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Abstract

Electrostatic potentials around macromolecules in the presence of mobile charges are difficult 

to assess especially for highly charged systems. Here, we report measurements of local 

electrostatic potentials around DNA by paramagnetic NMR. Through quantitative analysis 

of NMR paramagnetic relaxation enhancement arising from positively charged or neutral 

paramagnetic cosolutes, we were able to determine local electrostatic potentials around 1H nuclei 

at >100 sites in major and minor grooves of 13C,15N-labeled 15-bp DNA at 100 mM NaCl. Our 

experimental electrostatic potential data directly confirmed the Coulombic end effects of DNA. 

The effective near-surface electrostatic potentials from the NMR data were in good agreement 

with the theoretical predictions with the Poisson-Boltzmann equation. This NMR method allows 

for unprecedented experimental investigations into the electrostatic properties of nucleic acids.
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Electrostatic potentials around a biological macromolecule depend not only on the 

macromolecular charges, but also on mobile ions that are attracted to or repelled by the 

macromolecules.1 Due to the strong negative charge on their molecular surface, DNA and 

RNA attract many cations as counterions. The spatial distribution of these counterions 

around the nucleic acids has been studied for five decades. According to Manning’s 

theory on counterion condensation,2 counterions around B-form DNA are condensed to a 

concentration of 1.2 M in the space within the Bjerrum length (7.1 Å in water) from DNA 

phosphates.3 The Poisson-Boltzmann theory predicts a broader and smoother distribution 

of counterions around DNA.4-5 Molecular dynamics simulations, as well as reference 

interaction site model (RISM) integral equation theory, suggest a more rugged distribution 

of counterions.6-12 In the 21st century, ion-counting and diffusion methods have provided 

quantitative experimental data at a macroscopic level about counterions around DNA and 

RNA.13-15 However, these experimental methods do not provide electrostatic potentials. The 

validity of theoretical electrostatic potentials around nucleic acids remains to be examined 

through experiments.

In this paper, we demonstrate that paramagnetic NMR allows for determination of local 

electrostatic potentials around nucleic acids. We recently developed an NMR method 

to determine local electrostatic potentials around proteins without any use of structural 
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information.16 This method utilizes paramagnetic relaxation enhancement (PRE) arising 

from two analogous cosolute molecules with opposite charges. We modified this paramagnet 

NMR method so that it can be applied to highly negatively charged systems. The method 

allows us to examine theoretical electrostatic models for nucleic acids.

We investigated local electrostatic potentials around the 15-bp DNA duplex shown in 

Figure 1A. This DNA was 13C/15N-labeled and prepared as previously described.17 Using 

the PROXYL-derivatives shown in Figure 1B as a paramagnetic cosolute at 20 mM, we 

measured the 1H transverse PRE rates Γ2 for 1H nuclei of CH/CH2/CH3 groups of DNA. 13C 

heteronuclear single-quantum coherence(HSQC)-based pulse sequences with homonuclear 
13C decoupling to eliminate 1JCC splitting were used to measure PRE for many carbon-

attached 1H nuclei (Fig. S1 in the Supporting Information [SI]). Figure 1C shows an 

example of the recorded 1H-13C correlation spectra (see also Fig. S2 in SI). Although some 

of our earlier studies on proteins utilized 1H PRE data for NH groups,16,19 we decided 

to use PRE data for CH/CH2/CH3 groups in the current study on DNA because rapid 

hydrogen exchange of DNA NH/NH2 groups may adversely impact measurements of PRE 

rates. Cosolutes may catalyze hydrogen exchange,20 which can introduce significant errors 

in Γ2 rates due to different hydrogen exchange rates for the paramagnetic and diamagnetic 

samples. This concern is irrelevant to PRE for nonlabile 1H nuclei of CH/CH2/CH3 groups.

PRE Γ2 data for DNA base 1H nuclei are shown in Figure 1D-E. Corresponding PRE data 

for DNA sugar 1H nuclei are shown in Fig. S3 in the SI. As proposed in our previous 

studies on proteins,16,19,21 we initially used positively charged aminomethyl-PROXYL and 

negatively charged carboxy-PROXYL as paramagnetic cosolutes. Interestingly, the PRE 

rates were virtually zero for most 1H nuclei of DNA when carboxy-PROXYL was used. 

This suggests that the negatively charged cosolutes are excluded from the space proximal 

to DNA, presumably due to strong electrostatic repulsion. By contrast, when positively 

charged aminomethyl-PROXYL was used, the PRE rates for all 1H nuclei were remarkably 

larger than 10 s−1, reflecting electrostatic attraction of the positively charged cosolute to the 

negatively charged DNA surface.

Since the magnitude of PRE arising from carboxy-PROXYL was too small for quantitative 

analysis of electrostatic potentials, we also measured PRE arising from a neutral analogue, 

carbamoyl-PROXYL (see Figure 1B). The observed PRE arising from carbamoyl-PROXYL 

was larger than those for carboxyl-PROXYL, but smaller than those for aminomethyl-

PROXYL (Figure 1E). This relative magnitude likely reflects the absence of electrostatic 

repulsion or attraction for the neutral cosolute. Using these data sets we determined effective 

near-surface electrostatic potentials ϕENS for individual 1H nuclei of the 15-bp DNA. The 

following equation was used to determine ϕENS potential:16

ϕENS = kBT
(zb − za)e ln(Γ2, a

Γ2, b
), (1)

where, e is the elementary electric charge; z is a charge valence of a PROXYL derivative; 

kB is the Boltzmann constant; T is temperature; and annotations a and b are for two 

different PROXYL derivatives. At neutral pH, z = +1 for aminomethyl-PROXYL; z = 0 for 
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carbamoyl-PROXYL; and z = −1 for carboxy-PROXYL. In our current case, a and b are 

aminomethyl-PROXYL and carbamoyl-PROXYL, respectively.

Using the data of PRE arising from aminomethyl-PROXYL and carbamoyl-PROXYL, we 

determined the effective near-surface electrostatic potentials ϕENS for 1H nuclei at 112 sites 

of the 15-bp DNA duplex (Figure 2A). The ϕENS potentials were determined only for 
1H nuclei that exhibited statistically significant PRE rates and Γ2,+ /Γ2,− ratios, using the 

criteria described in the SI. The electrostatic potentials ranged from −54 mV to −18 mV. 

Compared with the previous data for proteins,16,19,21 our current data for DNA reveal a 

relatively smooth landscape of near-surface electrostatic potentials. This seems reasonable 

because proteins contain both positive and negative charges, whereas DNA contains virtually 

no positive charges. Only protonated bases in a very minor state are positively charged 

in DNA.22-23 1H nuclei near the two ends of DNA exhibited smaller magnitudes of ϕENS 

potentials. This corresponds to the so-called “Coulombic end effects”.24-25 Our experimental 

data confirm that the local electrostatic potentials near the DNA ends are weaker.

The effective near-surface electrostatic potential ϕENS can be predicted from structure. As 

previously explained,16 a physical meaning of ϕENS is that it approximates the average 

of the electrostatic potentials in a near-surface zone proximal to the observed 1H nucleus. 

Due to the strong distance dependence imposed by r−6, each PRE Γ2 rate is dominated by 

the paramagnetic cosolute molecules diffusing in this zone. When electrostatic potentials 

in 3-D lattice grid space around a macromolecule are used, the ϕENS potential agrees well 

with the average of electrostatic potentials in a zone within a distance that makes a 68% 

contribution to ∑ri
−6, where ri is a distance between an accessible grid point i and the 

observed 1H nucleus.16 We refer to this zone as the effective near-surface (ENS) zone. Using 

the Adaptive Poisson-Boltzmann Solver (APBS) software26 along with structural models 

of DNA, we computed electrostatic potentials ϕı, ENS
PB , from which the average potential 

ϕi
PB within the ENS zone was calculated for each 1H nucleus. Each ENS zone covers a 

large volume of accessible space with a radius of ~8-20 Å. Figure 2B shows the effective 

near-surface (ENS) zone for the A4 H8 atoms as an example together with isopotential 

surfaces of the electrostatic potentials computed with the Poisson-Boltzmann equation.

The experimental ϕENS data were generally in good agreement with the Poisson-Boltzmann 

theory-based predictions ϕı, ENS
PB . The overall root-mean squared difference (RMSD) 

between the experimental and predicted values was 6.4 mV for an ideal B-form DNA 

structure (6.7 mV for a structure model based on PDB 9ANT). Some 1H nuclei (e.g., 

A2 H1’ and G12 H1’/H8) exhibited relatively large discrepancy between the experimental 

and predicted values, which may reflect limitations of ϕENS prediction using a spherical 

model for the PROXYL derivatives.19 Figure 3 shows a correlation plot for the experimental 

data and the theoretical predictions. For the sake of comparison, this figure also shows the 

corresponding data for the ϕENS potentials for 13C-attached 1H nuclei of ubiquitin reported 

in our previous study21. We should point out that because of different zb − za in Eq. 1, 

uncertainties in experimental ϕENS potentials increase two-fold when carbamoyl-PROXYL 

(z = 0) is used instead of carboxy-PROXYL (z = −1). Nonetheless, in terms of RMSD, the 

Yu et al. Page 4

J Phys Chem Lett. Author manuscript; available in PMC 2023 October 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



agreement between the experimental and theoretical data for the 15-bp DNA was as good as 

that for ubiquitin. These data validate predictions by the Poisson-Boltzmann theory, even for 

such a highly charged system as DNA, which attracts many counterions.

Prior to the current work, experimental assessment of electrostatic potentials for nucleic 

acids has been difficult. An electron-electron double-resonance (ELDOR) study using 

9-tempaminoacridine spin label intercalated into DNA suggested that the magnitude of 

electrostatic potential around DNA was significantly smaller than the prediction from the 

Poisson-Boltzmann theory.27 However, the intercalation of the paramagnetic probe used 

in the ELDOR method can distort DNA. The ELDOR data are also limited to the probe 

whose location is not well defined. These weaknesses make it difficult to judge whether the 

discrepancy reflects the limitations of the ELDOR experiment or those of the theoretical 

model. The paramagnetic NMR method is clearly more powerful for examination of 

electrostatic models because it can provide electrostatic potentials around native DNA for 

numerous 1H nuclei without any chemical modification.

It should be noted that the paramagnetic NMR method is directly applicable to investigate 

electrostatic potentials around RNA. Structural dynamics are often important for RNA 

functions.28-29 Due to the requirement of precise measurements of PRE rates for multiple 

paramagnetic cosolutes, applications of this method to large (e.g., >40 kDa) nucleic 

acid molecules may be challenging. Nonetheless, the paramagnetic NMR method can in 

principle provide local electrostatic potentials even for highly flexible macromolecules 

such as single-stranded RNA and intrinsically disordered proteins. This aspect is important 

because the electrostatic properties of structurally disordered macromolecules are difficult to 

computationally assess with the Poisson-Boltzmann theory.

In conclusion, we have developed a paramagnetic NMR-based method to measure local 

electrostatic potentials around nucleic acids without any use of structural information. This 

method allows for unprecedented experimental investigations into the electrostatic properties 

of nucleic acids. Experimental data of near-surface electrostatic potentials will be useful not 

only for validation of theoretical electrostatic models, but also for a better understanding of 

the role of electrostatic interactions in the function of nucleic acids.

Experimental Methods

The NMR samples of the 13C/15N-labeled DNA duplex was prepared as previously 

described. All NMR experiments were conducted at 25°C using a Bruker Avance III NMR 

spectrometer operated at the 1H frequency of 600 MHz. A cryogenic 1H/13C/15N/31P QCI 

probe was used for NMR detection. Experimental and computational details are described in 

the SI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Paramagnetic NMR data to analyze local electrostatic potentials around DNA. (A) 15-bp 

DNA duplex used in the current study. The residue numbering is according to Wang et 

al.17 (B) Paramagnetic cosolute molecules used in the current study. (C) C6/C8 region 

of 2D 1H-13C HSQC spectrum recorded for the diamagnetic sample of the DNA duplex. 

Spectra for other moieties are shown in Fig. S2 in the SI. (D) Examples of signal intensity 

modulation used to measure 1H PRE rates Γ2 using two time-point approach18. The 1H 

slices of the signals from T9 H6 in the two 2-D sub-spectra for each sample are overlaid 

and normalized to the intensity at the shorter time point. Due to larger PRE, the intensity 

at the second time point for the paramagnetic sample with aminomethyl-PROXYL is clearly 

smaller than those of the other samples. (E) PRE rates Γ2,+ (blue), Γ2,n (green), and Γ2,− 

(red) measured for DNA base 1H nuclei. For each base pair position, the data for strands 1 

(left) and 2 (right) are plotted. The concentration of each PROXYL derivative was 20 mM.
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Figure 2. 
Effective near-surface electrostatic potentials ϕENS determined from the 1H PRE Γ2 rates 

measured with aminomethyl-PROXYL or carbamoyl-PROXYL as a paramagnetic cosolute. 

(A) ϕENS potentials measured for base and deoxyribose 1H atoms. Solid and dashed lines 

represent Poisson-Boltzmann equation-based predictions from the B-form structure and a 

structural model based on PDB 9ANT, respectively, for H6/H8 (left) and H1’ (right) atoms 

only. (B) ENS zone for the A4 H8 atom as an example. A ϕENS potential approximates 

the average of the electrostatic potentials within an ENS zone, which is defined as a zone 

that makes a 68% contribution to ∑ri
−6, where ri is the distance between the observed 1H 

nucleus and a grid point.16 The panel also shows isopotential surfaces for the electrostatic 

potentials calculated with the APBS software26 In the lower right panel, the isopotential 

surfaces are clipped at the 2-D plane that contains the A4 H8 atom and is perpendicular to 

the DNA axis.
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Figure 3. 
Correlation between the experimental ϕENS and predicted potentials for 13C-attached 1H 

atoms. The data for ubiquitin was taken from Yu et al.21 The potentials for the 15-bp DNA 

were predicted using a B-form structure. Corresponding data with the predictions using a 

model based on PDB 9ANT are shown in Fig. S4 in the SI.
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