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Abstract

Targeted covalent inhibitors (TCIs) are considered to be an important component in the toolbox 

of drug discovery and about 30% of currently marketed drugs are TCIs. Although these drugs 

raise concerns about toxicity, their high potencies and prolonged effects result in less-frequent 

drug dosing and wide therapeutic margins for patients. This leads to increased interests in 

developing new computational methods to identify novel covalent inhibitors. The implementation 

of successful in silico docking algorithms have the potential to provide significant savings of time 

and money in the discovery of lead compounds. In this paper, we describe the implementation 

and testing of a covalent docking methodology in Rigid CDOCKER and the optimization of 

the corresponding physics-based scoring function with an additional customizable covalent bond 

grid potential which represents the free energy change of bond formation between the ligand 

and the receptor. We optimize the covalent bond grid potential for different common covalent 

bond formation reaction in TCIs. The average runtime for docking one covalent compound is 

15 minutes which is comparable or faster than other well-established covalent docking methods. 

We demonstrate comparable top rank accuracy compared with other covalent docking algorithms 

using the pose prediction benchmark dataset for covalent docking algorithms developed by the 

Keserű group. Finally, we construct a retrospective virtual screening benchmark dataset containing 

8 different receptor targets with different covalent bond formation reactions. To our knowledge, 

this is the largest dataset for benchmarking covalent docking methods. We show that our new 

covalent docking algorithm has the ability to identify lead compounds among a large chemical 

space. The largest AUC value is 0.909 for the target receptor CATK and the warhead chemistry of 

the covalent inhibitors is addition to the aldehyde functionality.
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1 Introduction

Targeted covalent inhibitors (TCIs) have gained increased interest in drug discovery in the 

last two decades, with nearly 30% of currently marketed drugs known to be covalently 
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bound to the therapeutic target.[1–3] TCIs are designed such that the initial, reversible 

association is followed by the formation of a covalent bond between the ligand and 

receptor, which strengthens the interactions and increases the potency.[2, 3] Tethered 

docking methods have become an efficient means of structure based TCI design, and has 

been widely used in identifying lead compounds.[4–6] Generally speaking, docking involves 

two main components: searching and scoring.[7–9] In one element, the searching generates 

multiple docking poses of a ligand within the constraints of the receptor binding site. The 

application of a scoring function then ranks these poses and is expected to identify the 

correct binding pose through the assumption the correct binding pose is at the top rank. 

Today, multiple off-the-shelf protein-ligand covalent docking programs, either commercial 

or free, are available for use, such as DOCKovalent[10], GOLD[11–13], AutoDock4[14, 

15], CovDock[16, 17], FITTED[18], ICM-Pro[19] and MOE.[20] In a recent pose prediction 

challenge to reproduce the binding mode of 207 cysteine-bound covalent complexes, ICM-

Pro showed the best performance with the top-ranking accuracy of 62%, followed by 

CovDock(59%), FITTED(56%), AutoDock4(55%), and GOLD(53%).[21]

The covalent docking methods DOCKovalent, GOLD, AutoDock4, ICM-Pro and MOE 

handle the ligand in its bound state (i.e. covalent form).[10–13, 15, 19, 20] These methods 

form a physical bond between the ligand reactive atom to the receptor reactive atom and 

before searching for the binding pose, which have two potential issues: (1) the sampling 

space is reduced and does not include the initial, reversible association for ligands from 

an unbound form, which is essential for TCIs, (2) and the ligand preparation or reaction 

type generally requires manual definition which can cause difficulties in high throughput 

screening.

CovDock and FITTED use the ligand in its non-covalent form.[16–18] CovDock has 

two different versions which are Lead Optimization mode (CovDock-LO)[16] and 

Virtual Screening mode (CovDock-VS).[17] The first has a better accuracy with higher 

computational cost and was used in a previous pose prediction challenge.[21] Typically, 

CovDock-LO requires 1 ~ 3 hours to dock one compound.[17] The CovDock-VS mode is 

designed to address high throughput needs with a lower docking accuracy. Both methods 

will automatically identify the ligand warhead atoms and form a covalent bond during 

the docking simulations if the warhead is predicted to be in close proximity to the 

targeted residues.[16–18] On the other hand, FITTED does not allow customization of the 

warhead, which makes it unable to recognize certain covalent bond formation reactions (i.e., 

nucleophilic substitution, ring opening and disulfide bridge formation).[18, 21] Thus, both 

docking methods have limitations in real applications for identification of TCIs.

Rigid CDOCKER is a grid based MD docking algorithm where the ligand-receptor 

interaction energy is precomputed and stored on a grid.[22] This grid-based representation 

of interactions has been applied widely in many docking protocols which provides 

computational efficiency while maintaining much of the accuracy of the full force field 

method. Rigid CDOCKER uses a physics-based scoring function (eq 1) and was originally 

designed for docking reversible inhibitors.[22] In the current work, we implement a covalent 

docking module with Rigid CDOCKER by introducing an customizable covalent bond grid 
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potential in the scoring function to mimic the free energy change of bond formation between 

the ligand and the receptor as described below.

ΔGbinding = Eligand internal energy + Evdw + Eelec (1)

2 Methods

Benchmark Dataset

Two sets of protein-ligand complexes and the ZINC12 compound library[23, 24] are used 

for optimizing and benchmarking the protein-ligand docking method described below.

Dataset used for optimizing the covalent CDOCKER scoring function and 
evaluating pose prediction accuracy.—We employed the same dataset as the one 

used in the previous pose prediction challenge, which contains 207 complexes representing 

54 protein targets.[21] This dataset contains 7 different chemical reaction types: addition to 

aldehyde, disulfide bond formation, addition to ketone, Michael addition, addition to nitrile, 

nucleophilic substitution and ring opening, that are common for TCIs.[2, 21] We select this 

dataset to optimize the scoring function and compare the pose prediction accuracy of the 

proposed covalent docking algorithm with other covalent docking programs.

Retrospective virtual screening dataset.—One major application of docking is to 

identify lead compounds for a given target. A successful in silico docking protocol can save 

a large amount of time and money in the drug discovery process. Thus, it is important to 

evaluate the virtual screening performance for a newly proposed docking algorithm. Many 

research groups constructed different retrospective virtual screening datasets in developing 

their covalent docking methods.[10, 16, 17, 25] However, there are different issues with 

these datasets: (1) they do not include different covalent bond formation reactions of 

TCIs, (2) there is no additional process for filtering out decoys that are physico-chemically 

dissimilar with the actives for some of the datasets, and (3) the size of both the active sets 

and decoy sets are very small for some of the datasets. Therefore, we decided to construct 

our own retrospective virtual screening dataset.

We did not select the standard ZINC15 library because it has been filtered by ZINC12 

clean filters.[24, 26] This removes aldehydes and thiols in the ZINC15 standard library, 

which is contradictory to the purpose of constructing virtual screening dataset of the 

reaction addition to aldehyde. Thus, the entire standard ZINC12 library containing 16 

million compounds is used to construct subsets with different electrophiles that correspond 

to different covalent bond formation reactions. This classification is performed based on 

SMARTS regular expression (Table 1). If the same functional group appears more than once 

in a compound, then this compound is excluded in the corresponding electrophile subset. 

Nucleophilic substitution reactions could involve different functional groups and leaving 

groups, thus it is hard to maintain both specificity and generalization by using only one 

SMARTS regular expressions. Therefore, we decided to not include a benchmark set for the 

nucleophilic substitution reaction. Overall, this provides large compound libraries for each 

of the remaining reaction types and is used for our curation of the decoy sets.
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For each of the remaining reaction types, we intended to construct 1 ~ 2 benchmark sets 

with different target receptors. All experimentally validated binders for each target receptor 

are collected from BindingDB.[27] For the curation of active sets with a desired electrophile, 

the collected ligand libraries are filtered using the same SMARTS regular expressions (Table 

1). We assume these filtered actives with the intended electrophile are TCIs (i.e., these 

inhibitors form a covalent bond upon binding.) We also perform an additional filtering to 

only include lead-like molecules (250 ≤ molecular weight ≤ 350; LogP ≤ 3.5; number of 

rotatable bonds ≤ 7) for the chemical reaction type addition to ketone, addition to nitrile 

and Michael addition. This allows us to limit the docking library size and avoid potential 

docking issues from large and flexible compounds.[10]

To construct the decoy set for each target receptor that we choose, we selected physico-

chemically similar compounds from the corresponding electrophile subsets. It is understood 

that some of the compounds in the decoy set might actually be true binders, and our 

choice of using high physico-chemcially similar compounds make the retrospective virtual 

screening test even more challenging. A more detailed explanation of dataset construction is 

documented in the Supplementary Information and the similarity cutoff is also listed in the 

Supplementary Table S1. A summary of the retrospective virtual screening dataset is listed 

in Table 2.

Unfortunately, we did not identify receptor targets with adequate actives (i.e., more than 

10 experimentally validated inhibitors) for the chemical reaction disulfide bond formation 

mainly because only about 2% of TCIs undergo disulfide bond formation with the target 

receptor. Overall, we construct a retrospective virtual screening benchmark dataset modeling 

5 common covalent bond formation reactions of TCIs. To our knowledge, this is the largest 

benchmark dataset for covalent docking methods.

Rigid CDOCKER Algorithm Overview

There are three main elements to the Rigid CDOCKER algorithm: the receptor and ligand 

representation, a searching algorithm, and the newly developed scoring function, which 

includes an additional energy term that approximates the free energy change of covalent 

bond formation.

Receptor and Ligand Representation

All protein structure files were acquired from the Protein Data Bank (PDB). Both protein 

structures and ligand structures are manually examined and reverted to pre-reaction form. 

The receptor structure is represented implicitly by grids with a grid space of 0.5 Å. Ligand 

structure files are manually examined and reverted to pre-reaction form. MOE (Molecular 

Operating Environment)[28] was used to predict the protonation state of the ligands at 

pH 7.4. The dominant protonation state of the compound is selected for the following 

docking experiments. RDKit[29] was used to generate random ligand conformations using 

the EDKTG method[30, 31], ParamChem[32, 33] was used to prepare the ligand topology 

and parameter files and the MMTSB tool set[34] was used to cluster the binding poses. A 

more detailed explanation of the conformer generation is documented in the Supplementary 

section Ligand Conformer Generation. The corresponding scripts are provided in the 
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Supplementary Infromation and can be acquired through GitHub. Clustering used the tool 

cluster.pl with K-means clustering. The CHARMM C36 force fields[35] were used and 

docking was performed in CHARMM[36] with the CHARMM/OpenMM parallel simulated 

annealing feature.[37] The RMSD cutoff to identify native-like poses is set to be 2 Å for 

rigid docking, to be consistent with the evaluation criteria in the previous studies.[22, 37]

Docking Searching Algorithm

One general problem in docking is how to place the ligand in the vicinity of the binding 

site and what initial ligand internal conformation to chosen. In the original CDOCKER 

docking protocol, we typically use 500 docking trials for each ligand.[37] This might be 

redundant for a rigid compound, while at the same time insufficient for a highly flexible 

compound. It is endemic to docking methodology that a non-exhaustive searching of ligand 

conformational space and initial placement will result in a decrease in top-ranking accuracy. 

Hence, this will also affect the performance of docking methods in virtual screening as 

observed by the Shoichet group in their retrospective virtual screening test when the ligand 

has many rotatable bonds.[10]

Therefore, after we generate N conformers for a given ligand, we perform 100 initial 

placements for each conformer (i.e., 100N docking trials in total). These initial starting 

poses are then optimized by the molecular dynamics (MD) based simulated annealing 

algorithm[7, 8, 22, 37, 38] and scored with the scoring function described below. In the 

current study, the parameters for the van der Waals and electrostatic interactions are the 

same as reported in our previous studies and are included in Supplementary Table S2.[37, 

38] The CHARMM scripts used for docking covalent inhibitors with Rigid CDOCKER 

can be acquired through GitHub and a more detailed explanation of the covalent docking 

searching algorithm is provided in the Supplementary Information.

Optimizing the Covalent Docking Scoring Function

The binding free energy can be written as eq 2. In cases of pose prediction, the same 

ligand is docked to the receptor multiple times and generates a distribution of docking 

poses. Since the initial state (Ginitial) is the same for all docking trials (i.e., both ligand and 

receptor are presented separately in the solution). Thus, only Gfinal needs to be calculated 

for pose prediction. The enthalpic contribution (Hfinal) can be separated into ligand internal 

energy (Eligand), van der Waals interaction (Evdw), electrostatic interactions (Eelec) and free 

energy for the chemical reaction that forms the covalent bond (Ecovalent). The energy terms 

Eligand, Evdw and Eelec have been well-established in the CDOCKER scoring function.[22, 

38] The entropic contribution (Sfinal) can be separated into contributions from solvation and 

conformational entropy. Since we consistently dock the same ligand to the same binding 

pocket in one measurement, the change in conformational entropy for the same ligand is a 

constant, and we assume the solvation contribution is approximately the same for different 

docking poses. Thus, we suggest that the entropic contribution and the solvation contribution 

can be neglected. Therefore, the scoring function for Rigid CDOCKER in covalent docking 

can be written as eq 3.

Wu and Brooks Page 5

J Comput Aided Mol Des. Author manuscript; available in PMC 2023 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ΔGbinding = Gfinal − Ginital
= Hfinal − Hinitial − T Sfinal − Sinitial

(2)

ΔGbinding = Evdw + Eelec + Ecovalent + Eligand (3)

Rigid CDOCKER is a grid based MD docking algorithm.[22] Here, we introduce a 

customizable grid potential (eq 4) to mimic the free energy change for the chemical reaction 

that forms the covalent bond. We adopt the idea of the two-point attractor method[15], where 

the ligand is modeled as a free ligand, and this covalent bond grid potential is used to 

bring together the ligand reactive atom and the targeted receptor reactive atom. As shown in 

Figure 1, the parameters r1, r2 and Emax determine the width and well depth of the covalent 

bond grid potential. The variable r is the distance between the grid point and receptor 

reactive atom. When the ligand reactive atom is close to the receptor reactive atom (i.e., 

between r1 and r2), this potential (Emax) will favors the interaction between the ligand and 

receptor.

Ecovalent =
−4Emax
r2 − r1

2 r − r1 r − r2 if r > r1 and r < r2

0 otherwise
(4)

The two-point attractor method in AutoDock treats different bond formation reaction types 

with the same grid potential.[15] However, for different covalent bond formation reactions, 

one would expect the covalent bond grid potential parameters should adopt different values. 

To identify the best parameters for different reaction types, we perform the docking 

experiments on the pose prediction dataset using different covalent bond grid potentials. 

This dataset contains 207 different protein-ligand complexes and is used in previous 

comparative docking analysis of the covalent docking methods. The different parameter 

values used in this experiment are listed in Table 3. Thus, we have a total of 100 different 

covalent bond grid potentials (i.e., 100 different combinations of the parameters). Therefore, 

we perform 100 docking experiments with different covalent bond grid potential against 

each protein-ligand complex and record the corresponding docking result. This docking 

experiment is repeated for 3 times.

Because the number of receptor structures in each reaction type is relative small (i.e., only 

5 receptor structures in the chemical reaction disulfide bond formation) and the randomness 

of dividing a dataset into for training and testing components does not exist[39], we adopt 

the idea of leave-one-out cross validation and analyze the docking results with the following 

procedure:

1. For a reaction type with N receptor structures, we separate the dataset into 

training sets with N − 1 receptors and testing sets with one receptor (i.e., leave-

one-out approach).
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2. Calculate the cumulative ranking accuracy averaged across the 3 independent 

docking experiments for the training set.

3. Record the corresponding top-ranking accuracy and area under curve (AUC) 

value of the cumulative ranking accuracy plot.

4. Select the covalent bond grid potential parameters with the best top-ranking 

accuracy. If multiple sets of the grid potentials give the same highest top-ranking 

accuracy result, we then select the one with the largest AUC value and record the 

corresponding average ranking result in the testing set.

5. Repeat step 2 ~ 4 for all training and testing sets.

Thus, for each reaction type, we will have a set of grid parameters. We consider the most 

frequent set of grid parameter as the optimized grid parameters for this reaction type and 

compute the corresponding top-ranking accuracy (Table 4). The parameters r1 and r2 reflect 

the average bulkiness of the reactive leaving group and the targeted connection point within 

the benchmark dataset. The potential Emax is the empirical representation of the average 

difference in bond formation free energy of a given warhead chemistry in solution versus 

in the protein environment and is probably dominated by the entropic localization bias. For 

completeness, we also record and plot the heat-maps of the top-ranking accuracy and AUC 

results in the Supplementary Figure S2 and S3. A complete docking result is listed in the 

supplementary files rank-result.tsv and can be acquired through GitHub.

As shown in Table 4, for each of the chemical reactions, we identified the best covalent 

bond grid potential, and the top-ranking accuracy for each of the chemical reactions is 

listed in Table 5. The standard Rigid CDOCKER non-covalent docking methodology is used 

for direct comparison. We demonstrate that the additional covalent energy term (Ecovalent) 

significantly improves the docking performance. In the initial random placement of the 

ligand, we only include the poses with Ecovalent smaller than zero (i.e., Ecovlanet acts as 

an additional filter). This might also explain why we observe more improvement in pose 

prediction accuracy compared with other comparison work (i.e., Glide vs. CovDock and 

Autodock vs. Autodock covalent docking method).

The top-ranking accuracy against the pose prediction dataset is comparable with other 

covalent docking methods used in the same benchmark dataset.[21] We recorded the 

top-ranking accuracy for each of the reaction types and covalent docking methods in the 

Supplementary Table S3. The average docking runtime is about 15 minutes, which is 

comparable or faster than other covalent docking methods.[14–19] We notice that we have 

a relative lower pose prediction accuracy for the reaction type ring opening. On the other 

hand, in the pose prediction challenge for the reaction type ring opening, all of the other 

five covalent docking methods have a top rank accuracy below 25% (Table 6). This indicates 

there might be potential issues in dataset construction or modeling ring opening in general 

for tethered docking methods. We also compared the seaching and scoring accuracy for our 

covalent docking method. As shown in Table 7, the relatively higher searching accuracy 

indicates future work should focus on further optimization of the scoring function.
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Augmented Scoring Function for Virtual Screening

One of the most common applications of docking is to identify novel inhibitors for a given 

target. Covalent docking methods have been used to rank compounds with the same warhead 

chemistry and succeed in identifying covalent inhibitors.[10, 40–42] The proposed scoring 

function estimates the total energy of the protein-ligand complex upon binding. Therefore, 

in order to compare different small molecules, we need to augment our scoring function 

to consider the system in the unbound state. Because these compounds are docked to the 

same protein target, the protein energy in the unbound state is a constant and cancels out 

in comparative studies. Thus, to complete the scoring function for this situation, we only 

need to include contributions to the ligand internal energy and conformational entropy of the 

unbound state (eq 5).

ΔGbinding = Gfinal − Ginital
= EScoring function − Eligand internal energy at unbound state + TSligand
= Evdw + Eelec + Ecovalent + Eligand internal energy in tℎe bound state
− Eligand internal energy in tℎe unbound state + TSligand

(5)

The top rank docked pose is used to calculate the total energy of the protein-ligand complex 

using the scoring function just proposed in (eq 5). The conformers for each of the ligands 

used for docking are minimized in vacuum. The ligand internal energy in the unbound 

state is then calculated by computing the ensemble average of the internal energy of these 

conformers. The ligand conformational entropy (Sligand) is calculated based on the number 

of the rotatable bonds of the ligand using the microscopic definition of entropy (eq 6). We 

assume that the rotatable bonds of the ligand are independent of each other and all three 

states (i.e., trans, gauche- and gauche+) can be equally sampled. The temperature (T) is set 

to be room temperature (298 K).

Sligand = − kBNrotorsln
1
3 (6)

The solvation free energy difference is computed using two different approaches: (1) 

implicitly represented in the proposed scoring function by the distance dielectric constant of 

3r.[22, 37, 38] and (2) rescoring the system using the FACTS implicit solvent model.[43] In 

the rescoring approach with the FACTS implicit solvent model, the ligand internal energy in 

the unbound state is calculated by the same approach. The rescoring of the protein-ligand 

complex at the bound state is performed by minimizing the top rank docked pose with the 

FACTS implicit model. The coordinates of the protein atoms and the ligand reactive atoms 

are fixed for two reasons: (1) reduce the computational cost of the rescoring, and (2) the 

distance between the protein and ligand reactive atoms remains unchanged. Therefore, we 

do not need to re-estimate the covalent bond formation energy (Ecovalent).

As shown in Figure 2, the dominant effects in the ranking orders is the van der Waals 

and electrostatic energy differences, which reflects the structure complimentary between 

the receptor and ligand. The difference of the covalent bond formation energy (Ecovalent) is 

relatively small for different compounds. This reflects the likelihood of forming a covalent 
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bond between the corresponding ligands and receptor and shifts the ranking orders for 

compounds with similar structural and chemical properties.

3 Result

Virtual Screening Performance with Generic Parameters

As mentioned above, we constructed a retrospective virtual screening dataset containing 

7 receptor targets modeling 5 common TCI warheads. We perform covalent docking 

experiments with the docking methods just described against both ligands and non-binding 

decoys. We use the generic covalent bond grid potential parameters, which are the ones 

optimized in the pose prediction just described (Table 4). The area under the curve (AUC) 

value of the receiver operating characteristic (ROC) curve (Figure 3) and two enrichment 

factors (EF1 and EF20) are used to evaluate its performance in distinguishing the non-binders 

from binders (Table 8).

As demonstrated in Figure 3 and Table 8, the proposed covalent docking method with both 

solvation models has the ability to distinguish binders from non-binders in general. The best 

performance is for the target receptor CATK with an AUC value of 0.909 and the warhead 

chemistry of the covalent inhibitors is addition to the aldehyde functionality. As we noted 

earlier, some of the compounds in the decoy set might be true binders and this could skew 

our success measures. Thus, the reported values (AUC, EF1 and EF20) are actually a lower 

bound. Using the FACTS implicit solvent model shows improved performance, especially in 

the early enrichment of binders (i.e., EF1 value). The largest improvement of the EF1 value 

is against the receptor target JAK3 (28.324 vs. 2.601). The computational cost of rescoring 

with the FACTS implicit solvent model is about 5 ~ 10% of the average runtime of the 

proposed docking algorithm.

We noted that the FACTS implicit solvent model has a disadvantage in the case of PAPAIN 

(i.e., lower AUC value). We calculated the average solvent accessible surface area (SASA) 

of the binding pocket using CHARMM. The binding pocket is defined as any protein atom 

within a 4 Å distance cutoff of any of the crystal ligand atoms. When the binding pocket 

has a larger average SASA (i.e., ligand is more exposed to solvent upon binding), the 

solvation free energy change upon binding is smaller. As shown in Table 9, the receptor 

target PAPAIN has the largest average SASA. Therefore, this might explain why using 

FACTS implicit solvent model does not improve the virtual screening result.

For the warhead chemistry of addition to ketone, as shown in Figures 4A and 4B, the 

properties of the compounds (i.e., number of rotatable bonds and molecular weight) are 

similar to each other. However, the binding pocket for the receptor target ALDH3A1 is small 

and buried (Figure 4C) and the binding pocket for the receptor target CASP3 is large and 

open (Figure 4D). Thus, the searching space in the case of CASP3 is relatively larger and the 

surface binding pocket requires less structural complimentary. This may be why we observe 

difference virtual screening performance for the warhead chemistry of addition to ketone 

and consistent with the observation that structural complimentary is important in docking.
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4 Conclusions and Discussions

Targeted covalent inhibitors (TCIs) are designed such that the covalent warheads can target 

rare, non-conserved residues of a particular target protein and lead to the development of 

highly selective inhibitors with high potency and extended duration of action. In this work, 

we introduced a customizable covalent bond grid potential in the original Rigid CDOCKER 

scoring function.

In the covalent docking in Rigid CDOCKER, the covalent bond grid potential acts as an 

attractor if the ligand reactive atom and the protein reactive atom are close to each other and 

provides an estimate of the free energy change upon covalent bond formation. This is clearly 

evident by our comparison of the rigid docking protocol with and without the covalent bond 

grid potential shown in Table 5. Different bond formation reactions (warhead chemistries) 

should be modeled differently. We optimized and provided a set of generic parameters 

for the covalent bond grid potential for different reaction types. One could use QM/MM 

approaches to parameterize the covalent terms, but that is beyond the scope of the current 

work and may end up being too system specific and costly to be useful in a high-throughput 

scheme as we have implemented. Our covalent docking algorithm shows comparable pose 

prediction accuracy with other popular docking algorithms. The average docking runtime is 

about 15 minutes, which is comparable or faster than other covalent docking methods.

We also constructed a benchmark dataset for evaluating the ability to identify novel TCIs 

for tethered docking methods. To our knowledge, this is the largest retrospective virtual 

screening benchmark set for evaluating tethered docking methods. We demonstrate that 

the proposed covalent docking algorithm has the ability to discriminate binders from 

non-binders with both solvent models. The covalent bond grid potential in this test uses 

the generic parameters. This suggests that the proposed covalent docking algorithm can 

be widely used for different targets for lead compound identification. Using the FACTS 

implicit solvent model with a small additional computational cost shows better performance, 

especially in the early enrichment of the active compounds.

In real applications, one could further optimize or adjust this covalent bond grid potential to 

achieve further improvements. Recently, we developed python package of the CDOCKER 

family as a workflow functionality in pyCHARMM (i.e., CHARMM through a python 

interface), which reduces the complexity in using CDOCKER for potential users unfamiliar 

with CHARMM or CDOCKER. This allows one to easily modify the grid parameters and 

integrate CDOCKER based docking workflows with other commonly used python packages. 

Finally, we suggest that the proposed docking algorithm with the FACTS implicit solvent 

model can effectively be applied in the real-world applications of identifying novel TCIs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

The Supporting Information (Virtual screening dataset construction; Ligand preparation 

workflow; Covalent docking searching algorithm; Pose prediction results.) is available 

free of charge via the Internet. CHARMM license is free for academic users. 

The full source code and license information for CHARMM are available at http://

charmm.chemistry.harvard.edu/ The benchmark dataset and code examples are provided on 

Github https://github.com/wyujin/Covalent-Docking-in-CDOCKER and are listed below

• Example of covalent docking in CDOCKER with CHARMM scripting language

• Example of covalent docking in pyCHARMM CDOCKER;

• SMILES strings of the retrospective virtual screening datasets used in this study;

• Pose prediction result (rank-result.tsv);

• Scripts for general ligand preparation.
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Fig. 1. 
Covalent bond grid potential as a function of grid point distance.
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Fig. 2. 
The distribution of the relative energy difference observed in the retrospective virtual 

screening for the receptor targets and the corresponding reaction type (A) CATK (addition 

to aldehyde), (B) PAPAIN (ring opening), (C) ALDH3A1 (addition to ketone), (D) CASP3 

(addition to ketone), (E) EGFR (Michael addition), (F) JAK3 (Michael addition), (G) CATK 

(addition to nitrile) and (H) CATS (addition to nitrile). The energy differences plotted here 

are covalent bond formation energy Ecovalent (green), change of the system energy upon 

binding after subtracting the covalent bond formation energy (i.e., ΔGbinding−Ecovalent) in 

vacuum (orange) or using FACTS implicit solvent model (blue). The minimum energy for 

all comparison is set to be zero.
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Fig. 3. 
The receiver operating characteristic (ROC) curves of the receptor targets and the 

corresponding reaction type (A) CATK (addition to aldehyde), (B) PAPAIN (ring opening), 

(C) ALDH3A1 (addition to ketone), (D) CASP3 (addition to ketone), (E) EGFR (Michael 

addition), (F) JAK3 (Michael addition), (G) CATK (addition to nitrile) and (H) CATS 

(addition to nitrile). (I) Summary of the AUC value for each of the ROC curve.
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Fig. 4. 
(A) ALDH3A1 binding pocket (PDBID: 4L1O), (B) CASP3 binding pocket (PDBID: 

1RHJ), Distribution of the compound property: (C) rotatable bonds, (D) molecular weight.
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Table 1

Summary of the ZINC12 Subsets of Different Electrophiles.

Electrophile Reaction type SMARTS expression Number of compounds

Thiol Disulfide Bond Formation [#6][#16X2H] 10196

Epoxide Ring opening C1OC1 9975

Aldehyde
a Addition to aldehyde [CX3H1](=O)[#6] 48841

Ketone
b Addition to ketone [#6][CX3](=O)[#6] 595283

Nitrile Addition to nitrile [NX1]#[CX2] 745350

α, β-unsaturated carbonyl Michael addition [CX3](=O)[CX3]=[CX3] 986697

a
Compounds with both the functional group aldehyde and the functional group α,β-unsaturated carbonyl are excluded for the ZINC12 aldehyde 

subset.

b
Compounds with both the functional group ketone and the functional group α,β-unsaturated carbonyl are excluded for the ZINC12 ketone subset.
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Table 2

Summary of the Retrospective Virtual Screening Dataset.

Receptor name Number of actives Number of decoys PDB Reaction type

CATK 56 3050 2AUX Addition to aldehyde

PAPAIN 21 2525 1CVZ Ring opening

ALDH3A1 36 11678 4L1O Addition to ketone

CASP3 79 3392 1RHJ Addition to ketone

EGFR 151 10755 5UG8 Michael addition

JAK3 356 11773 5TTS Michael addition

CATS 150 18312 1MS6 Addition to nitrile

CATK 215 23596 2F7D Addition to nitrile
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Table 3

Values of Parameter for the Covalent Bond Grid Potential.

Parameter Value

r1 0, 0.5, 1, 1.5 and 2

r2 3, 3.5, 4, 4.5 and 5

E max −2.5, −5, −7.5 and − 10
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Table 4

Covalent Bond Grid Potential for Different Reaction Types

Reaction Type r1, Å r2, Å E max , kcal/mol

Addition to aldehyde 1.5 4.5 −10

Disulfide bond formation 0 3.5 −10

Addition to ketone 0 5 −10

Michael addition 0 4.5 −10

Addition to nitrile 1.5 4 −10

Nucleophilic substitution 1 5 −7.5

Ring opening 1 5 −10
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Table 5

Top Ranking Accuracy for Covalent and Non-covalent Docking in Rigid CDOCKER

Reaction Type Non-covalent docking Covalent docking

Addition to aldehyde 18.06% 58.33%

Disulfide bond formation 40.00% 53.33%

Addition to ketone 8.33% 55.56%

Michael addition 23.05% 53.90%

Addition to nitrile 51.06% 66.67%

Nucleophilic substitution 23.53% 56.86%

Ring opening 20.83% 45.83%
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Table 6

Top Ranking Accuracy for the Chemical Reaction Ring Opening with Differenct Covalent Docking Method

Covalent Docking Methods Top ranking accuracy

Covalent docking in CDOCKER 45.83%

AutoDock4
a 25.00%

CovDock
a 12.50%

GOLD
a 25.00%

ICM-Pro
a 12.50%

MOE
a 25.00%

a
Top ranking accuracy reported in the previous pose prediction challenge.[21]
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Table 7

Searching vs. Scoring for Covalent Docking in Rigid CDOCKER

Reaction Type Searching accuracy
a

Scoring accuracy
b

Addition to aldehyde 86.11% 58.33%

Disulfide bond formation 80.00% 53.33%

Addition to ketone 77.78% 55.56%

Michael addition 84.04% 53.90%

Addition to nitrile 89.36% 66.67%

Nucleophilic substitution 82.35% 56.86%

Ring opening 58.33% 45.83%

a
Searching accuracy is defined as number of docking experiments that we successfully identified native-like poses divided by total number of 

docking experiments.

b
Scoring accuracy is top-ranking accuracy.
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Table 8

Summary of the Retrospective Virtual Screening Performance.

Receptor AUC
a

AUC
b

EF 1 
a 

EF 1 
b 

EF 20 
a 

EF 20 
b Reaction type

CATK 0.909 0.694 16.071 7.143 4.375 2.232 Addition to aldehyde

PAPAIN 0.623 0.731 4.762 0.0 2.143 2.143 Ring opening

ALDH3A1 0.8 0.791 2.778 2.778 2.917 3.056 Addition to ketone

CASP3 0.492 0.593 0.0 0.0 0.759 1.013 Addition to ketone

EGFR 0.67 0.63 11.258 0.662 2.285 1.556 Michael addition

JAK3 0.799 0.744 28.324 2.601 3.165 2.471 Michael addition

CATK 0.741 0.635 18.605 1.86 2.674 1.628 Addition to nitrile

CATS 0.704 0.609 22.667 3.333 2.533 1.9 Addition to nitrile

a
Binding free energy is estimated after rescoring with the FACTS implicit solvent model.

b
Binding free energy is estimated using the proposed scoring function with the distance dielectric constant of 3r.
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Table 9

Average Solvent Accessible Surface Area (SASA) of the Receptor Target Binding Pocket.

Receptor PDB Average SASA Reaction type

CATK 2AUX 14.07 Addition to aldehyde

PAPAIN 1CVZ 16.23 Ring opening

ALDH3A1 4L1O 13.42 Addition to ketone

CASP3 1RHJ 14.05 Addition to ketone

EGFR 5UG8 13.74 Michael addition

JAK3 5TTS 15.71 Michael addition

CATK 2F7D 14.26 Addition to nitrile

CATS 1MS6 13.35 Addition to nitrile
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