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BACKGROUND Atrial fibrillation (AF) increases the risk of heart failure (HF); however, little focus is placed on the risk

stratification for, and prevention of, incident HF in patients with AF.

OBJECTIVES This study aimed to construct and validate a machine learning (ML) prediction model for HF hospitali-

zation in patients with AF.

METHODS The Fushimi AF Registry is a community-based prospective survey of patients with AF in Fushimi-ku, Kyoto,

Japan. We divided the data set of the registry into derivation (n ¼ 2,383) and validation (n ¼ 2,011) cohorts. An ML model

was built to predict the incidence of HF hospitalization using the derivation cohort, and predictive ability was examined

using the validation cohort.

RESULTS HF hospitalization occurred in 606 patients (14%) during a median follow-up period of 4.4 years in the entire

registry. Data of transthoracic echocardiography and biomarkers were frequently nominated as important predictive

variables across all 6 ML models. The ML model based on a random forest algorithm using 7 variables (age, history of HF,

creatinine clearance, cardiothoracic ratio on x-ray, left ventricular [LV] ejection fraction, LV end-systolic diameter, and LV

asynergy) had high prediction performance (area under the receiver operating characteristics curve [AUC]: 0.75) and was

significantly superior to the Framingham HF risk model (AUC: 0.67; P < 0.001). Based on Kaplan-Meier curves, the ML

model could stratify the risk of HF hospitalization during the follow-up period (log-rank; P < 0.001).

CONCLUSIONS The ML model revealed important predictors and helped us to stratify the risk of HF, providing op-

portunities for the prevention of HF in patients with AF. (JACC: Asia 2022;2:706–716) © 2022 The Authors. Published by

Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
A trial fibrillation (AF) is the most common car-
diac arrhythmia in the aging society and is
associated with significant mortality and

morbidity.1 Although thromboembolism is a well-
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recognized and preventable complication of AF, the
incidence of heart failure (HF) remains high and is
now more common than thromboembolism in these
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AB BR E V I A T I O N S

AND ACRONYM S

AF = atrial fibrillation

AUC = area under the receiver

operating characteristics curve

HF = heart failure

LV = left ventricular

ML = machine learning

SHAP = Shapley Additive

exPlanation
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proportion of deaths in contemporary patients with
AF.4,5 However, many studies have focused on the
prevention of thromboembolism, and little attention
has been placed on the risk stratification for, and pre-
vention of, HF despite its high prevalence and poor
prognostic impact in patients with AF. An important
step toward HF prevention is to identify patients
who have a high risk for the disease. Therefore,
comprehensive risk stratification of incident HF is
warranted for the management of AF in daily prac-
tice; however, there is a scarcity of published reports
regarding these issues.

Machine learning (ML) is a subset of artificial in-
telligence in which algorithms learn from data
without explicit programming. ML techniques pro-
vide a powerful tool for learning complex relation-
ships between the risk predictors and clinical
outcomes from a representative sample of patients.6,7

Besides, ML can efficiently process huge multi-
categorical data, including biological, clinical, and
imaging data, to predict the clinical outcomes.8,9

Recent studies, including ours, revealed that ML
models can achieve higher prediction performance
for thromboembolism than the validated risk score,
the CHA2DS2-VASc score, in patients with AF.10-12 We
consider ML techniques promising for risk prediction
of future HF events; however, risk stratification for
HF using ML algorithms in patients with AF has not
been investigated.

Accordingly, the aim of the present study was to
construct an ML model for predicting the incidence of
HF events and to validate its performance using the
data from a large-scale community-based prospective
survey of Japanese AF patients, the Fushimi AF
Registry.

METHODS

DATA SOURCE. The Fushimi AF Registry is a
community-based multicenter prospective observa-
tional survey of patients with AF who visited the
participating medical institutions in Fushimi-ku,
Kyoto, Japan. The detailed study design, patient
enrollment, and definition of the measurements of
the registry were previously described
(UMIN000005834).13,14 Briefly, the inclusion criterion
for the registry is the documentation of AF on 12-lead
electrocardiography or Holter monitoring at any time.
There were no exclusion criteria. A total of 81 in-
stitutions, all of which are members of the Fushimi
Medical Association, participated in the registry. The
participating institutions comprised 2 cardiovascular
centers, 10 small and medium-sized hospitals, and 69
primary care clinics. We started to enroll patients in
March 2011, and enrollment ended in May
2017. All of the participating institutions
attempted to enroll all consecutive patients
with AF under regular outpatient care or
admission. Collection of the follow-up infor-
mation was mainly conducted through re-
view of the medical records, and additional
follow-up information was collected through
contact with patients, relatives, and/or
referring physicians by mail or telephone.
Data of the patients were registered in the

Internet Database System by the doctors in charge at
each institution. Data were automatically checked for
missing or contradictory entries and values out of the
normal range. Additional editing and checks for
duplicated records were performed by clinical
research coordinators at the general office of the
registry. The study protocol conformed to the ethical
guidelines of the 1975 Declaration of Helsinki and was
approved by the ethical committees of the National
Hospital Organization Kyoto Medical Center (10-058)
and Ijinkai Takeda Hospital (14-033).

OUTCOMES. The primary endpoint in this study was
the incidences of hospitalization for HF during the
follow-up period. HF hospitalization was determined
by the attending physicians based on history, clinical
presentation (symptoms and physical examinations),
natriuretic peptide levels, imaging findings including
chest x-ray and echocardiography, cardiac catheteri-
zation findings, response to HF therapy, and in-
hospital course. We continued follow-up until the
death endpoint, and we defined clinical outcomes as
the time to first event.

DATA PROCESSING. For the purpose of creating
and validating the ML model, we divided the entire
cohort of the registry into a derivation cohort and
validation cohort. The data of patients from 1 car-
diovascular center and half of the small and
medium-sized hospitals and primary care clinics,
which were randomly selected, were assigned as the
derivation cohort. The data of patients from the
other cardiovascular center and the remaining half
of hospitals and primary care clinics were assigned
as the validation cohort.

The data included baseline patient characteristics,
oral prescription, the results of blood tests, and im-
aging data derived from chest x-ray and transthoracic
echocardiography at registration. A total of 168
baseline variables were included in the data set of the
Fushimi AF Registry. For data preprocessing, vari-
ables that were not clinically meaningful (for
example, enrollment date) were deleted at the in-
vestigators’ discretion based on the clinical

https://center6.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000006895


TABLE 1 Patient Characteristics and Clinical Outcomes

Derivation Cohort
(n ¼ 2,383)

Validation Cohort
(n ¼ 2,011) P Value

Baseline characteristics

Age, y 73.8 � 10.8 73.3 � 10.9 0.20

Female 933 (39) 832 (41) 0.13

Body mass index, kg/m2 23.2 � 4.2 23.0 � 3.8 0.14

Body weight, kg 59.6 � 13.8 59.2 � 13.1 0.37

Systolic blood pressure, mmHg 125 � 18 125 � 20 0.97

Pulse rate, beats/min 80 � 17 77 � 15 <0.001

Paroxysmal AF 1,055 (44) 1,139 (57) <0.001

Smoking history 969 (54) 522 (41) <0.001

Medical history

Pre-existing HF 700 (29) 504 (25) 0.001

History of stroke/SE 502 (21) 381 (19) 0.081

Coronary artery disease 335 (14) 309 (15) 0.22

Valvular heart disease 440 (18) 317 (16) 0.018

Cardiomyopathy 59 (2) 63 (3) 0.19

Hypertension 1,609 (68) 1,164 (58) <0.001

Dyslipidemia 978 (41) 965 (48) <0.001

Diabetes mellitus 600 (25) 437 (22) 0.007

Peripheral artery disease 108 (5) 70 (3) 0.078

Chronic kidney disease 943 (40) 640 (32) <0.001

COPD 132 (6) 100 (5) 0.40

History of major bleeding 104 (4) 94 (5) 0.62

Prescription at baseline

Oral anticoagulants 1,258 (53) 1,168 (59) <0.001

Warfarin 893 (38) 896 (45) <0.001

DOAC 365 (15) 272 (14) 0.13

ACE-I/ARBs 1,133 (48) 814 (41) <0.001

Beta-blockers 674 (28) 676 (34) <0.001

Loop diuretics 585 (25) 407 (20) 0.001

Biomarkers

NT-proBNP, ng/L 799 (295-1,839) 756 (288-1,799) 0.69

BNP, ng/L 180 (60-343) 106 (46-217) 0.002

Calculated CrCl, mL/min 56.9 (40.6-77.0) 58.1 (41.4-76.0) 0.67

Hemoglobin, g/dL 12.8 � 2.1 13.1 � 2.0 <0.001

Sodium, mEq/L 140 � 3 141 � 3 <0.001

Uric acid, mg/dL 6.1 � 1.8 5.9 � 2.1 <0.001

Glucose, mg/dL 119 � 41 116 � 41 0.036

Chest x-ray data

Cardio-thoracic ratio, % 54 � 7 55 � 7 <0.001

Echocardiographic data

LV end-diastolic diameter, mm 46.5 � 6.5 46.6 � 6.2 0.57

LV end-systolic diameter, mm 31.0 � 6.8 30.0 � 6.7 <0.001

LV ejection fraction, % 61.4 � 11.8 64.7 � 11.2 <0.001

LV asynergy 420 (21) 354 (23) 0.11

Left atrial diameter, mm 43.1 � 8.2 44.0 � 8.2 0.002

Clinical outcomes

Hospitalization for HF 378 (16) 228 (11) <0.001

All-cause death 631 (26) 355 (18) <0.001

Follow-up period, y 4.0 (2.0-7.0) 5.0 (2.1-7.4) <0.001

Values are mean � SD, n (%), or median (IQR).

ACE-I ¼ angiotensin converting enzyme inhibitor; AF ¼ atrial fibrillation; ARB ¼ angiotensin receptor blocker;
BNP ¼ B-type natriuretic peptide; COPD ¼ chronic obstructive pulmonary disease; CrCl ¼ creatinine clearance;
DOAC ¼ direct oral anticoagulants; HF ¼ heart failure; LV ¼ left ventricular; NT-proBNP ¼ N-terminal pro B-type
natriuretic peptide; SE ¼ systemic embolism.
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perspective. In addition, several variables were
created using existing variables (for example, body
mass index was calculated using patients’ height and
weight data). Variables with more than 30% missing
data in the derivation cohort were deleted.12 We did
not include medication history in the ML model,
considering the difficulty in interpreting the cause–
effect relationship. Finally, 66 variables were listed
as candidates for constructing the ML model (Sup-
plemental Table 1). As was applied in the previous
studies and ours,12,15,16 the missing values were
imputed using the mean value for continuous vari-
ables, and using the mode for dichotomous variables
from the derivation cohort.

MODEL DERIVATION. Supervised ML was used. The
specific model algorithms used in this study were
random forest, light gradient boosting machine,
elastic net, linear support vector machine, neural
network, and naive Bayes model. All of these 6 ML
algorithms are fully established and commonly used
for artificial intelligence prediction tasks. For the
model derivation, including training and hyper-
parameter tuning, and internal evaluation, we per-
formed 5-fold cross-validation in the derivation
cohort. In the training step, model hyperparameters
were optimized with a grid search algorithm. Grid
search tunes and optimizes the model hyper-
parameters using a greedy way (the actual hyper-
parameters are shown in Supplemental Table 2). To
evaluate the performance of the ML model, the
sensitivity, specificity, accuracy, and area under the
receiver operating characteristics curve (AUC) were
evaluated for each algorithm. To explain which vari-
ables the model mainly relied on to arrive at a final
prediction, the importance of each variable was
calculated as the Shapley Additive exPlanation (SHAP)
value.17 The SHAP value estimates each variable’s
contribution based on cooperative game theory. When
calculating SHAP values, an ML model is approxi-
mated with a simple model in which the contribution
of each variable is easily explained and the degree of
contribution is calculated as the SHAP value. The
model algorithms, cross-validation, and grid search
were based on the Python library scikit-learn.

FINAL VARIABLE SELECTION AND VALIDATION.

After the model derivation, each of 6 ML models was
evaluated for its performance using the validation
cohort. For model evaluation with the validation
cohort, the missing values were imputed 20 times
with multiple imputation with chained equations to
address the randomness of the estimation.18,19 In the

https://doi.org/10.1016/j.jacasi.2022.07.007
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TABLE 2 Performances of 6 Machine Learning Models Using All Variables in the

Validation Cohort

Machine Learning Model Sensitivity Specificity Accuracy AUC

Random forest 65.8 � 1.2 73.0 � 0.4 72.0 � 0.3 0.77 � 0.00

Light gradient boosting machine 67.1 � 1.1 72.7 � 0.5 72.0 � 0.3 0.77 � 0.01

Elastic net 68.6 � 1.5 71.6 � 0.6 71.4 � 0.6 0.77 � 0.01

Linear support vector machine 68.0 � 1.0 72.3 � 0.5 71.7 � 0.4 0.76 � 0.00

Neural network 59.6 � 1.4 77.2 � 0.4 75.2 � 0.4 0.77 � 0.01

Naive Bayes 57.2 � 1.4 80.1 � 0.4 77.4 � 0.5 0.78 � 0.00

AUC ¼ area under the curve.

FIGURE 1 ROC Curves of 6 ML Models Using All Variables

Predictive performance of ML models using all 66 variables was

examined for the validation cohort. AUC ¼ area under the

curve; GBM ¼ gradient boosting machine; ML ¼ machine

learning; ROC ¼ receiver operating characteristic;

SVM ¼ support vector machine.
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imputation process, all other variables in the valida-
tion cohort were used to create imputed results.
Model performance metrics were displayed with 95%
confidence intervals using 2,000 iterations of
bootstrap.

Subsequently, we created a practical ML model
using several variables with a view of future appli-
cability. Inasmuch as there are no clear criteria for
variable selection, we extracted several variables
based on validity, feasibility, and applicability from
the clinician’s perspective. Considering the SHAP
value and the comparable predictive ability across
each ML model, we finally selected 7 variables in the
random forest algorithm for the practical ML model.
Then, 6 ML algorithms using these 7 variables were
also evaluated for performance using the validation
cohort. Thereafter, we compared the receiver oper-
ating characteristics curve based on the random for-
est algorithm using 7 variables with that of the
Framingham HF risk model.20 Given that there is no
validated risk model for predicting incident HF
among patients with AF, we adopted the Framingham
HF risk model, which is considered to be the most
famous HF risk model for patients with cardiovascu-
lar diseases. We defined left ventricular (LV) hyper-
trophy as interventricular septum thickness $12 mm
instead of the electrocardiogram criteria in the orig-
inal model.20 The Kaplan-Meier curves were plotted
to display the clinical course among the subgroups
stratified by the random forest algorithm using 7
variables in the validation cohort. The distribution of
the predicted probability was divided into tertiles:
low risk was defined as probability in the first tertile,
intermediate risk as probability in the second tertile,
and high risk as probability in the top tertile. Last, we
specifically examined the predictive performance of
practical ML models among patients without pre-
existing HF in the validation cohort.

STATISTICAL ANALYSIS. Continuous variables are
presented as the mean � SD when normally distrib-
uted, and as the median and interquartile range when
non-normally distributed. Distribution was assessed
using histograms. The Kaplan-Meier method was
used to estimate the cumulative incidences of clinical
outcomes, and log-rank testing was performed to
assess differences among groups. The hazard ratio of
the events was calculated using the Cox proportional
hazards model. Receiver operating characteristics
curves were compared using the Henley and McNeil
method.21 All statistical tests were 2-tailed, and a
value of P < 0.05 was considered significant. All an-
alyses were performed using JMP version 14.2.0 (SAS
Institute) and R statistical software version 4.0.0.
RESULTS

BASELINE CHARACTERISTICS. We obtained a total
of 4,396 patients with follow-up data by April 2019.
We excluded 2 patients without the data of HF hos-
pitalization during the follow-up period. Of the 4,394
patients, the mean age was 73.6 � 10.9 years, and
1,765 (40%) were female. Paroxysmal AF accounted
for 2,194 (50%) patients, and 1,204 (27%) patients had
pre-existing HF. In total, the derivation cohort
and the validation cohort included the data for 2,383
and 2,011 patients, respectively. The patients’



FIGURE 2 Top 10 Important Variables According to the SHAP Value

Variables are color-coded based on the type of variables (red, background; yellow, past history; green, biomarker and blue; imaging data).

CTR ¼ cardiothoracic ratio; GBM ¼ gradient boosting machine; HDL ¼ high-density lipoprotein; LV ¼ left ventricular; NN ¼ neural network;

RF ¼ random forest; SHAP ¼ Shapley Additive exPlanation; SVM ¼ support vector machine.
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characteristics in the derivation and validation co-
horts are presented in Table 1. Patients in the deri-
vation cohort had a lower prevalence of paroxysmal
AF and dyslipidemia and had a higher prevalence of
pre-existing HF, hypertension, diabetes mellitus, and
chronic kidney disease (all P < 0.05). Oral anticoag-
ulants were less frequently prescribed, and cardio-
thoracic ratio and LV ejection fraction were lower in
patients in the derivation cohort than in those in the
validation cohort (all P < 0.05) (Table 1).
CLINICAL OUTCOMES. During a median follow-up
period of 4.4 years (IQR: 2.1-7.0 years), a total of
606 (14%) hospitalizations for HF occurred among the
entire 4,394 patients at a rate of 3.3% per person-year.
The Kaplan-Meier curve for the incidence of HF hos-
pitalization is shown in Supplemental Figure 1.
The annual incidence rate of HF hospitalization in the
derivation cohort was 4.0% per person-year, and that
in the validation cohort was 2.5% per person-year.
All-cause death occurred in 986 (22%) of 4,394

https://doi.org/10.1016/j.jacasi.2022.07.007


TABLE 3 Performances of 6 Machine Learning Models Using 7 Variables in the

Validation Cohort

Machine Learning Model Sensitivity Specificity Accuracy AUC

Random forest 67.2 � 1.6 71.3 � 1.1 71.0 � 0.4 0.75 � 0.01

Light gradient boosting machine 72.0 � 1.0 65.0 � 0.6 65.9 � 0.4 0.75 � 0.00

Elastic net 68.0 � 1.0 71.7 � 0.5 71.0 � 0.6 0.75 � 0.01

Linear support vector machine 68.1 � 1.0 71.7 � 0.5 71.1 � 0.6 0.75 � 0.01

Neural network 68.9 � 1.1 72.0 � 0.5 71.7 � 0.5 0.75 � 0.01

Naive Bayes 35.8 � 1.0 89.0 � 0.4 83.0 � 0.4 0.73 � 0.01

The 7 variables include age, pre-existing heart failure, creatinine clearance, cardiothoracic ratio on chest x-ray,
left ventricular ejection fraction, left ventricular end-systolic diameter, and left ventricular asynergy.

AUC ¼ area under the curve.
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patients, and the annual mortality rate was 6.1% in
the derivation cohort and 3.7% in the validation
cohort.

PERFORMANCE OF ML MODEL. The algorithm per-
formance (sensitivity, specificity, accuracy, and AUC)
of each ML model using all variables in the derivation
cohort are presented in Supplemental Table 3. All 6
models had comparable high predictive performance
(AUC range: 0.77-0.83). The performance metrics of
the 6 ML models using the validation cohort are
shown in Table 2 and Figure 1. Briefly, each ML model
had high sensitivity, specificity, and accuracy. The
AUCs for each model were also high (range: 0.76-0.78)
using the validation cohort.

IMPORTANT VARIABLES OF EACH ML MODEL.

After calculation of the importance of each variable,
the top 10 important variables in each ML model are
shown in Figure 2. Pre-existing HF was the most
important variable across all 6 ML models. Trans-
thoracic echocardiography data, such as LV ejection
fraction, LV diameter, presence of LV asynergy, and
left atrial diameter, were frequently included in the
top 10 variables in each model. Age, uric acid, and
renal function, represented by creatinine clearance,
blood urea nitrogen, creatinine, and history of
chronic kidney disease were in the top 10 variables in
almost all models. Other histories that are common
causes of HF, such as hypertension, valvular heart
disease, and coronary artery disease, were also
included in several ML models.
FIGURE 3 ROC Curves of the Risk Models for the Validation Cohort

(A) Practical ML models using 7 variables. (B) Framingham HF risk mode

cardiothoracic ratio on x-ray, LV ejection fraction, LV end-systolic diame

boosting machine; HF ¼ heart failure; LV ¼ left ventricular; ML ¼ machi

vector machine.
PRACTICAL RISK PREDICTION MODEL USING ML

ALGORITHMS. We extracted the top 7 variables in the
random forest algorithm based on their clinical val-
idity, feasibility, and applicability (age, pre-existing
HF, LV ejection fraction, LV end-systolic diameter,
LV asynergy, creatinine clearance, and cardiothoracic
ratio on chest x-ray) (Figure 2).

The predictive performances of each practical ML
model using the 7 variables for the validation cohort
are shown in Table 3. The AUCs of the 6 ML algorithms
using these 7 variables for the validation cohort are
shown in Figure 3A. The AUCs for each model were
high (range: 0.73-0.75) using the validation cohort.
The AUC of the Framingham HF risk model for the
validation cohort is shown in Figure 3B. According to
the Hanley and McNeil method, the ML model with
random forest algorithm using the 7 variables was
l. The 7 variables include age, pre-existing HF, creatinine clearance,

ter, and LV asynergy. AUC ¼ area under the curve; GBM ¼ gradient

ne learning; ROC ¼ receiver operating characteristic; SVM ¼ support
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FIGURE 4 Kaplan-Meier Curves Stratified by Random Forest Algorithm Using 7

Variables

The 7 variables include age, pre-existing HF, creatinine clearance, cardiothoracic ratio on

x-ray, LV ejection fraction, LV end-systolic diameter, and LV asynergy. CI ¼ confidence

interval; HF ¼ heart failure; HR ¼ hazard ratio; ML ¼ machine learning; LV ¼ left

ventricular.
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significantly superior to the Framingham HF risk
model (AUC: 0.75 vs. 0.67; P < 0.001).

The patients’ characteristics stratified by the ter-
tiles of a random forest algorithm using the 7 vari-
ables for the validation cohort are presented in
Supplemental Table 4. The practical ML risk predic-
tion model was able to stratify the risk of HF hospi-
talization during the follow-up period (log-rank;
P < 0.001) (Figure 4). Cox regression analysis revealed
that high-risk patients had a 12-fold higher incidence
of HF hospitalization during the follow-up period
than did low-risk patients (HR: 11.69; 95% CI: 7.40-
18.48; P < 0.001).

AMONG PATIENTS WITHOUT PRE-EXISTING HF.

Of 2,011 patients in the validation cohort, 1,507 pa-
tients did not have pre-existing HF. Even among pa-
tients without pre-existing HF, the practical ML
model had a certain level of predictive ability
(Figure 5A, Supplemental Table 5). The practical ML
model was able to stratify the risk of HF hospitaliza-
tion among patients without pre-existing HF (log-
rank; P < 0.001) (Figure 5B). High-risk patients had a
6-fold higher risk (HR: 5.97; 95% CI: 3.42-10.44; P <

0.001), and intermediate risk patients had a 3-fold
higher risk of HF hospitalization (HR: 3.14; 95% CI:
1.89-5.23; P < 0.001) than did low-risk patients.

DISCUSSION

In the present study, we explored the risk factors and
prediction model using ML techniques, and we
revealed the following: First, we demonstrated that
ML models have a high predictive performance for
the incidence of HF hospitalization in patients with
AF. Second, transthoracic echocardiographic data and
biomarkers were important variables for predicting
future HF events. Third, the practical ML model using
simple and readily available variables showed a
higher predictive ability than did the pre-existing HF
risk model and was able to stratify the risk of HF
hospitalization among patients with AF (Central
Illustration).

RISK PREDICTION FOR INCIDENT HF IN PATIENTS

WITH AF. AF and HF are closely linked and often
develop concurrently, with each disease predisposing
patients to the other. HF now represents the most
common cardiovascular complication in patients with
AF, developing at a rate nearly twice that of stroke.2,3

Of note, the incidence of HF did not significantly
change over a period of decades despite significant
advances in the treatment of patients with AF.22,23 HF
accounted for approximately 15% of all-cause mor-
tality among patients with AF in the modern anti-
coagulation era, which far exceeds that of death due
to stroke.4,5 In addition to being frequent, incident
HF is associated with a high mortality. Once patients
with AF experience HF, they have a risk of mortality
that is approximately 2- to 3-fold higher than that of
those without.2,22,24-26 These findings underscore the
importance of risk stratification for, and prevention
of, incident HF in patients with AF.

Several studies have evaluated the significant
predictors of incident HF among patients with AF.
The ORBIT-AF (Outcomes Registry for Better
Informed Treatment of Atrial Fibrillation) reported
that significant predictors for incident HF were
advanced age, coronary artery disease, valvular heart
disease, renal dysfunction, heart rate, and permanent
type of AF.25 In the United States Woman’s Health
Study, well-established modifiable HF risk factors,
such as diabetes mellitus and body mass index, were
independently associated with the increased risk of

https://doi.org/10.1016/j.jacasi.2022.07.007
https://doi.org/10.1016/j.jacasi.2022.07.007


FIGURE 5 Performance of Practical ML Model Among Patients Without

Pre-Existing HF

(A) ROC curves of the practical ML models. (B) Kaplan-Meier curves for the incidence of

HF hospitalization stratified by the practical ML model. AUC ¼ area under the curve;

CI ¼ confidence interval; GBM ¼ gradient boosting machine; HF ¼ heart failure;

HR ¼ hazard ratio; ML ¼ machine learning; ROC ¼ receiver operating characteristic;

SVM ¼ support vector machine.
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HF development in AF.26 A few risk prediction scores
for incident HF have also been investigated; however,
these previous studies used simple standard statisti-
cal models like Cox regression analysis with inherent
limitations, including correlation between variables,
nonlinearity of variables, and limit of the variable
number included in the model.27,28 By contrast, ML
techniques can overcome these limitations. All ML
risk prediction models evaluated in this study had a
high predictive performance (AUC: 0.76-0.78), as
shown in Table 2 and Figure 1, for predicting hospi-
talization for HF. ML techniques are expected to be
the basis of risk stratification for future HF events in
patients with AF.

BIOMARKER AND ECHOCARDIOGRAPHY FOR RISK

PREDICTION OF HF. This study was unique in that it
clarified predictors among data comprising >100
variables, including biological data, histories, bio-
markers, and imaging data, using ML algorithms. ML
provides the opportunity of discovering new pre-
dictors that are not hypothesis driven and without
prior assumptions. Previous studies mainly included
variables related to the patients’ backgrounds and
comorbid conditions, and they were unable to
address the importance of biomarkers and imaging
data.25,26,29 Of note, our ML model suggested that
imaging data and biomarkers are important variables
for predicting incident HF, revealed by their promi-
nent presence on the list of top 10 variables shown in
Figure 2.

Indeed, the Belgrade AF Study reported that mild
left atrial dilatation or low-normal LV ejection frac-
tion in structurally normal heart heralds an increased
risk of incident HF.30 Another study reported that
increased left atrial volume provided prognostic in-
formation for the prediction of HF events in AF.31

When these previous studies are combined with ours,
transthoracic echocardiography plays an important
role in risk stratification for incident HF in patients
with AF. In addition to imaging data, our study sug-
gested that biomarkers can help identify patients
with AF who are at an increased risk of HF events. We
previously demonstrated that natriuretic peptide
levels are a useful biomarker for the risk stratification
of HF hospitalization in patients with AF, although
this biomarker was unable to be included in our ML
models because of missing data.32 Biomarkers of
inflammation, kidney function, and hemoglobin
levels were also reportedly associated with a higher
incidence of HF in these patients.28,33,34 However,
there is a scarcity of studies incorporating imaging
data and biomarkers for the risk prediction model of
HF events. Our ML models using these imaging and
biomarker data had a high predictive ability, which
suggests the utility of incorporating these data for
risk stratification for incident HF in patients with AF.
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Machine learning prediction model was created using over 100 variables included in the data set of the Fushimi AF Registry. The entire cohort data were divided into

derivation cohort and validation cohort. Imaging data and biomarkers were nominated as important variables for the prediction of future heart failure events. Finally, 7

variables were selected for practical machine learning model based on validity, feasibility, and applicability from the clinician’s perspective. Our practical machine

learning model had a certain level of predictive ability and was able to stratify the risk of hospitalization for heart failure in patients with atrial fibrillation. HF ¼ heart

failure; LV ¼ left ventricular.
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IMPLICATION OF ML RISK PREDICTION MODELS IN

CLINICAL PRACTICE. Some burdens are specific to
the application of ML models in daily practice. In
particular, risk stratification using dozens of variables
is difficult or almost impossible to implement in
clinical practice. Therefore, we ultimately selected
several variables for risk prediction with a view to
their future practicality. A practical ML model incor-
porating only 7 variables (age, pre-existing HF, renal
function, cardiothoracic ratio, and echocardiographic
LV parameters) has the potential to become an
appropriate risk prediction tool for future HF events
among patients with AF. Objective data for these 7
variables are easy to obtain, and we believe that our
ML model can be readily available in clinical practice.
Of note, a random forest model using these 7 variables
was shown to have a higher predictive ability than the
Framingham HF risk model (Figure 3). Even among
patients without pre-existing HF, our practical ML
model was able to stratify the risk of HF hospitaliza-
tion and had a certain level of predictive ability, albeit
numerically lower than that among the entire cohort.

Recently, catheter ablation or pharmacological
therapy, including sodium glucose co-transporter 2



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: ML revealed

that the data of transthoracic echocardiography and biomarkers

were important predictors for HF hospitalization in patients with

AF. The ML model incorporating these several variables can

stratify the risk of HF among patients with AF in daily practice.

TRANSLATIONAL OUTLOOK: Further studies are needed to

create more accurate risk prediction models incorporating addi-

tional important variables, and to investigate the efficacy of

pharmacological and/or non-pharmacological therapies for pre-

venting HF events in high-risk patients with AF.
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inhibitors, was reported to aid in preventing HF
development in selected patients with AF.35,36 How-
ever, it may not be practical to give these therapies to
all patients with AF, considering the inherent com-
plications, procedural costs, and large target number.
To effectively prevent the development of HF in pa-
tients with AF, it is important to identify high-risk
patients as a first step. By establishing a risk predic-
tion model using techniques like ML algorithms,
studies addressing whether these interventions can
prevent the incidence of HF in high-risk patients are
warranted in the future.

STUDY LIMITATIONS. The present study has several
limitations. First, this was an observational study and
provides only associative evidence, not causative.
Second, some potential important variables were
excluded because of a large number of missing
values. Indeed, two thirds of patients without pre-
existing HF had no data for natriuretic peptide
levels in the registry. However, we specifically clari-
fied their prognostic significance for future HF
events, highlighting the importance of measuring
natriuretic peptide levels in all patients with AF.32 In
addition, we did not collect detailed echocardio-
graphic data, including diastolic dysfunction and
biomarkers such as troponin levels in this registry.
We may further increase the predictive ability of the
risk algorithm for incident HF with additional mea-
sures. Third, even though we show the predictive
ability of clinically available 7 variables, it is plausible
that the optimal number of variables is different. In
addition, chest x-ray and echocardiography might not
be available for all patients with AF, especially in
primary care clinics. Fourth, ML models are at high
risk of overfitting, and overfitting can be truly
assessed only in external data. Although our ML
model demonstrated good discrimination ability in
the registry, external validation is strongly war-
ranted. Inasmuch as we used a single community-
based registry, external sampling in a completely
separate population is desirable. Fifth, we did not
obtain echocardiographic data at HF hospitalization,
and incident HF could not be classified according to
LV ejection fraction. Considering these limitations,
further studies are warranted to create more accurate
ML risk prediction models incorporating additional
important variables with external validation. We
hope that our study, which suggests the utility of the
ML model, forms a foundation for the prediction of
HF events in patients with AF.
CONCLUSIONS

ML algorithms had a high predictive performance for
HF hospitalization in patients with AF. Imaging data
and biomarkers were important variables across all
ML models, which suggests their utility for risk pre-
diction of HF events. Our ML model using 7 simple
and readily available variables was able to stratify the
risk of hospitalization for HF in patients with AF,
providing opportunities for the implementation of
strategies to prevent HF among patients with AF.
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