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Abstract
Cardiovascular magnetic resonance (CMR) derived ventricular volumes and function guide clinical decision-making for vari-
ous cardiac pathologies. We aimed to evaluate the efficiency and clinical applicability of a commercially available artificial 
intelligence (AI) method for performing biventricular volumetric analysis. Three-hundred CMR studies (100 with normal 
CMR findings, 50 dilated cardiomyopathy, 50 hypertrophic cardiomyopathy, 50 ischaemic heart disease and 50 congenital or 
valvular heart disease) were randomly selected from database. Manual biventricular volumetric analysis (CMRtools) results 
were derived from clinical reports and automated volumetric analyses were performed using short axis volumetry AI function 
of CircleCVI42 v5.12 software. For 20 studies, a combined method of manually adjusted AI contours was tested and all three 
methods were timed. Clinicians` confidence in AI method was assessed using an online survey. Although agreement was 
better for left ventricle than right ventricle, AI analysis results were comparable to manual method. Manual adjustment of AI 
contours further improved agreement: within subject coefficient of variation decreased from 5.0% to 4.5% for left ventricular 
ejection fraction (EF) and from 9.9% to 7.1% for right ventricular EF. Twenty manual analyses were performed in 250 min 
12 s whereas same task took 5 min 48 s using AI method. Clinicians were open to adopt AI but concerns about accuracy 
and validity were raised. The AI method provides clinically valid outcomes and saves significant time. To address concerns 
raised by survey participants and overcome shortcomings of the automated myocardial segmentation, visual assessment of 
contours and performing manual corrections where necessary appears to be a practical approach.

Keywords  Cardiovascular magnetic resonance · Artificial intelligence · Myocardial disease · Ventricular function · 
Ventricular volumes · Ejection fraction · Myocardial segmentation

Introduction

A huge amount of healthcare data is generated by diagnostic 
imaging; however, it is challenging to find a skilled work-
force for the analysis [1]. Artificial intelligence (AI) methods 

have been developed to address this problem and they proved 
to be applicable especially for medical imaging analysis [2]. 
A lack of understanding of how AI algorithm processes the 
data is less concerning as the accuracy of the analysis can be 
visually inspected [3]. The routine clinical use of AI appli-
cations has the potential to save clinicians’ time from tasks 
that need specific pattern recognition but are also repetitive 
[4]. Implementation of AI into practice is a real-life chal-
lenge and limitations should be addressed [5]. Trust in AI 
diagnostics and user experience are important hurdles for 
routine clinical use (6).

Biventricular volumetric analysis provides key informa-
tion for the diagnosis and follow up of many cardiac con-
ditions [7]. Cardiovascular magnetic resonance (CMR) is 
the gold standard method to perform these measurements, 
but the analysis takes considerable time with repetitive con-
touring of cardiac structures, a process called “myocardial 
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segmentation”. The most used AI method in CMR volu-
metric analysis is deep learning with convolutional neural 
networks (CNN) [8]. AI applications for CMR volumetric 
analysis provided satisfactory results and acceptable agree-
ment when compared to manual analysis by human controls 
in some recent studies [9–12]. However, these studies were 
performed in highly controlled research settings with opti-
mal image quality and did not include diverse pathological 
cardiac conditions [13–15]. The reliability and efficiency 
of AI in routine clinical practice has not been tested in ran-
domized controlled trials. Commercially available image 
analysis software packages introduced CNN-based auto-
mated image segmentation, however there is no convincing 
literature to support use of AI segmentation output inter-
changeably with manual analysis [8]. To establish trust, test-
ing of AI performance in real-life clinical situations could 
be an effective apprach for implementation [5].

This work aimed to evaluate the performance, clinical 
applicability and the potential for time saving of commer-
cially available AI module of Circle CVI42 CMR analysis 
software version 5.12 for biventricular volumetric analysis 
from short axis cine images.

Methods

Three hundred randomly selected clinical CMR image data-
sets (scans performed between 11/2009 and 04/2021) were 
reanalysed with the AI method (Circle CVI42 CMR analy-
sis software version 5.12, Calgary, Canada) and the output 
from fully automated LV and RV volumetric analysis was 
recorded. Manual analysis results (CMRTools, Cardiovas-
cular Imaging Solutions, London, UK) were derived from 
clinical reports and agreement with AI output was tested. 
To test AI performance in different disease conditions, 100 
cases referred to exclude cardiac disease but with a normal 
scan, 50 cases with dilated cardiomyopathy, 50 cases with 
hypertrophic cardiomyopathy, 50 cases with ischaemic heart 
disease and 50 cases with valvular or congenital heart dis-
ease were included. A further 20 studies from the normal 
range subcategory were randomly selected for the AI con-
tours to be manually adjusted by an experienced CMR clini-
cian where necessary. These 20 studies were also reanalysed 
manually by a single expert operator using CVI42 software 
to assess difference between manual analysis using different 
vendors (CMRTools used for clinical reporting) and effect 
of multiple operators analysing clinical scans. Studies men-
tioning suboptimal image quality in the clinical reports were 
excluded. Manual and AI analysis were timed with a stop-
watch for 20 studies to calculate efficiency benefit. Finally, 
user trust in the AI method was assessed in a survey which 
also revealed the results of the agreement analysis. Surveys 
were conducted via Qualtrics link e-mailed to participants. 

The survey took approximately 5 min to complete (survey 
questions are presented in online Appendix 1). Study proto-
col is summarised in Fig. 1.

This was a retrospective analysis of data collected for 
routine clinical care. The study was registered and approved 
by the Royal Brompton Hospital Safety and Quality Depart-
ment (approval number 004426) and individual informed 
consent was not required in line with UK National Research 
Ethics Service guidance.

CMR scanning protocol, volumetric analysis, 
and image quality

The CMR scans were performed for clinical indications on 
several scanners with conventional ECG gating and array 
coils at 1.5 T (Magnetom Aera and Magnetom Avantofit 
Siemens Healthineers). Long axis and stack of short axis 
cines were acquired with bSSFP as described in the litera-
ture for a standard clinical CMR study [16, 17]. In line with 
departmental standards of practice, left and right ventricular 
(RV) volumes, ejection fraction (EF), and left ventricular 
(LV) mass were calculated using the shortaxis cine stack and 
indexed to body surface area (BSA). Papillary muscles and 
LV/RV trabeculations were included in the myocardial mass 
calculation and excluded from the blood volume. Volumes 
were indexed to body surface area (BSA) calculated using 
the Mosteller formula [16, 17]. Manual volumetric analysis 
data were derived from clinical reports.

The image quality of the standard short axis cine stack was 
assessed as described in the published EuroCMR registry cri-
teria [18]. According to these criteria, 1 point was given if an 
artefact impeded the visualization of more than one-third of 
the LV endocardial border at end-systole and/or diastole on a 
single short-axis slice. If the artefact involved 2 or 3 slices, 2 

Fig. 1   Study protocol using combination of three data collection 
methods. AI: artificial intelligence
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or 3 points were given, respectively. In terms of LV coverage 
2 points were given if the apex was not covered and 3 points if 
a basal slice or more than one slice in the stack were missing. 
An image quality score of 0 corresponded to a study with no 
significant artefact affecting the clinical evaluation, no missing 
or unusable slices and optimal orientation of the stack.

Accuracy of AI myocardial segmentation was visually 
assessed on each short axis cine slice and qualitatively 
scored using one of three categories defined as “good” if no 
manual correction of AI contours was needed, “adequate” in 
cases where minimal changes were needed at the base of the 
heart usually involving the valve planes, or “suboptimal” if 
several slices of AI analysis necessitated manual modifica-
tion to be deemed clinically acceptable. Additionally, for 20 
consecutive AI analyses in the normal subgroup, manual 
adjustment of AI contours was performed. Improvement in 
agreement with this combination of AI and manual methods 
was evaluated.

Statistical analysis

Quantitative data obtained were analysed using IBM SPSS 
Statistics Software Version 27 (International Business 
Machines, Armonk, New York, USA) and MedCalc® Sta-
tistical Software version 20.015 (MedCalc Software Ltd, 
Ostend, Belgium; https://​www.​medca​lc.​org; 2021) was 
used to generate Bland–Altman plots. Normal distribution 
was tested with the Shapiro–Wilk test. Normally distrib-
uted parameters were presented as mean ± SD, whereas 
parameters not meeting normality were presented as median 
(interquartile range). Dependent variables were compared 
using the Wilcoxon signed-rank test. Agreement between 
manual and AI analysis output was tested using intra-class 
correlation coefficients (ICC) based on a model of abso-
lute agreement, considered excellent if ICC > 0.8, good 
between 0.6 and 0.79, fair between 0.4 and 0.59 and poor 
below 0.4 [19], 95% confidence intervals were also reported 
[19]. Bland–Altman plots were used to assess the combined 
(AI with manual adjustment of contours) method. Within-
subject coefficient of variation (CoV) was calculated as SD 
of the differences divided by the mean. The Kruskal–Wallis 
H test was used to assess impact of image quality score on 
agreement. All tests were 2 tailed, and p < 0.05 was consid-
ered statistically significant. Qualitative data obtained from 
survey was presented descriptively and reported using the 
summary provided by Qualtrics (2021).

Results

The selected CMR studies included 185 males (61.7%) and 
115 females with median age of 50 (28) years. CMR indi-
cations, study image quality and scoring of AI myocardial 

segmentation data are presented using previously described 
subcategories in Table 1. Prospective gating was used in 48 
studies (16%) to troubleshoot arrhythmia related image deg-
radation and routine retrospectively gated acquisition was 
applied for the remaining studies.

In the overall study cohort, agreement between manual 
and automated AI analysis was excellent for LV param-
eters [ICC 0.946 (95% CI, 0.932–0.958) for LV EF] and 
good for RV parameters, ICC 0.784 (95% CI, 0.127–0.913) 
for RV EF. For all groups, indexed end-diastolic volumes 
(EDVi) were highly reproducible with AI, ICC for LV EDVi 
0.959 (95% CI, 0.740–0.985) and RV EDVi 0.918 (95% 
CI, 0.896–0.934). The highest within subject CoVs were 
observed for end-systolic volume indices (ESVi) -10.9% 
for LV ESVi and 16.6% for RV ESVi- and RV EF (13.1%). 
The agreement trends and scores were reproducible across 
subgroups with different cardiac pathologies. LV EDVi, LV 
ESVi, LV EF and RV EF were frequently underestimated, 
whereas LV mass index, RV EDVi and RV ESVi were usu-
ally overestimated by the AI method, see Table 2 for detailed 
agreement statistics.

Since cases mentioning suboptimal image quality in the 
clinical reports were excluded, no studies scored 3 when 
EuroCMR registry image quality criteria were applied [18]. 
CoVs for all volumetric parameters did not differ signifi-
cantly when the scores were 0 or 1. When image quality 
score was 2, variation in LVEDVi (p = 0.001) and LV EF 
(p = 0.003) increased. Agreement of LV ESVi, LV mass 
index and RV parameters were not affected by image qual-
ity score.

With manual adjustment of AI contours within subjects, 
CoV decreased from 9.1% to 3.5% for LV EDVi; from 12% 
to 9.7% for LV ESVi; from 5.0% to 4.5% for LV EF; from 
8.2% to 5.9% for RV EDVi; from 20.9% to 11.7% for RV 
ESVi and from 9.9% to 7.1% for RV EF. Bland–Altman 
plots for this group (n = 20) presented in Fig. 2 show that 
agreement improved, and mean difference line approached 
zero for all parameters when combined method was used. 
There was no statistically significant difference between 
indexed biventricular volumes, LV mass and biventricular 
EF when manual values were compared to the combined 
method output. Single manual expert analysis using CVI42 
software (n = 20) was compared to manual analysis derived 
from clinical reports (multiple operators analysed using 
CMRTools); the agreement was excellent or good and within 
limits of interobserver variability (Table 3) [20]. Manual 
expert analysis with CVI42 versus fully automated AI analy-
sis followed a trend similar to entire cohort (n = 300) and 
agreement further improved with combined method.

Manual biventricular volumetric analysis of 20 stud-
ies took 250 min 12 s in total whereas the same task was 
performed in 5 min 48  s using short axis AI myocar-
dial segmentation. Manual analysis per study was timed 

https://www.medcalc.org
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718 ± 137 s versus 17(1)s for AI method. AI was approxi-
mately 42 × faster than the manual method (p < 0.001). 
Time spent for visual checking and manual correction of 

Table 1   Demographic characteristics of the study population

All studies, n = 300
Gender, n 115 females, 185 males
Age, years 50, (28)
BSA, m2 1.89 ± 0.25
CMR findings
 No pathology, n 100
 Dilated cardiomyopathy, n 50
 Hypertrophic cardiomyopathy, n 50
 Ischaemic heart disease, n 50
 Valvular or congenital disease, n 50

Image quality
 Score 0 (excellent), n 39
 Score 1 (good), n 213
 Score 2 (adequate), n 48

AI contours score
 Good, n 30
 Adequate, n 220
 Suboptimal, n 50

CMR studies with normal findings, n = 100
 Gender, n 53 females, 47 males
 Age, years 43, (27)
 BSA, m2 1.82 ± 0.18

CMR indication
 Cardiomyopathy screen, n 64
 Ischaemia assessment, n 13
 Suspected myocarditis, n 11
 Arrhythmia, n 9
 Aorta assessment, n 3

Image quality
 Score 0 (excellent), n 31
 Score 1 (good), n 55
 Score 2 (adequate), n 14

AI contours score
 Good, n 24
 Adequate, n 67
 Suboptimal, n 9

Dilated cardiomyopathy studies, n = 50
 Gender, n 8 females, 42 males
 Age, years 50, (38)
 BSA, m2 2.05, (0.23)

Image quality
 Score 0 (excellent), n None
 Score 1 (good), n 37
 Score 2 (adequate), n 13

AI contours score
 Good, n 1
 Adequate, n 36
 Suboptimal, n 13

Hypertrophic cardiomyopathy studies, n = 50
 Gender, n 14 females, 36 males
 Age, years 60, (22)

Table 1   (continued)

 BSA, m2 1.87 ± 0.20
Image quality
 Score 0 (excellent), n None
 Score 1 (good), n 46
 Score 2 (adequate), n 4

AI contours score
 Good, n 3
 Adequate, n 45
 Suboptimal, n 2

Ischaemic heart disease cases, n = 50
 Gender, n 15 females, 35 males
 Age, years 66.7 ± 11.3

BSA, m2 1.95 ± 0.26
Image quality
 Score 0 (excellent), n 2
 Score 1 (good), n 39
 Score 2 (adequate), n 9

AI contours score
 Good, n None
 Adequate, n 41
 Suboptimal, n 9

Valvular heart disease or congenital cases, n = 50
 Gender, n 25 females, 25 males
 Age, years 38, (23)
 BSA, m2 1.83 ± 0.24

CMR indication
 Aortic valve disease, n 11
 Mitral valve disease, n 3
 Pulmonary valve disease, n 3
 Shunt lesions, n 6
 Repaired Tetralogy of Fallot, n 14
 TGA after arterial switch, n 1
 Coarctation of aorta, n 12

Image quality
 Score 0 (excellent), n 6
 Score 1 (good), n 36
 Score 2 (adequate), n 8

AI contours score
 Good, n 2
 Adequate, n 31
 Suboptimal, n 17

Normal distribution was tested with Shapiro–Wilk test. Normally dis-
tributed parameters presented as mean ± SD and parameters not meet-
ing normality presented as median, (interquartile range)
AI artificial intelligence; BSA body surface area; CMR cardiovascular 
magnetic resonance; TGA​ transposition of great arteries
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Table 2   Agreement between 
manual and fully automated AI 
volumetric analysis

*P-value from Wilcoxon signed-Rank test

Manual analysis AI analysis % CV P value* ICC

Agreement for all studies, n = 300
LV EDVi, mL/m2 86.7 ± 30.2 78.6 ± 27.0 7.6  < 0.001 0.959
LV ESVi, mL/m2 36.5 ± 30.2 33.6 ± 27.1 10.9  < 0.001 0.980
LV EF, % 61.4 ± 14.2 60.2 ± 14.9 6.5 0.073 0.946
LV mass index, g/m2 71.1 ± 22.3 75.4 ± 22.5 8.0  < 0.001 0.936
RV EDVi, mL/m2 83.3 ± 21.4 84.4 ± 20.7 7.5 0.001 0.918
RV ESVi, mL/m2 35.6 ± 17.8 42.1 ± 16.4 16.6  < 0.001 0.896
RV EF, % 58.4 ± 10.0 50.5 ± 12.4 13.1  < 0.001 0.784
CMR studies with normal volumetric analysis findings, n = 100
LV EDVi, mL/m2 79.6 ± 11.7 72.3 ± 11.2 7.2  < 0.001 0.854
LV ESVi, mL/m2 27.6 ± 6.7 25.9 ± 7.2 10.4 0.001 0.817
LV EF, % 65.6 ± 5.3 64.2 ± 8.3 5.4 0.484 0.640
LV mass index, g/m2 59.1 ± 11.9 63.8 ± 11.7 7.3  < 0.001 0.895
RV EDVi, mL/m2 81.7 ± 14.3 86.1 ± 15.3 6.8  < 0.001 0.877
RV ESVi, mL/m2 32.1 ± 8.4 39.4 ± 9.3 16.2  < 0.001 0.738
RV EF, % 61.0 ± 6.0 54.5 ± 5.6 8.9  < 0.001 0.507
CMR studies with dilated cardiomyopathy diagnosis, n = 50
LV EDVi, mL/m2 121.8 ± 50.7 107.6 ± 47.2 9.4  < 0.001 0.967
LV ESVi, mL/m2 72.2 ± 50.5 67.6 ± 47.3 8.5  < 0.001 0.975
LV EF, % 73.4 ± 7.7 71.7 ± 9.1 10.9 0.739 0.861
LV mass index, g/m2 82.9 ± 23.9 90.8 ± 31.4 9.0 0.001 0.901
RV EDVi, mL/m2 93.2 ± 30.1 90.8 ± 28.2 5.9 0.858 0.925
RV ESVi, mL/m2 52 ± 27.3 57.2 ± 21.0 15.0  < 0.001 0.892
RV EF, % 46.0 ± 12.3 36.0 ± 14.8 24.6  < 0.001 0.694
CMR studies with hypertrophic cardiomyopathy diagnosis, n = 50
LV EDVi, mL/m2 72.2 ± 10.8 69.7 ± 10.5 5.2 0.030 0.875
LV ESVi, mL/m2 19.3 ± 7.0 19.8 ± 7.9 12.7 0.671 0.923
LV EF, % 73.4 ± 7.7 71.7 ± 9.1 4.9 0.480 0.861
LV mass index, g/m2 91.8 ± 24.4 91.3 ± 19.6 7.0 0.568 0.940
RV EDVi, mL/m2 73.8 ± 13.9 77.2 ± 12.2 8.2 0.010 0.797
RV ESVi, mL/m2 25.0 ± 8.9 31.6 ± 8.6 20.5  < 0.001 0.707
RV EF, % 66.6 ± 8.5 59.1 ± 9.5 9.9  < 0.001 0.646
CMR studies with ischemic heart disease, n = 50
LV EDVi, mL/m2 80.1 ± 21.7 73.3 ± 19.1 7.3  < 0.001 0.925
LV ESVi, mL/m2 36.1 ± 24.3 32.8 ± 20.2 10.8 0.003 0.970
LV EF, % 58.6 ± 15.2 58.0 ± 15.1 6.9 0.449 0.967
LV mass, g/m2 67.9 ± 17.3 72.8 ± 17.5 7.5  < 0.001 0.890
RV EDVi, mL/m2 78.7 ± 26.1 77.9 ± 25.6 5.4 0.849 0.960
RV ESVi, mL/m2 35.5 ± 20.1 39.8 ± 19.5 16.0  < 0.001 0.946
RV EF, % 56.7 ± 11.7 50.0 ± 11.7 11.5  < 0.001 0.837
CMR studies with congenital heart disease, n = 50
LV EDVi, mL/m2 86.2 ± 22.8 76.3 ± 21.0 9.2  < 0.001 0.918
LV ESVi, mL/m2 31.5 ± 12.6 29.3 ± 12.3 9.6 0.006 0.959
LV EF, % 64.2 ± 7.4 62.3 ± 9.7 5.7 0.203 0.849
LV mass index, g/m2 65.6 ± 19.3 69.9 ± 18.2 6.0 0.001 0.928
RV EDVi, mL/m2 90.3 ± 18.0 88.5 ± 19.3 7.5 0.885 0.880
RV ESVi, mL/m2 37.2 ± 11.8 44.9 ± 13.8 15.4  < 0.001 0.803
RV EF, % 59.2 ± 7.5 49.2 ± 9.9 14.4  < 0.001 0.600
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Manual vs fully automated AI method, n=20 Manual vs combined method, n=20 
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AI contours where necessary with the combined AI and 
manual method was 247 ± 46 s (n = 20).

Limitations of AI myocardial segmentation 
identified on visual assessment

Visual assessment of AI segmentation provided possible 
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explanations for the difference in measurements performed 
with manual and AI methods. The main observed inaccura-
cies using AI segmentation were (1) LVOT not included in 

the volume calculation and hence underestimation of LV 
volumes, shown in Fig. 3; (2) underfitting of LV endocardial 
contour which might be another reason for underestimated 
LV volumes, Fig. 4 Panel B (3) selection of wrong end-
diastolic or end-systolic frame for analysis especially when 
prospective electrocardiographic gating was used for image 
acquisition Fig. 4; (4) Overestimation as well as suboptimal 
tracing of RV trabeculations, Fig. 4 Panel C; (5) Errors in 
excluding RVOT and including RA from RV volumes.

Survey Responses

Twenty CMR practitioners were invited to complete a sur-
vey, 11 out of 13 responders have been practising CMR for 
more than a year and the remaining two for 6–12 months. 
Prior to AI clinical accuracy metrics being revealed to the 
participants, 10 thought that AI segmentation methods could 
replace manual volumetric analysis in the next 5 years, 8 
trusted the AI results and 7 would be confident to use AI 
analysis results in clinical reports. In terms of efficiency, 11 

Table 3   Agreement between 
single manual expert analysis 
using CVI.42 software versus 
clinically reported manual 
analysis (CMRTools), fully 
automated AI analysis and 
combined method, n = 20

*AI contours inspected and adjusted manually where needed

Manual expert analysis 
using CVI42 software vs. 
clinically reported manual 
analysis (CMRTools)

Manual expert analysis 
using CVI42 software 
vs. fully automated AI 
analysis

Manual expert analy-
sis using CVI42 soft-
ware vs. combined 
method*

CV % ICC CV % ICC CV % ICC

LV EDVi, mL/m2 4.0 0.945 5.7 0.911 3.8 0.950
LV ESVi, mL/m2 9.6 0.898 11.6 0.931 7.9 0.939
LV EF, % 4.1 0.798 4.7 0.831 4.6 0.749
LV mass index, g/m2 3.8 0.969 7.6 0.891 4.7 0.950
RV EDVi, mL/m2 7.5 0.848 13.7 0.718 9.0 0.814
RV ESVi, mL/m2 15.2 0.795 27.2 0.558 17.1 0.725
RV EF, % 5.5 0.801 11.4 0.605 6.9 0.636

Fig. 3   Example of AI analysis at the base of the heart. In Panel A 
there is no red LV endocardial contour, while the cut plane in Panel 
B shows the slice includes a small LV volume in the LVOT region. 
Mitral valve also appears to be partially open in long axis cine image 
(Panel B) suggestive of inappropriate end diastolic frame selection by 
AI

Fig. 4   Examples of manual and suboptimal AI myocardial segmenta-
tions. Panel A shows an ideal example of manual myocardial contour-
ing using the software, please note that the contours exactly delineate 
the cardiac chamber structures. Panel B shows an example of slight 
underfitting LV endocardial contour which might partly explain 

underestimation of LV volumes. There is also suboptimal segmenta-
tion for LV epicardial, and RV endocardial contours. Panel C shows 
overestimation and suboptimal tracing of RV trabeculations and 
underfitting of LV endocardial contour in a patient with congenital 
heart disease
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believed AI would save time and 8 participants thought AI 
would have a positive impact on their personal wellbeing. 
When clinical agreement results were presented, 9 (69%) 
participants reported that results were more reassuring than 
they had expected. Having seen the performance of AI 
clinical applications in the department; 9 participants ware 
keener to use AI and 12 (92%) were looking forward to AI 
being part of the routine clinical practice.

Two open ended questions asked participants to provide 
words or phrases reflecting their concerns about using AI 
in clinical practice and potential benefits of adopting the 
technology. Clinical reproducibility, reliability and valida-
tion were main concerns (Fig. 5A). Potential benefits were 
listed as efficiency, time saving, speed of analysis and better 
reproducibility (Fig. 5B).

Discussion

In this study we have shown that AI derived cardiac biven-
tricular volumetric analysis of CMR images produces clini-
cally acceptable results. Manual adjustment of AI derived 
contours further improves the accuracy of the analysis while 
still saving significant amount of time (manual analysis time 
approximately 11.9 min, fully automated AI method 17 s and 
combined method 3–4 min). The specific software module 
tested in this work, underestimated indexed LV volumes, 
LV EF and RV EF and overestimated RV volumes and LV 
mass index. Agreement for LV parameters was better than 
RV, however all variations observed were within the range of 
interobserver agreement reported previously in the literature 
in non-clinical setting [20]. Therefore, AI analysis results 
are considered to be clinically applicable. Survey showed 
that end-user clinicians were open to adopt the specific AI 
analysis method but concerns about accuracy and clinical 
validity of results were raised. However, after seeing the 
agreement results presented in this work, they were keener 
to use the AI method.

Few studies have previously applied AI myocardial seg-
mentation in large cohorts. Bai et al. trained a CNN model 
on a large dataset of 4875 scans from UK BioBank cohort. 
When applied to cases from the UK Biobank cohort the 

performance was excellent, however in clinical patients the 
performance was suboptimal but still comparable to human 
inter-observer variability. Fine-tuning the CNN by retraining 
with additional clinical cases improved results [21]. Among 
three tested algorithms, an AI model trained using data from 
various centers, vendors and pathologies performed better 
compared to others suggesting feasibility of using the same 
CNN across multiple centers, vendors, and pathologies [13]. 
Automated image segmentation yielded precision similar to 
human analysis suggesting automated segmentation could 
replace manual analysis [9]. These studies were conducted 
in research setting using expert analysis as ground truth. In 
contrast, our work compared clinically reported values with 
a commercially available AI method. Reproducing the find-
ings in real-life clinical setting provides further reassurance 
for daily clinical application.

Clinical validation study of another commercial CMR 
image analysis software (SuiteHEART, NeoSoft, Pewaukee, 
Wisconsin, USA) compared fully automated biventricular 
volumetric analysis with manual assessment results in three 
hundred CMR examinations. In line with our findings, the 
agreement.

between manual and automated LV assessment was good, 
while agreement for RV analysis was lower although still 
comparable to interobserver variability reported in literature. 
Agreement was the lowest in cases with complex anatomy 
or reduced image quality [22]. In our study, image qual-
ity score of 2 only increased variation in LV EDVi/LVEF 
values; agreement in RV parameters was not affected. Dif-
ference in RV volumes usually originated from inaccurate 
contouring of RV base resulting in inappropriate inclusion 
or exclusion of the right atrium and RV outflow tract by AI. 
Poor image quality usually affects tracing of trabeculations 
which have a smaller effect on RV volumes. These observa-
tions suggest that RV volumetry agreement is not influenced 
by image quality because the failure in the base of the heart 
for RV is similar across studies with different image quality. 
However, unlike previous work we did not include any stud-
ies with suboptimal image quality (score 3).

A closer look at the LV EDVi and LV ESVi parameters 
indicate that AI method systematically underestimated the 
LV volumes, despite the agreement between two methods 

Fig. 5   A Word cloud on 
concerns about using AI in 
clinical practice. B Word cloud 
on potential benefits of adopt-
ing the AI volumetric analysis 
technology
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being excellent. The same trend of underestimation of LV 
volumes with AI was also observed in previous reports [9]. 
LV EDVi CoV was calculated 7.6% (95% CI, 6.0–8.2), 
which is consistent with Bhuva et  al. reporting bias of 
6.7% (95% CI, of 4.32–9.37) between neural network and 
expert analysis [9]. Excluding papillary muscles and tra-
beculations from the blood pool, which is more complex 
analysis method, and real-life clinical practice setting of this 
work might have caused less favourable agreement in our 
study despite using a later version of the same software. 
For biventricular volumetric analysis comparing automated 
versus manual approach, Backhaus et al. have reported ICC 
values similar to our findings, which are within the limits 
of human interobserver variability, however when CoVs% 
were compared (indicator of differences for each individual 
case), the variation they have reported was clinically signifi-
cant, whereas performance of the model tested in this work 
appears to be in closer agreement to manual analysis. For 
example, for LV ESVi they reported an excellent ICC of 0.96 
but CoV of 25% [22]. In this study for the same parameter, 
we have calculated an ICC of 0.98 and a CoV of 10.9%. 
Clinicians would desire to have comparable values between 
analyses for the same subject therefore CoV parameter is 
more relevant to clinical practice than ICC. Bhuva et al. 
reported variation of 7.31% (95% CI, 5.4–9.2) for LV ESV 
using an earlier version of AI model assessed in this work 
but they compared the model performance with manual 
analysis in research setting using the same software [9]. The 
absolute difference in average LV EF between two analysis 
methods was small, and CoV for LV EF was calculated 6.5% 
in this study with ICC of 0.95. Bhuva et al. reported 2.95% 
whereas variation by Backhaus et al. was 10.6% despite an 
excellent agreement indicator ICC of 0.95 [9, 22]. LV EF is 
a key parameter in clinical decision-making driving recom-
mendations around therapies such as surgery, intervention, 
or additional medications [23]. Consensus would not accept 
a difference in LV EF more than 5% for clinical use [8]. We 
have achieved this target with manually adjusting AI con-
tours where necessary and CoV improved to 4.5% when the 
combined method was applied.

There are only a few studies assessing AI myocardial seg-
mentation performance for the right ventricle [10, 21, 22, 
24]. In this work, the AI model performed well for RV EDVi 
with ICC ranging between 0.80–0.96 in different subgroups, 
whereas outcomes were less favourable for RV ESV and RV 
EF. These parameters also have higher interobserver vari-
ability in clinical practice with ICC reported 0.92 for RV 
EDV, 0.77 for RV ESV and 0.64 for RV EF in a study with 
normal subjects [20]. RV at end-systole is the most difficult 
cardiac region to annotate, even for experienced observ-
ers [24]. Since RV EF is a derivative of RVESV, this fact 
explains the inherent problems of reproducibility for RV. 
Once again, Backhaus et al. reported similar ICCs compared 

to this work for RV ESVi and RV EF using AI segmenta-
tion, however CoVs showed better performance of the model 
evaluated in this study with 24.0% variability versus 16.6% 
in this study for RV ESV and 17.8% variability versus 13.1% 
in this work for RV EF [22]. Manual adjustment of AI con-
tours (combined method) improved variability in RV ESVi 
to 11.7% and RV EF to 7.1% in our study.

It is hypothesised that in pathologic conditions heart 
structures may be more difficult to segment because of high 
variability in shape or size [24]. Our findings also showed 
that AI was reliable across variety of cardiovascular patholo-
gies that could potentially distort the usual heart structures 
and result in uncontrolled variation.

Bernard et al. reported that degenerative AI contours 
were at the apex or the base at the level of valve planes, 
however degenerative AI contours were mainly observed at 
the base of the heart in this study [24]. Visual assessment 
of the AI contours identified the pitfalls of AI myocardial 
segmentation providing emphasis for further development 
of the model. Main issues identified for AI segmentation 
were poorly defined end-systolic or end-diastolic phase 
especially on studies with prospective triggering, inaccurate 
segmentation of LV/RV outflow tract and right atrium at the 
basal slices, underfitting of LV/RV endocardial contours, 
overestimation of size as well as suboptimal tracing of RV 
trabeculations. AI contours score was good or adequate in 
83% of cases. Recently, a similar systematic scoring analy-
sis was suggested to determine the clinical acceptability of 
automated contours focusing on the contours’ clinical utility 
and aiming to improve clinicians’ confidence in AI and its 
acceptability in the clinical workflow [25]. AI myocardial 
segmentation was available using various methods in the 
commercial software package which we tested. We only 
tested the method reflecting departmental clinical practice. 
Volumetric method used in this work included papillary 
muscles/trabeculations in the myocardium [16, 17]. This is a 
more complicated analysis since it requires more feature rec-
ognition both for humans and AI compared to the alternative 
method. AI model tested in this work could have performed 
better if endocardial contour had been selected to be “round” 
in preferences and biventricular trabeculations would have 
been excluded from the myocardium [8]. However, we aimed 
to use AI in order to replicate our routine clinical workflow, 
not the other way round. Adapting the analysis method to a 
more simplified version with the sole intention to increase 
AI accuracy has potential to jeopardize trust in the capabili-
ties of technology.

Our observed manual analysis time of average 11.9 min, 
ranging between 8 and 17 min, is comparable to previous 
reports [20–22]. AI analysis time was 17 s and adjusting 
the AI segmentation when needed took 4.1 min (combined 
method) further optimising the agreement with clinically 
reported values. In 2018 a total of 114,967 CMR studies 
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were performed in UK, therefore clinical application 
of AI analysis has huge potential to save approximately 
22,388 clinician hours for the fully automated AI method 
and 15,042 clinician hours per year with the combined 
method [26].

Limitations

This work compared the AI performance with manual vol-
umetric and functional analysis in routine clinical setting, 
however reliability of reported data is dependent on the 
operator. Although all reporting clinicians were experts, 
another software package (CMRtools) was used to analyse 
clinical volumes. This fact might have also contributed the 
variation observed. To address this limitation, in a subset 
of cases (n = 20) manual analysis using CVI42 software 
was compared to manual analysis derived from clinical 
reports, the agreement was excellent/good and within 
limits of interobserver variability. When manual CVI42 
volumes were compared to fully automated AI analysis, 
results reflected a similar trend to the entire cohort sug-
gesting that differences between vendors and multiple 
experienced operators are minor and likely negligible 
in the clinical setting. A large sample size was chosen 
with various pathologies but still the results may not be 
generalisable for the entire spectrum of cardiac patholo-
gies other than covered in this work. Of note, complex 
congenital cardiac diseases with single or complex biven-
tricular physiology have not been included into this study. 
Finally, AI is an ever-developing field, improved models 
with potentially better performance than tested in this 
work were developed during the study period. A new ver-
sion (5.13) of the evaluated software with an enhanced AI 
module was launched when data collection for this work 
was already completed [27]. Therefore, current AI perfor-
mance of the product and other AI models discussed might 
be different, likely better, than presented in this work.
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