ance without making additional hypotheses of the model, vis-
ual inspection of the data the weighting curves produced by  
CHiCAGO fit to, as shown in Supplementary Figure 4 (see 
Extended data15), shows a local peak around a log distance of  

Table 2. Suggested score thresholds (SSTs) and corresponding quality summary statistics. SSTs found seeking to 
fix or optimise certain quality statistics of the data. All SSTs are given to the nearest integer.

Cell SST giving 
FNR=0.2

Achieved 
FDR 

(at NST) 
(2.d.p)

SST minimising 
FDR (using 

BFGS)

Achieved 
FDR (using 

BFGS) 
(2.d.p)

SST minimising 
FDR (using NM)

Achieved 
FDR (using 

NM) 
(2.d.p)

SST giving 
FWER=0.05

ACD4 4 0.84 5 0.84 502 0.00 15

EP 10 0.83 5 0.83 1468 1.00 15

Ery 10 0.89 5 0.89 2741 1.00 15

FoeT 2 0.85 27 0.78 452 0.00 15

GM12878 10 0.97 3 0.97 122 0.00 15

Mac0 9 0.86 5 0.85 3761 1.00 15

Mac1 10 0.86 5 0.86 559 0.33 15

Mac2 10 0.87 5 0.87 1396 1.00 15

MK 11 0.87 5 0.87 1805 1.00 15

Mon 8 0.86 5 0.86 1200 1.00 15

NACD4 4 0.85 5 0.85 1412 1.00 15

naiveB 8 0.85 6 0.84 447 0.50 15

NCD4 8 0.90 5 0.90 1882 1.00 15

NCD8 5 0.85 5 0.85 2268 1.00 15

Neu 5 0.90 5 0.90 1108 1.00 15

TB 5 0.86 30 0.79 576 0.00 15

TCD4 4 0.88 5 0.88 2314 1.00 15

TCD8 6 0.84 19 0.78 1367 1.00 15
SST, suggested score threshold; FNR, false-negative rate; FDR, false-discovery rate; NST, normal score threshold; BFGS, Broyden–Fletcher–
Goldfarb–Shanno; NM, Nelder-Mead; FWER, family-wise error rate.
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12. This behaviour is not detectable by the logistic model which 
is monotonically decreasing. This suggests that the non-zero  
lack of monotonicity is caused by underlying biological features.

The RSS for the logistic regression had mean 26.08, IQR 6.50, 
the GM12878 cell line an outlier with RSS 73.11. Visually this 
is identifiable as the fit is near horizontal for the GM12878 cell 
line. GM12878 in fact has a lower RSS than one would expect, as 
there were only seven distance bins contributing, all others hav-
ing zero observed interactions. This is a more general phenom-
enon whereby fits in which there are zero-observed-interaction  
bins will have an artificially lower RSS.

As the threshold of log(p) < –10 for defining ‘true’ interac-
tions is somewhat arbitrary, yet it affects weight parameters, we 
sought an alternate p-threshold and recalculated the RSS. With 
the weight parameters calculated by CHiCAGO that minimised 
the RSS, key statistics for the data were recalculated, giving a 
mean change of 0.0153 for the score correlation, 1.36% for the 
reversibility, 0.0355 for the FDR at the NST, and -0.0708 for the  
FNR. This suggests that, on balance, using the custom cal-
culated weight parameters improves the quality of the result-
ing calculations. Moreover, the Jaccard index for concordance 
between significant interactions with and without suggested 
weights had mean and IQR values of 0.8732 and 0.0737, respec-
tively, demonstrating that the choice of weights affects which 
interactions are reported as significant. Applying the new 
weights had no significant effect on the number of interactions  
observed at the NST.

Application to cancer cell lines
We next analysed PCHi-C data generated on the 10 cancer cell 
lines. Supplementary Table 4 and Supplementary Figure 5 (see 
Extended data15) show coefficients and plots of distance curve 

fits for these cell lines. In contrast to the non-cancer cell lines 
where the linear fit to the distance curve was essentially con-
cordant with the data, this was not the case for cancer cell lines. 
Noticeably, in all the cancer cell lines the cubic fit had a nega-
tive cubic coefficient, which corresponds physically to observ-
ing a larger number of interactions at middling distances  
(O(105) bps). This could be the result of small-scale transloca-
tions, which would have the same effect on the expected number 
of reads. While deviation from linear of their cubic splines had a 
mean curvature of 0.2685 compared to 0.1149, the correspond-
ing fit of the linear intercept to gradient was y = 1.107 – 13.000x 
with an RSS of 0.189, similar to the non-cancer cell lines and 
showing the same consistency, with almost all interactions  
detected being cis-chromosomal.

Plots of the score symmetry for bait-bait pairs are shown in Sup-
plementary Figure 6 (see Extended data15). Cancer cell lines 
tended to have a higher non-zero score correlation for bait-
bait pairs (mean 0.5136, IQR 0.1803) but a significantly lower  
percentage of reversible interactions (mean 14.54%, IQR 6.54%). 
The BLN2 and BLN3 cell lines showed substantive aber-
rant behaviour in their plots in which proximal bait-bait pairs 
in a similar region extended in long ‘arms’ away from the theo-
retical fit. This was not seen in any of the other cell lines and  
is likely to be a consequence of a vastly different underlying 
genomic architecture. Summary statistics to calculate the qual-
ity of the score threshold were again calculated. The FNR was 
higher for cancer cell lines (mean 0.197, IQR 0.069). Sug-
gested score thresholds to improve the FNR or theoretical 
FWER (Table 3), were similar to those seen for non-cancer cell  
lines. 

The data showed a lack of the monotonicity (mean 0.5999, 
IQR 0.0865 (4.d.p); mean RSS of 55.4, IQR 56.9), but was  

Table 3. Suggested score thresholds (SSTs) and corresponding quality summary statistics for cancer cell lines. 
SSTs found seeking to fix or optimise certain quality statistics of the data. All SSTs are given to the nearest integer.

Cell SST giving 
FNR=0.2

Achieved 
FDR 

(at NST) 
(2.d.p)

SST minimising 
FDR (using 

BFGS)

Achieved 
FDR (using 

BFGS) 
(2.d.p)

SST minimising 
FDR (using NM)

Achieved 
FDR (using 

NM) 
(2.d.p)

SST giving 
FWER=0.05

BLN2 2 0.74 22 0.61 390 0.48 15

BLN3 5 0.75 5 0.78 432 0.88 15

HT29 4 0.89 5 0.89 116 0.58 15

KMS11 5 0.85 71 0.83 86 0.82 15

KMS12BM 7 0.84 5 0.84 898 0.29 15

L428 9 0.78 5 0.78 904 0.57 15

LoVo 10 0.89 5 0.89 212 0.75 15

MM1S 7 0.85 5 0.85 238 0.43 15

N16 3 0.81 5 0.81 138 0.5 15

NT2 7 0.70 5 0.70 12 0.68 15
SST, suggested score threshold; FNR, false-negative rate; FDR, false-discovery rate; NST, normal score threshold; BFGS, Broyden–Fletcher–
Goldfarb–Shanno; NM, Nelder-Mead; FWER, family-wise error rate.

Page 8 of 18

Wellcome Open Research 2020, 5:289 Last updated: 24 NOV 2022



significantly higher than that observed in non-cancer cell lines. 
This distortion was most pronounced with BLN2, BLN3 and 
HT29 cell lines, which all showed very low concordance between 
the fit and data points. Mean changes in summary statistics 
with CHiCAGO-calculated weight parameters were 0.0292 for 
score correlation, 2.27% for reversibility, 0.0683 for FDR at the 
NST and -0.0870 for the FNR. The corresponding mean Jaccard 
index was 0.6878 (IQR, 0.2010), highlighting the importance  
of using derived weights in analyses.

Finally, we examined heatmaps of Hi-C interaction frequencies to 
detect potential cancer-related chromosomal abnormalities, find-
ing that BLN2 and BLN3 exhibit large-scale inter-chromosomal  
translocations (Supplementary Figure 7, Extended data15).
However, such features are unlikely to be sufficient to solely 
account for the increased score asymmetry observed in cancer  
cell lines.

Discussion
When utilising any statistical test, it is necessary to verify that 
any necessary properties of input data are satisfied, and that 
under these assumptions sensible conclusions are drawn. In this 
study we have sought to evaluate CHiCAGO as a methodol-
ogy for identifying statistically significant genomic interactions 
in PCHi-C data. This evaluation included examination of: (i) the  
suitability of the distance-correction model employed; (ii) evi-
dence of discordance in association statistics at bait-bait pairs; 
(iii) significance thresholds of called interactions; (iv) impor-
tance of weight parameter estimates; (v) specific considerations  
for its application to analysis of cancer cell-line data.

Our findings indicate that the Delaporte null fitted the data well 
in large distance bins, with the assumption that the Poisson con-
tribution is small being verified. The cubic spline distance func-
tion fitted the data well, with the linear fit being sufficient for 
most non-cancerous cell lines. The symmetry in the score param-
eter was very low for bait-bait pairs. The default CHiCAGO  
score threshold of >5 was typically too low to ensure reliability 
in the data, evaluated either from the FNR or FWER, but cor-
respondingly the sensitivity to detect interactions was greater 
than at higher score thresholds, with a resulting higher false 
discovery rate. Using custom cell-line specific weight param-
eters marginally improved summary statistics of the data  
compared to reliance on default parameters. The overlap of 
significant interactions with and without suggested param-
eters was around 90%, demonstrating the presence of either 
false positives or false negatives when using standard weight 
parameters. These features were also seen, albeit more pro-
nounced, in cancer cell lines. Using custom weights improved 
the metrics applied to the output, as expected since it provides  
the theory-mandated adjustment of the p-values.

As the framework we provide only considers how CHiCAGO 
processes input data, our methodology is largely resistant to  
limitations due to the underlying CHi-C inputs. There are small 
differences in the two versions of the designed oligonucleotide 
baits to capture promoter fragments between cancer and non-
cancer cell line data, but as CHiCAGO produces bait-specific 
biases as part of its model, we should not expect this to have a 

major influence on our conclusions. For calculations involving  
the FDR, FNR, and FWER, due to the lack of bona fide refer-
ence interactions, we were reliant on theoretically equivalent 
proxies. As a result, point estimates will be inherently imprecise 
and allow us to either only make comparisons or reference con-
fidence intervals between different score thresholds. Furthermore, 
although we provide a large range of statistics as an example  
of how to assess Hi-C algorithms, there are some visual fea-
tures that are not necessarily amenable to numerical description. 
Criteria for selecting the bests summary statistics to efficiently 
assess algorithms is desirable, something that may potentially  
be tractable by applying approximate Bayesian computation16. 

From a numerical and computational perspective our study  
highlights a few key points. The fact that the cubic distance func-
tion fit implemented by CHiCAGO correctly matched the data 
for every cell line is unsurprising, given the large number of 
parameters it was able to utilise. We should similarly expect the 
same of the logistic regression, and so large failures to fit the 
data are indicative of the unsuitability of the underlying form 
of the curve for the data it is approximating. Moreover, the  
exact implementation of methodologies is demonstrated to 
be important. Numerical optimisation improved the FDR on  
average, but Nelder-Mead (NM) often produced thresholds 
too large to be useful in discovery, serving to demonstrate the  
importance of understanding the underlying processes behind  
standard R functions, as Broyden–Fletcher–Goldfarb–Shanno 
(BFGS) provided more practical thresholds. This difference 
in behaviour stems both from the fact that the Jaccard index 
is not a continuous function of the score threshold, and that  
NM is a heuristic algorithm.

Inevitably, a challenge in evaluating the performance of Hi-C  
and Hi-C algorithms is not having reference to a large “gold 
standard” reference set of bona fide true interactions in a given 
cell line. Forcato et al., 201717 have detailed experimental vali-
dations from the literature of a set of Hi-C interactions using  
3C or fluorescence in situ hybridisation (FISH) in a series of cell 
lines. Given 3C is essentially analogous to Hi-C, it can be ques-
tioned if such data is truly orthogonal. Additionally, FISH is lim-
ited to examination of long-range interactions. In the absence  
of experimental data, it has been proposed that demonstrating  
significant contacts are enriched for biologically relevant regu-
latory features (e.g. open chromatin, transcriptional activa-
tion) provides validation. While this provides validation of 
experimental enrichment of for example promoters, it does not,  
however, necessarily follow that the identified interactions are  
bona fide. Javierre et al., 201613, have proposed generating and 
sequencing “reverse PCHi-C” libraries, designing baits to the 
unbaited ends of previously identified interactions, to determine 
if previously identified interactions are recovered. One way of 
generating a “null model” for comparison of di-tag interaction 
frequencies is to sequence a generated “random ligation” library 
prepared by reversal of cross-links prior to ligation10. This has, 
however, not generally been standard practise in preparation  
of large numbers of libraries.

Analysis of CHi-C data generated from cancer cells clearly 
presents challenges beyond that of diploid cells. Translocations 
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affect distance estimates, leading to highly significant interac-
tion p-values between translocation breakpoints. As a prelude to 
any analysis of CHi-C, examining pre-capture Hi-C data can be 
used to identify translocations and inform downstream analyses.  
Other molecular abnormalities in cancer cell lines, such as focal 
amplifications/deletions, regions of kataegis and chromothripsis 
are more intractable sources of bias. Comprehensively account-
ing for such aberrations ideally requires de novo assembly of  
the cancer genome being investigated.

In conclusion, our analysis highlights a number of features 
that should be considered when evaluating CHi-C algorithms. 
In application to CHiCAGO, while we saw that the underly-
ing null hypothesis was entirely sensible, assigning significance 
to a given interaction is not entirely straightforward. It is clear 
that many issues associated with processing of CHi-C data are 
exacerbated when studying cancer derived data because of the  
complex nature of their genomes.

Methods
Datasets analysed
The 28 cell lines and PCHi-C datasets analysed are detailed 
in Supplementary Table 1 (see Extended data15), see also  
Underlying data.

Extracting valid PCHi-C interacting fragments and 
identification of interactions
HiCUP v0.6.19 was used to map reads to human build 38 using 
bowtie v2.3.418, pair reads and filter valid interaction di-tags.
CHiCAGO v1.1.88 was used to estimate significance of inter-
action frequencies between restriction fragment di-tags using 
the appropriate baitmap file (Supplementary Table 1, Extended  
data15). Read counts for PCHi-C datasets at each stage of 
HiCUP processing are detailed in Supplementary Data 1 (see 
Extended data15). Genome-wide heatmaps of Hi-C contacts were 
generated using HiCExplorer v2.1.119 to identify large-scale  
chromosomal translocations.

Evaluation of CHiCAGO
Cairns et al.8 provide a mathematical specification of the algo-
rithm used by CHiCAGO, and we utilise the same notation. For 
pairs less than 1.5 Megabasepairs (Mbp) apart, the CHiCAGO 
algorithm assumes that the contribution to the total number of 
counts from the ‘technical noise’ component of the null model 
employed is sufficiently lower than that from the ‘Brownian’  
component, so it is reasonable to approximate the model as

( , ),
ij ij

X NB rµ∼

where NB(μ,r) is a negative binomial distribution with probability 
mass function
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! ( )

k r
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Discrete Kolmogorov-Smirnov test statistics for a goodness  
of fit were calculated in each distance bin B

b
. These were  

calculated under the null that
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where w is the width of the distance bin, and s
1
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2
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from the distribution of the bait and other-end bias distribu-
tions. We implemented Monte Carlo hypothesis testing to 
obtain p-values, using 5,000 simulations of 5,000 pairs to meas-
ure the D-statistic, using the standard p-value estimator of  
Davison and Hinkley 199720. Deriving a statistic per distance 
bin allowed us to examine how appropriate the null hypothesis 
is for separate distance bins. A cell-wise Bonferroni correction  
was applied to the significance threshold.

We plotted estimates of the distance function f(d) against the 
data, which is the geometric mean of the non-zero reads between 
bait-other end pairs in each distance bin, alongside a linear  
fit and a ‘theoretical’ fit. Specifically, we fit

•    logf(d) = a
0
 + a

1
 logd + a

2
 (logd)2 + a

3 
(logd)3 (cubic)

•    logf(d) = b
0
 + b

1
 logd (linear)

•    logf(d) = c
0
 – logd (theoretical)

The ‘theoretical’ fit is of the form f(d) ∝ d–1, as suggested to be 
the large-distance limit by Rosa et al.21. We further calculated 
the integral of the curvature of f over the distances considered  
of [104, 1.5 × 106] base pairs, as a measure of the deviation 
from a power law, which would be represented by a straight line  
on a log-log scale. Specifically, we calculated K, given by

6

4
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The limits of integration can be chosen as, outside of this range,  
the distance function is extrapolated linearly on a log-log scale, 
where the curvature k will be zero. Careful treatment of the  
second derivatives at these limits is not necessary. 

To validate the assumption that the technical noise will have  
minimal effect at small distance, the mean λ parameter for the 
pairs was calculated as per CHiCAGO. Moreover, boxplots were 
produced demonstrating the distribution of the parameter in each  
pool used in the estimation procedure.
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To adjust for multiple testing in CHiCAGO, p-values are  
weighted according to the prior probability of a given null 
hypothesis being true or false9. By default, weights are those  
estimated from human macrophage data, which defines reproduc-
ible interaction as one for which log p < –10 in all replicates. To  
evaluate this definition, we considered the function g(ρ) given by:

( , ): 5
( )

( , ):

|{ }|

|{ }|

ρ
ρ

ρ

< ∧ <
=

<

ij ij

ij

i j score log p
g

i j log p

For ρ = –10, g gives a FNR for reproducible interactions. Further-
more, we calculated the value of ρ that gives g(ρ) = 0.05 (assum-
ing that such a value exists) to determine a p-value threshold  
for reproducible interactions coherent with the score statistic.

CHiCAGO’s algorithm is not symmetric in its treatment of bait-
bait pairs and we found the correlation between non-zero values 
of score

ij
 against score

ji
 values for bait-bait pairs. By exclud-

ing pairs where both scores were zero, we avoided correla-
tions being artificially inflated because there are many more  
non-interacting pairs than interacting pairs. We further computed 
the proportion of the bait-bait pairs that passed the advocated 
score threshold of > 5 in both pairs, relative to those passing  
the threshold in at least one pair, that is
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To examine the reproducibility of interactions called as sig-
nificant by CHiCAGO, we produced alternate score thresholds 
based on: (i) a Bonferroni correction to control the FWER in the 
smallest distance bin; (ii) controlling for FNR, and (iii) mini-
mising the FDR in Jaccard index between replicates. Specifi-
cally, for the Bonferroni correction, as thresholding at a score α 
requires that the evidence for an interaction exceeds that of a  
proximal pair with p-value e–α, we imposed the threshold

0

0.05

( , ):|{ }|
α =

∈
−

ij

log
i j d B

The measure of reproducibility used was the Jaccard index of 
the sets of significant interactions in each replicate, which are 

reported as FDRs. Under the assumption that true interactions 
will be significant in all replicates and false interactions will  
not, we have the equivalence

1= −False Discovery Rate Jaccard Index

At each score threshold, the number of interactions was reported 
to balance reliability and sensitivity. To demonstrate the impor-
tance in the choice of optimisation methodology in minimis-
ing FDR for a given cell line, two optimisation methods were 
used, Bound Limited-memory BFGS (L-BFGS-B), and the  
default NM utilised by optim in R.

We evaluated CHiCAGO’s weighting procedure. In the esti-
mation of the weight parameters, CHiCAGO’s algorithm fits a 
monotonic decreasing curve to the observed prior-probability 
of interaction through bounded logistic regression. To examine 
the extent to which monotonicity is observed in the data, a lack-
of-monotonicity statistic was generated for the data with the  
formula

1
1 1
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This is a natural formula in the sense that if the sequence (v
i
) is 

monotonic, the lack of monotonicity is 0. To evaluate the fit we 
calculated a RSS; distance bins in which no interactions were 
observed were neglected, since for these bins CHiCAGO esti-
mates the prior probability of interaction to be 0, hence log(p) 
is infinite. Thus, these points provide no information for the  
RSS, but nevertheless indicate a failure of the fitted model 
to represent the data, and so the presence of bins in which  
no interactions were observed is also reported.

We estimated the weight parameters at the threshold of –10 
and ρ, for each cell line. Parameters that provided the ‘better’ 
fit (, i.e. had a lower RSS), were used and CHiCAGO re-run.  
After which, a Jaccard index was calculated for the sets of  
significant interactions called by CHiCAGO using either default  
or updated weight parameters.

All methods described were implemented in R version 3.6.3. 
A copy of the program, modified for readability above utility, is  
released as Extended data (Trim_of_CHiCAGO_evaluation.R)15.

Data availability
Underlying data
ArrayExpress: Sequenced PCHi-C libraries for GM12878  
cells. Accession number E-MTAB-2323: https://identifiers.org/
arrayexpress:E-MTAB-2323

European Genome-phenome Archive (EGA): Sequenced PCHi-C  
libraries for ACD4, EP, Ery, FoeT, Mac0, Mac1, Mac2, MK, 
Mon, NACD4, NB, NCD4, NCD8, Neu, TB, TCD4 and  
TCD8 cells. Accession number EGAS00001001911: https:// 
identifiers.org/ega.study:EGAS00001001911
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European Genome-phenome Archive (EGA): Sequenced 
PCHi-C libraries for HT29 and LoVo cells. Accession 
number EGAS00001001946: https://identifiers.org/ega.study:
EGAS00001001946

European Genome-phenome Archive (EGA): Sequenced PCHi-C 
libraries for KMS11 cells. Accession number EGAS00001002614: 
https://identifiers.org/ega.study:EGAS00001002614

European Genome-phenome Archive (EGA): Sequenced PCHi-C 
libraries for L428 cells. Accession number EGAS00001003032: 
https://identifiers.org/ega.study:EGAS00001003032

European Genome-phenome Archive (EGA): Sequenced PCHi-C 
libraries for NTERA2 cells. Accession number EGAS00001001930: 
https://identifiers.org/ega.study:EGAS00001001930

Extended data
Zenodo: Algorithmic considerations when analysing capture  
Hi-C data. https://doi.org/10.5281/zenodo.426840015.

This project contains the following extended data:

-    Supplementary Figure 1.pptx (Distance function esti-
mates for all cell lines. (a) ACD4; (b) EP; (c) Ery;  
(d) FoeT; (e) GM12878; (f) Mac0; (g) Mac1; (h) Mac2;  
(i) MK; (j) Mon; (k) NACD4; (l) NB; (m) NCD4; (n) NCD8; 
(o) Neu; (p) TB; (q) TCD4; (r) TCD8. Different coloured 
lines correspond to different models fitted: cubic (red), 
linear (blue) and theoretical of the form f(d) ∝ d–1 as sug-
gested to be the large-distance limit by Rosa et al. (green).  
Observed data is additionally marked.)

-    Supplementary Figure 2.pptx (Technical Noise Esti-
mates. (a) ACD4; (b) EP; (c) Ery; (d) FoeT; (e) GM12878; 
(f) Mac0; (g) Mac1; (h) Mac2; (i) MK; (j) Mon; (k) 
NACD4; (l) NB; (m) NCD4; (n) NCD8; (o) Neu; (p) TB; 
(q) TCD4; (r) TCD8. Boxplots showing the distribution  
of the technical noise parameter per pool.)

-    Supplementary Figure 3.pptx (Plots of the score and its 
reverse for bait-bait pairs. (a) ACD4; (b) EP; (c) Ery;  
(d) FoeT; (e) GM12878; (f) Mac0; (g) Mac1; (h) Mac2;  
(i) MK; (j) Mon; (k) NACD4; (l) NB; (m) NCD4;  
(n) NCD8; (o) Neu; (p) TB; (q) TCD4; (r) TCD8. The five 
pairs with the largest deviation, (Score – Reverse Score)2,  
are labelled with their IDs from the rmap file. The sig-
nificance threshold of 5 is indicated by orange lines, 
with the blue line corresponding to the theoretical fit of  
Score=Reverse Score.)

-    Supplementary Figure 4.pptx (p-value weighting curve fit 
against prior probability of interaction. (a) ACD4; (b) EP;  
(c) Ery; (d) FoeT; (e) GM12878; (f) Mac0; (g) Mac1; 
(h) Mac2; (i) MK; (j) Mon; (k) NACD4; (l) NB; (m)  
NCD4; (n) NCD8; (o) Neu; (p) TB; (q) TCD4; (r) TCD8.)

-    Supplementary Figure 5.pptx (Distance function estimates 
for all cancer cell lines. (a) BLN2; (b) BLN3; (c) HT29;  
(d) KMS11; (e) KMS12BM; (f) L428; (g) LoVo; (h) MM1S;  
(i) N16; (j) NTERA2. Different coloured lines corre-
spond to different models fitted: cubic (red), linear (blue) 
and theoretical of the form f(d) ∝ d–1 as suggested to be 
the large-distance limit by Rosa et al. (green). Observed  
data is additionally marked.)

-    Supplementary Figure 6.pptx (Plots of the score and its 
reverse for bait-bait pairs for cancer cell lines. (a) BLN2; 
(b) BLN3; (c) HT29; (d) KMS11; (e) KMS12BM; (f) L428; 
(g) LoVo; (h) MM1S; (i) N16; (j) NTERA2. The five pairs 
with the largest deviation, (Score – Reverse Score)2, are 
labelled with their IDs from the rmap file. The significance 
threshold of 5 is indicated by orange lines, with the blue 
line corresponding to the theoretical fit of Score=Reverse  
Score.)

-    Supplementary Figure 7.pptx (Identification of large-
scale chromosomal translations from Heatmaps of Hi-C  
contacts. (a) BLN2; (b) BLN3; (c) HT29; (d) ACD4;  
(e) L428. Lighter regions correspond to interactions with 
reads greater than background levels, with the diago-
nal representing the reads expected by Brownian motion  
in a karyotypically normal cell.)

-    Supplementary Table 1.docx (PCHi-C datasets analysed. 
Indicated for each cell type is the number of replicates 
analysed, the Hi-C library preparation method (dilution 
or in situ) and the set of baits used for promoter capture  
(V1, original or V2, updated).)

-    Supplementary Table 2.docx (Discrete KS test applied to  
the null distribution. Bin-wise D statistics and the cor-
responding Monte Carlo p-value for all non-cancer cell 
lines.)

-    Supplementary Table 3.docx (Coefficients of the cor-
responding fits of the distance function f(d). Coeffi-
cients fitted on a log-log scale over data in the range  
1.0 × 104 ≤ d ≤ 1.5 × 106, d given in base pairs.)

-    Supplementary Table 4.docx (Coefficients of the cor-
responding fits of the distance function for cancer cell 
lines. Coefficients fitted on a log-log scale over data in the  
range 1.0 × 104 ≤ d ≤ 1.5 × 106, d given in base pairs.)

-    Supplementary Data 1.xlsx (Read counts for PCHi-C  
datasets at stages of HiCUP processing.)

-    Trim_of_CHiCAGO_evaluation.R (The main Rscript 
used to run this analysis, containing an implementation of  
the methods described)

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).
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Disney-Hogg et al. evaluate the performance of CHiCAGO, a pipeline for signal detection in 
Capture Hi-C data, with respect to model fit, multiple testing treatment and the choice of 
significance threshold. The paper highlights the importance on training p-value weights on own 
data and the challenges of choosing an optimal score threshold in the absence of a gold 
standard.  
 
As a developer of CHiCAGO, I thank the authors for an independent evaluation of our pipeline and 
am happy to see that it has withstood most tests. 
 
I only have a very small number of comments:

"In most cell lines the p-values associated with the small distance bins were effectively zero 
but rapidly increased to near-unity in the larger distance bins". In the authors' opinion, why 
are the p-values so low in the small distance bins? It would be good to state this more 
explicitly.  
 

1. 

It would be good to unpick a bit more the phenomena that underlie "non-reversible" bait-
to-bait contacts - which are generally expected due to the asymmetrical nature of CHi-C 
data and CHiCAGO's analytical approach. Theoretically, this may be to do with challenges in 
estimating s_i's (other-end scaling factors) based on much less information than available 
for s_j's (bait scaling factors). Secondly, this could be due to differences in the coverage of 
respective baits, potentially leading to differential sensitivity in signal detection depending 
on the viewpoint. Finally, from Fig 2 it seems that there are a few cases where the difference 
in score is quite small and so their position on either side of the threshold is incidental. 
It might be worth discussing these possible situations a bit more detail. Also, what is the 
authors' suggested strategy for dealing with these situations? In our lab, we pick the pair 
with the higher score, as we believe that false-negatives are a generally bigger issue in CHi-
C and CHiCAGO than false-positives. Alternatively, bait-to-bait contacts could be analysed 
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separately as a symmetrical matrix using appropriate tools. 
 
I wonder to what extent the score threshold selection methods based on reproducibility 
across replicates are inflated due to sparsity issues (as we showed in Cairns et al., 2016, Fig 
S4).1 This is the reason why in Javierre2 we used a different approach (based on Blangiardo 
et al.)3 to show consistency between datasets, while in Freire-Pritchett eLife 2017; Nat Prot 
20214,5 use a threshold-tuning approach based on balancing enrichment and recall of PIRs 
containing enhancer-associated histone marks. It would be good to discuss these points.

3. 
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Reviewer Expertise: Developer of CHiCAGO pipeline

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 04 Nov 2022
Linden Disney-Hogg, The Institute of Cancer Research and The Royal Marsden NHS 
Foundation Trust, Sutton, UK 

Thank you for providing us with the opportunity to submit a revised manuscipt. I apologise 
for the delay in responding, however this unfortunate delay was the consequence of me 
starting a PhD on an unrelated subject compounded by Covid-related issues. All your 
comments were extremely insightful and pertinent, and we have largely implemented all 
the changes or additions highlighted, with only two minor exceptions. These we detail 
below.

Change made, with the reason being that the model assumptions which give a 
negative binomial distribution breaking down at small distances. 
 

1. 

We discuss the asymmetry and approaches further, not providing a fixed strategy 
used by the authors, but noting what considerations one might make depending on 
the goal of the Hi-C investigation, as well as future approaches to consider including 
those highlighted by the reviewer. 
 

2. 

We mention the possible skew effect of sparsity, which we expect to be small, and 
comment on the possible link to comment 9 of Reviewer 1.

3. 

These changes you will see in an updated version of the paper. Having made changes to the 
manuscript we hope it is now suitable for indexing.  
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Disney-Hogg et al. have considered what the important features of algorithms used for identifying 
biologically meaningful interactions in capture Hi-C analysis are. They used CHiCAGO, a widely 
applied algorithm, as their case study and assessed the appropriateness of the distance function 
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used for correction, the effect of altering the weights in the model, looked at how thresholding 
influences the resulting significant interactions and analysed the reciprocity of bait-bait 
interactions. Given the lack of a set of gold standard interactions, this evaluation is based on the 
assumption that true interactions are reproducible. 
They performed the analyses both in normal hematopoietic cells and in cancer cell lines. They 
found that the cubic spline fits the data well and that the model used by CHiCAGO creates highly 
asymmetric results for bait-bait interactions. Changing the weights to custom calculated ones 
slightly improves the quality of the identified interactions. The suggested threshold for 
significance is appropriate for most cell lines to optimize FNR and FDR, however, there are notable 
exceptions to this. 
There are a number of methods developed for capture Hi-C data analysis and this approach can 
be applied to evaluate and compare their performance and therefore it is a valuable contribution 
to the field. 
 
Minor comments:

Promoter is the correct term for the genomic region instead of promotor. 
 

1. 

Supplementary data 1 is missing information on the captured read count. 
 

2. 

In figure 1, the fragmentation step is missing after the ligation “Fragmentation, biotin pull-
down, adapter ligation and PCR”. 
 

3. 

Table 1 would probably be easier to see in a plot where the test statistics and the p-value 
are plotted against the distance. 
 

4. 

Please add labels to the scales in Supp. Figure 2. 
 

5. 

In figures where the distance is one of the variables, could you indicate the unit? 
 

6. 

The definition of FDR based on Jaccard distance should be in the main text. 
 

7. 

In Table 2, it would add valuable information if the number of significant interactions were 
included for each threshold. 
 

8. 

Could you comment on the observation that the optimal threshold for FDR using BFGS was 
mostly around the recommended threshold, but in some cases it was very different? Do 
those data sets share any characteristics that could explain it?

9. 
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by others?
Yes

 
Page 17 of 18

Wellcome Open Research 2020, 5:289 Last updated: 24 NOV 2022



If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes
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