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Abstract
The most prevalent type of dementia is Alzheimer's disease (AD), which is currently incurable. Existing treatments for 
Alzheimer's disease, such as acetylcholinesterase inhibitors, are only effective for symptom relief. Disease-modifying medi-
cations for Alzheimer's disease are desperately required, given the enormous burdens that the disease places on individuals 
and communities. Phosphodiesterase (PDE) inhibitors are gaining a lot of attention in the research community because of 
their potential in treating age-related cognitive decline. Cilostazol is a selective PDE III inhibitor used as antiplatelet agent 
through cAMP response element-binding (CREB) protein phosphorylation pathway (cAMP/CREB). The neuroprotective 
effect of cilostazol in AD-like cognitive decline in rats was investigated in this study. After 2 months of intraperitoneal 
administration of 10 mg/kg aluminum chloride, Morris water maze and Y-maze (behavioral tests) were performed. After 
that, histological and biochemical examinations of the hippocampal region were carried out. Aluminum chloride-treated rats 
showed histological, biochemical, and behavioral changes similar to Alzheimer's disease. Cilostazol improved rats' behav-
ioral and histological conditions, raised neprilysin level while reduced levels of amyloid-beta protein and phosphorylated 
tau protein. It also decreased the hippocampal levels of tumor necrosis factor-alpha, nuclear factor-kappa B, FAS ligand, 
acetylcholinesterase content, and malondialdehyde. These outcomes demonstrate the protective activity of cilostazol versus 
aluminum-induced memory impairment.
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Introduction

Dementia is a major health issue, being correlated with 
significant mortality and morbidity (Ballard et al. 2011). 
Dementia affects the elderly in the overwhelming majority 
of instances, producing age the most significant risk factor. 
Dementias are categorized depending upon their underly-
ing pathologies, which are largely determined by misfolded 
proteins aggregate accumulation in neurons and glia, and 
also in the extracellular matrix, in vulnerable brain regions 
(Seeley et al. 2009).

The buildup of abnormally folded protein fragments, 
including amyloid-beta (Aβ) and tau proteins, which form 
amyloid plaques (Aβ plaques) and neurofibrillary tangles 
(NFTs), consecutively, characterizes Alzheimer's disease 
(AD) dementia (Pluta et al. 2013; Singh et al. 2013). Nepri-
lysin (NEP) was first recognized as the major Aβ degrad-
ing enzyme utilizing biochemical approaches (Iwata et al. 
2000). The NEP gene's deletion or NEP activity inhibition 
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was demonstrated to elevate Aβ levels in AD's mouse mod-
els (Eckman et al. 2006; Farris et al. 2007).

Numerous examinations initially indicated that in addi-
tion to Aβ plaques and NFTs, the brains of patients with 
AD appeared proof of a long-term inflammatory reaction 
(Tuppo and Arias 2005; Mrak and Griffin 2007). Inflam-
mation in the brain appears to get dual function, acting as 
a neuroprotective factor throughout an acute response but 
becoming harmful as a chronic response develops (Kim and 
Joh 2006). Drugs presently used to treat AD have restricted 
advantages, so there is a necessity for a reliable treatments 
that will not only supply symptomatic relief but also slow 
the progression of the disease.

Phosphodiesterase inhibitors as cilostazol were reported 
to improve cyclic guanosine monophosphate (cGMP) and/
or cyclic adenosine monophosphate (cAMP) signaling by 
reducing these cyclic nucleotides’ degradation (Heckman 
et al. 2015). As both cGMP and cAMP signaling are crucial 
to various cellular functions, involving neuroprotection and 
neuroplasticity, a clinical application of cilostazol for AD is 
expected (Saito et al. 2016).

As a selective inhibitor of cAMP phosphodiesterase type 
III, cilostazol elevated levels of cAMP stimulate protein 
kinase A, ending in platelet aggregation inhibition (Gresele 
et al. 2011). It also has several pharmacological actions, 
such as anti-oxidative, anti-apoptotic, and anti-inflammatory 
impacts in the brain (Hong et al. 2006). It is also recognized 
to decrease Aβ accumulation and to enhance brain func-
tion in an experimental model of AD (Park et al. 2011), and 
therefore, it appeared interesting to study the possible pro-
tective impacts of cilostazol on aluminum-induced memory 
impairment in rats.

Material and Methods

Animals

Male adult Wistar rats weighting between 130 and 150 g 
were used. Animals were maintained at stable surround-
ings: 12:12 h light/dark cycle, humidity (60 ± 10%), and 
temperature (23 ± 1  °C). Before the beginning of the 
experiments, an adaptation period of 1 week was given 
for rats to acclimatize with the new conditions, and they 
were fed rat food and water ad libitum.

Chemicals and drugs

Cilostazol (Pletal®) was bought from Otsuka Pharmaceu-
tical Co., Cairo, Egypt, and aluminum chloride  (ALCL3) 
was bought from Sigma-Aldrich, St. Louis, MD, USA. 
Chemicals used in the present work were of highly pure 
and of excellent analytical grade.

Experimental design and treatment protocol

As described in Fig. 1, four groups of animals (10 rats 
per group) were required, Group 1 (Control group): rats 
were given saline, ip, once per day for 60 days. Group 2 
 (ALCL3 group): rats were given  ALCL3 (10 mg/kg, ip) 
once per day for 60 days. Group 3 (cilostazol group): rats 
were given cilostazol (50 mg /kg, po) once per day for 
60 days. Group 4  (ALCL3 + cilostazol group): rats were 
given  ALCL3 (10 mg/kg, ip) and cilostazol (50 mg /kg, 

Fig. 1  Graphical illustration 
of the experimental design. 
ALCL3, aluminum chloride

Morris water maze 
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Group 3: Cilostazol

Group 4: ALCL3 + Cilostazol
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po) once per day for 60 days. Four days before the end 
of the experiment (day 56), rats were trained on Morris 
water maze test for 4 consecutive days. At the end of the 
experiment (day 60), Morris water maze probe test was 
done together with Y-maze spontaneous alternation test.

Behavioral tests

Morris water maze test

Morris water maze test was used to assess spatial learning 
and memory. The maze consists of rounded container of 
60 cm height and 150 cm diameter, and contains water to a 
depth of 40 cm of temperature 27 ± 1 °C. The container is 
splitted into four partitions (quadrants) and a portable Plexi-
glass stand of 8 cm in diameter located inside a specified 
quadrant. For 4 consecutive days, rats were trained in the 
maze twice daily for 120 s, where they were allowed to find 
the stand in the specific quadrant by their own in every time, 
once the rat finds the stand it was permitted to stay on it for 
10 s, however, if it failed to find the stand within this 120 s, it 
was permitted to stay on it for 30 s. The probe test was done 
on the fifth day, we removed the stand and each animal was 
allowed to swim freely in the container for 120 s, during the 
120 s, we calculate the index of retrieval which is the time 
each rat stayed in the target quadrant (i.e., the quadrant in 
which the stand was there) (Morris 1984; Kim et al. 2012).

Y‑maze spontaneous alternation test

Y-maze test was done as reported previously (Wall and 
Messier 2002). The maze consists of three identical arms 
(A, B, and C), there are equal angles in between them, each 
arm is 35 cm in height, 40 cm in length, and 12 cm in width. 
At the end of one of the three arms, we put animals, and 
then, they were allowed to move freely in the maze for five 

minutes. To get rid of any residual odors, we cleaned arms 
well between each animal. When a rat puts his hind paws 
totally inside one of the three arms, so this was counted as 
a complete arm entry. An alternation was defined as a triad 
that contains the three letters (ABC, CAB, etc.). Spontane-
ous alternation percentage (SAP) was obtained from both 
total arm entries and number of alternations using the fol-
lowing equation:

Tissue sampling

Tissue sampling was done on day 61 of the experiment 
(24 h following behavioral experiments). Under anesthesia, 
animals were euthanized by decapitation, and brains were 
then separated quickly to collect hippocampi which were 
freezed at − 80 °C. For biochemical analysis, the collected 
hippocampi were homogenized  (10% w/v) in phosphate 
buffer (pH 7.4) to obtain the homogenate. In addition, from 
each group, two rats were selected randomly to obtain their 
whole brains, which were placed in formalin (10%) for his-
topathological assessment.

Biochemical analysis

Hippocampal contents of neprilysin, phosphorylated tau 
(P-tau), amyloid-beta 1–42 (Aβ1−42), FAS ligand (FAS-L), 
tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B 
(NF-κB), malondialdehyde (MDA), and acetylcholinesterase 
content (AChE) were detected using the ELISA technique.

Histopathological examination

Rats’ whole brains were placed in formalin (10%) for 24 h. 
Brains were dehydrated and washed by alcohol, then cleared 

SAP(%) = ((number of alternations)∕(total arm entries − 2)) × 100.

Fig. 2  Effect of cilostazol on 
behavior of rats in Morris water 
maze (a) and Y-maze (b) tests 
in control and  ALCL3-treated 
rats. Values are displayed as 
mean ± SEM (n = 10). *Sig-
nificantly different from control 
group (p < 0.05), @significantly 
different from  ALCL3 group 
(p < 0.05)
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in xylene, and finally fixed in paraffin in hot air oven at 56 °C 
for 24 h. Brain sections (thickness: 3-μm) were stained using 
hematoxylin and eosin to be ready for examination under 
a light microscope provided with a camera. Samples his-
topathological examination and handling were performed 
by a specialist who did not know samples nature to avoid 
any bias.

Statistical analysis

One-way analysis of variance (ANOVA) were used to com-
pare between different groups, and for multiple comparisons, 
Tukey Kramer’s test was used. GraphPad Prism 6.0 (Graph-
Pad Software, San Diego, CA, USA) was used for statistical 
analysis. Values were displayed as mean ± SEM, at p < 0.05 
as the minimum level of significance.

Results

Behavioral analysis

Morris water maze test

Time spent by rats treated with aluminum chloride  (ALCL3) 
in target quadrant was less than that in control rats. Cilosta-
zol administration to normal rats did not change their behav-
ior in Morris test when compared to control group, while its 
administration to  ALCL3-treated rats increased time spent 
by rats in target quadrant to 139.82% of that in  ALCL3 group 
(Fig. 2a).

Y‑maze spontaneous alternation test

Spontaneous alternation percentage (SAP) decreased sig-
nificantly in  ALCL3 group when compared to that in con-
trol group. Cilostazol administration to normal rats made 
no significant difference in SAP in comparison to that 
in control group. Cilostazol increased SAP when given 
to  ALCL3-treated rats when compared to  ALCL3 group 
(Fig. 2b).

Biochemical analysis

Effect of cilostazol on hippocampal content of amyloid 
beta1–42 (Aβ1−42), phosphorylated tau (p‑tau), 
and neprilysin in control and  ALCL3‑treated rats

Aluminum chloride  (ALCL3) decreased hippocampal con-
tent of neprilysin to 50% (Fig. 3a) and raised hippocampal 
contents of both Aβ1–42 by 3.5-fold (Fig. 3b) and p-tau 
by 3.2-fold (Fig. 3c) when compared to control group. 

Cilostazol alone showed no effect on levels of neprilysin, 
Aβ1–42 and p-tau in comparison with control rats, while its 
administration to  ALCL3-treated rats increased neprilysin 
content (1.3-fold) and decreased levels of Aβ1–42 (28%) 
and p-tau (30%) of that in  ALCL3 group.
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Fig. 3  Effect of cilostazol on hippocampal content of neprilysin (a), 
amyloid beta1-42 (Aβ1–42, b), and phosphorylated tau (p-tau, c) in 
control and  ALCL3-treated rats. Values are displayed as mean ± SEM 
(n = 10). *Significantly different from control group (p < 0.05), @sig-
nificantly different from  ALCL3 group (p < 0.05)
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Effect of cilostazol on hippocampal content of nuclear 
factor‑kappa B (NF‑κB), tumor necrosis factor‑alpha 
(TNF‑α), and FAS ligand (FAS‑L) in control and  ALCL3‑treated 
rats

Administration of  ALCL3 for 60  days significantly 
increased levels of NF-κB by 4.2-fold (Fig. 4a), TNF-α 
by 3.4-fold (Fig. 4b), and FAS-L by 3.7-fold (Fig. 4c) in 

comparison to control group. Cilostazol administered to 
normal rats showed no change in the previous parameters, 
while when administered to rats treated with  ALCL3, it 
significantly decreased them, NF-κB (21%), TNF-α (27%), 
and FAS-L (21%) of that in  ALCL3 group.

Effect of cilostazol on hippocampal content 
of malondialdehyde (MDA) in control and  ALCL3‑treated 
rats

Aluminum chloride administration raised hippocampal con-
tent of MDA by 1.9-fold (Fig. 5). Cilostazol had no effect 
on MDA level when administered alone, but when given 
to  ALCL3-treated rats, it lowered MDA to 72% of that in 
 ALCL3 group.

Effect of cilostazol on hippocampal acetylcholinesterase 
(AChE) content in control and  ALCL3‑treated rats

Aluminum chloride administration raised hippocampal con-
tent of AChE by 3.4-fold (Fig. 6) than when compared to 
control group. Administration of cilostazol alone to normal 
rats showed no significant effect in comparison to control 
group, but when given to  ALCL3-treated rats, it lowered 
AChE content to 24% of that in  ALCL3 group.

Histopathological analysis

Histopathological assessment of the hippocampus also sup-
ported the biochemical findings of the present study. Micro-
scopic examination of sections from control group revealed 
normal organization and structure of neuronal cells with 
normal appearance of the hippocampus (Fig. 7a). Sections 
from rats treated with  ALCL3 revealed neurodegenerative 
alterations, necrosis, and abnormal appearance of the neu-
rons and their nuclei (Fig. 7b). Cilostazol administration to 
normal rats revealed normal appearance of the hippocampus 
(Fig. 7c). Administration of cilostazol to  ALCL3-treated rats 
ameliorated the observed neurodegenerative pathological 
changes that occurred in  ALCL3-treated rats’ hippocampi 
(Fig. 7d).

Discussion

The current study focuses on the potential protective role 
of cilostazol, a selective phosphodiesterase III inhibitor, 
on aluminum-induced memory dysfunction. Behavioral, 
biochemical, and histopathological alterations following 
aluminum chloride administration alone or with cilostazol 
were evaluated.

Phosphodiesterases (PDEs) are enzymes that hydro-
lyze phosphodiester bonds to break down cyclic 
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Fig. 4  Effect of cilostazol on hippocampal content of nuclear factor-
kappa B  (NF-κB, a), tumor necrosis factor-alpha (TNF-α, b), and 
FAS ligand (FAS-L, c) in control and  ALCL3-treated rats. Values 
are displayed as mean ± SEM (n = 10). *Significantly different from 
control group (p < 0.05), @ significantly different from  ALCL3 group 
(p < 0.05)
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guanosine monophosphate (cGMP) and/or cyclic adeno-
sine monophosphate (cAMP). As a result, the intracellular 
levels of these ubiquitous second messengers are regu-
lated. PDE inhibitors could be a powerful tool for influenc-
ing second messengers related to learning, memory, and 
mood (Hebb and Robertson 2007; Houslay et al. 2007).

In behavioral tests (Y-maze and Morris water maze, 
MWM), cilostazol was found to have a beneficial effect 
on memory and learning deficits caused by aluminum. 

Previous studies have shown that high levels of aluminum 
in the brain have an effect on long-term potentiation, 
which is thought to be the primary physiological founda-
tion for learning and memory (Llansola et al. 1999; Shu-
chang et al. 2008). This study is in harmony with the other 
studies that showed learning and memory insufficiency 
following treatment with aluminum in MWM (Rani et al. 
2015; Justin Thenmozhi et al. 2016; Abdel-Zaher et al. 
2017) and Y-maze test (Safar et al. 2016; Alawdi et al. 
2017). Other studies showed improved rats’ behavior in 
MWM (Watanabe et al. 2006; Lee et al. 2007; Kumar et al. 
2015; Kim et al. 2016) and Y-maze (Hiramatsu et al. 2010; 
Maki et al. 2014) after treatment with cilostazol. PDE 
inhibitors have been investigated as a potential medica-
tive intervention for cognitive disorders (Blokland et al. 
2006; Reneerkens et al. 2009) via their cyclic nucleotides 
improving property. Cilostazol elevates cAMP in vascular 
cells, and has multiple impacts on the vasculature includ-
ing anti-oxidation, vasodilatation, anti-inflammation, and 
smooth muscle cell regulation (Chen et al. 2011). The rise 
in cAMP activates protein kinase A, which then phospho-
rylates the cAMP response element-binding (CREB) pro-
tein. Phosphorylation of CREB stimulates numerous target 
genes, which activate new protein synthesis, thereby rein-
forces the existing synaptic connections and establishing 
new ones responsible for memory consolidation (Benito 
and Barco 2010). As well as, activation of CREB pro-
motes the gene expression of neuroprotective molecules 
as brain-derived neurotrophic factor (BDNF) (Watanabe 
et al. 2006; Nishimura et al. 2007; Miyamoto et al. 2010).

In the present work, hippocampal contents of amyloid 
beta1-42 (Aβ1-42) and phosphorylated tau (p-tau) were 
increased together with reduced level of neprilysin (Aβ 
protein degrading enzyme) in aluminum chloride-treated 
rats. These outcomes are in accordance with Alawdi 
et al. (2017). Cilostazol decreased hippocampal content 
of Aβ1−42 and p-tau, while elevated neprilysin content in 
aluminum chloride-treated rats. Dramatic decrease in tau 
phosphorylation and Aβ accumulation with subsequent 
improvement in spatial memory and learning in Aβ25–35-
injected mice after medication with cilostazol were 
observed (Tsukuda et al. 2009). Moreover, it was shown 
that cilostazol significantly suppressed both Aβ1–42 and 
Aβ1–40 aggregation and reduced Aβ production and tau 
phosphorylation in vitro (Lee et al. 2014; Maki et al. 2014; 
Schaler and Myeku 2018; Shozawa et al. 2018).

The accumulation of Aβ protein in Alzheimer’s dis-
ease (AD) animal models results in suppression of CREB-
mediated intracellular signaling pathways and impedes long-
term potentiation (Puzzo et al. 2006). Cilostazol reverses this 
effect by the activation of protein kinase A which mediates 
CREB phosphorylation, and impairs the Aβ-synthesizing 
enzymes expression comprising β- and γ-secretase that 

M
D

A
c

o
n

c
e

n
tr

a
ti

o
n

%
 o

f 
 A

L
C

L
3

 C
o n tro

l

C ilo
s ta

z o l

 A
L C L 3

A L C L 3  +
 C

ilo
s ta

z o l
0

5 0

1 0 0

1 5 0

*
* @

Fig. 5  Effect of cilostazol on hippocampal content of malondialde-
hyde (MDA) in control and  ALCL3-treated rats. Values are displayed 
as mean ± SEM (n = 10). *Significantly different from control group 
(p < 0.05), @significantly different from  ALCL3 group (p < 0.05)

A
C

h
E

c
o

n
c

e
n

tr
a

ti
o

n
%

 o
f 

 A
L

C
L

3

 C
o n tro

l

C ilo
s ta

z o l

 A
L C L 3

A L C L 3  +
 C

ilo
s ta

z o l0

5 0

1 0 0

1 5 0

*

@

Fig. 6  Effect of cilostazol on hippocampal acetylcholinesterase 
(AChE) content in control and  ALCL3-treated rats. Values are dis-
played as mean ± SEM (n = 10). *Significantly different from con-
trol group (p < 0.05), @significantly different from  ALCL3 group 
(p < 0.05)



2483Phosphodiesterase (PDE) III inhibitor, Cilostazol, improved memory impairment in aluminum…

1 3

results in decreased Aβ generation (Arendash et al. 2009). 
Furthermore, cilostazol-mediated cAMP might improve 
α-secretase activity, resulting in reduced Aβ generation 
(Maki et al. 2014) (Fig. 8).

Elevated hippocampal acetylcholinesterase (AChE) con-
tent was observed after aluminum chloride injection. Ele-
vated brain AChE activity may be considered as a marker 
of cognitive dysfunction (Xiao et al. 2012). Other findings 
suggested that administration of aluminum increased AChE 
in mouse brain (Kaizer et al., 2005; Kumar et al., 2011). 
Aluminum was found to affect AChE peripheral sites and 
modify its secondary structure, which results in inducing its 
activity (Zatta et al. 1994). Cilostazol overturned the rise in 
AChE content in aluminum chloride-treated rats, this result 
demonstrated cilostazol's ability to mitigate cognitive dys-
function associated with AD. Kumar et al. (2015) detected 
that cilostazol significantly prevented streptozotocin-induced 
raise in AChE activity.

Inflammation is thought to be a key factor in AD, it trig-
gers nervous system's defense mechanism through stimula-
tion of microglia and astrocytes, and this ends in releas-
ing of inflammatory cytokines and oxy radicals (Minghetti 
et al. 2005; Moynagh 2005). Hickman et al. (2008) noticed 
that the levels of insulin-degrading enzyme, neprilysin, and 
matrix metalloproteinase 9 (Aβ protein degrading enzymes) 
were dramatically decreased in older mice with the pro-
inflammatory cytokines’ concomitant upregulation. FAS 
and FAS ligand (FAS-L) were found to be involved in Aβ 

protein-induced neuronal death (Millet et al. 2005). Aβ pro-
tein induces FAS-L expression via a Jun N-terminal kinase 
(JNK3) dependent pathway (Morishima et al. 2001).

Nuclear factor-kappa B (NF-κB) is a transcription factor 
that controls the production of multiple pro-inflammatory 
factors in inflammatory responses (Hayden and Ghosh 
2004). Normally, NF-κB is binded to its biological inhibi-
tor (inhibitor of kappa B, IκB) in the cytoplasm. IκBs are 
phosphorylated and then degraded by the IκB kinase (IKK) 
complex in response to inflammatory stimuli, resulting in 
free NF-κB dimmers' release (Zaky et al. 2013), displaying 
the DNA-binding capacity and transactivation potentials, as 
a result, inflammatory cytokine genes such as IL-6 and IL-8 
will be expressed (Karin 2009; Brasier 2010; McFarland 
et al. 2013). The heterodimer of the p65 and p50 subunits 
is the most studied form of NF-κB that acts as a powerful 
gene transcription activator (Schmitz and Baeuerle 1991).

The present study demonstrated that cilostazol reduced 
the levels of FAS-L, tumor necrosis factor-alpha (TNF-α), 
and NF-κB. Cilostazol exerted anti-inflammatory activities 
in microglial cells and diabetic rats (Wang et al. 2008; Jung 
et al. 2010) by suppressing inflammatory cytokine genera-
tion and signaling (Jung et al. 2010). It also reduced raised 
TNF-α level and decreased the apoptosis level and cell 
death (Kim et al. 2002). Watanabe et al. (2006) revealed 
that cilostazol's neuroprotective role might be manifested 
via its anti-apoptotic impact through the CREB phosphoryla-
tion signaling pathway and subsequent stimulation of Bcl-2. 

Fig. 7  A photomicrograph of 
brain tissue section of rat from 
control and  ALCL3-treated 
rats. Cilostazol alleviated the 
neurodegenerative pathologi-
cal alterations that appeared in 
 ALCL3-treated rats’ hip-
pocampi. The above micro-
graphical photos (H&E×400) 
display rats’ hippocampal 
sections collected on day 61 
of this work. a Control group: 
revealed normal organization 
and structure of neuronal cells 
with normal appearance of 
the hippocampus. b  ALCL3 
group: revealed abnormal 
appearance of the neurons 
and their nuclei, necrosis and 
neurodegenerative changes. 
c Cilostazol group: showed 
normal appearance of the hip-
pocampus. d AlCl3 + cilostazol 
group: showed alleviation of the 
neurodegenerative pathological 
changes that were observed in 
 ALCL3-treated rats’ hippocampi
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Also, cilostazol reduced the expression of the proapoptotic 
protein Bax and the stimulation of apoptosis effector cas-
pases (Oguchi et al. 2017).

Although  AD pathogenesis is complex, oxidative impair-
ment may be one of the initial events in its etiology and pro-
gression (Sultana and Butterfield 2010; Tayler et al. 2010). 
The hippocampal region is affected more from oxidative 
stress in comparison with other brain regions (Miller and 
O'Callaghan 2005; Yargicoglu et al. 2007). One of the most 
common consequences of free radical-mediated injury is 
lipid peroxidation, which degrades membranes directly and 
produces a variety of secondary products, such as aldehydes 
like malondialdehyde (MDA) (Slater 1984). Lipid peroxi-
dation up-regulates β-secretase expression in vivo (Chen 
et al. 2008), suggesting that lipid peroxidation avoidance is 
a critical initial event in amyloidogenesis reduction in AD. 
In this study, we observed a significant amount of oxidative 
stress manifested itself in the form of elevated lipid peroxi-
dation. Disruption of Golgi apparatus, reduction of synaptic 
vesicles, and reduced axonal mitochondrial turnover could 
all contribute to significant oxidative stress after aluminum 
administration (Bharathi et al. 2006). A raise in MDA level 

was noticed in rats' entire brains (Lakshmi et al. 2015), rats' 
hippocampi (Abdel-Zaher et al. 2017), and mice hippocampi 
(Jangra et al. 2015) after aluminum administration.

Cilostazol decreased MDA level when administered to 
aluminum chloride-treated rats. Several studies observed 
that cilostazol significantly reduced lipid peroxidation in 
the brain in different experimental models (Hiramatsu et al. 
2010; Lee et al. 2010; Sahin et al. 2011; Kumar et al. 2015). 
PDE III inhibitors have potent anti-oxidative characteris-
tics (Park et al. 2007; Genovese et al. 2011). Increases in 
intracellular cyclic nucleotides like cAMP have also been 
shown to reduce reactive oxygen generation, oxidative 
stress, and subsequent development of cellular dysfunction 
(Milani et al. 2005). Cilostazol inhibits oxidative stress, and 
thus suppresses Aβ1–42-induced neurotoxicity, as evidenced 
by decreased reactive oxygen species accumulation and 
elevated expression of the anti-oxidant enzyme superoxide 
dismutase (Oguchi et al. 2017). Moreover, cilostazol may 
reduce cognitive deficits by suppressing the early accumula-
tion of lipid peroxidation products, as well as the subsequent 
inflammatory responses, such as the reduction of apoptotic 
cells (Watanabe et al. 2006).

Fig. 8  Diagram illustrating the 
protective actions of cilostazol 
against aluminum-induced 
memory impairment
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Conclusion

We can conclude from these findings that cilostazol reduced 
aluminum-induced cognitive decline through a variety of 
mechanisms, such as its anti-inflammatory, anti-oxidant, and 
anti-apoptotic properties via the cAMP/CREB phosphoryla-
tion pathway.
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