Skip to main content
. 2022 Nov 1;2(6):706–716. doi: 10.1016/j.jacasi.2022.07.007

Table 3.

Performances of 6 Machine Learning Models Using 7 Variables in the Validation Cohort

Machine Learning Model Sensitivity Specificity Accuracy AUC
 Random forest 67.2 ± 1.6 71.3 ± 1.1 71.0 ± 0.4 0.75 ± 0.01
 Light gradient boosting machine 72.0 ± 1.0 65.0 ± 0.6 65.9 ± 0.4 0.75 ± 0.00
 Elastic net 68.0 ± 1.0 71.7 ± 0.5 71.0 ± 0.6 0.75 ± 0.01
 Linear support vector machine 68.1 ± 1.0 71.7 ± 0.5 71.1 ± 0.6 0.75 ± 0.01
 Neural network 68.9 ± 1.1 72.0 ± 0.5 71.7 ± 0.5 0.75 ± 0.01
 Naive Bayes 35.8 ± 1.0 89.0 ± 0.4 83.0 ± 0.4 0.73 ± 0.01

The 7 variables include age, pre-existing heart failure, creatinine clearance, cardiothoracic ratio on chest x-ray, left ventricular ejection fraction, left ventricular end-systolic diameter, and left ventricular asynergy.

AUC = area under the curve.