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Abstract
Background and Aim  Multiple sclerosis (MS) is a demyelinating neurodegenerative inflammatory disease affecting mainly 
young adults. Microgliosis-derived neuroinflammation represents a key hallmark in MS pathology and progression. Nebivolol 
(Neb) demonstrated antioxidant, anti-inflammatory and neuroprotective properties in several brain pathologies. This study 
was conducted to investigate the potential neuroprotective effect of Neb in the cuprizone (Cup) model of MS.
Methods  C57Bl/6 mice were fed 0.2% Cup mixed into rodent chow for 5 weeks. Neb (5 and 10 mg/kg/day) was administered 
by oral gavage during the last 2 weeks.
Results  Neb prevented Cup-induced weight loss and motor deficits as evidenced by increased latency to fall in the rotarod 
test and enhanced locomotor activity as compared to Cup-intoxicated mice. Neb reversed Cup-induced demyelination as 
confirmed by Luxol fast blue staining and myelin basic protein western blotting. Administration of Neb modulated micro-
glial activation status by suppressing M1 markers (Iba-1, CD86, iNOS, NO and TNF-α) and increasing M2 markers (Arg-1 
and IL-10) as compared to Cup-fed mice. Furthermore, Neb hindered NLRP3/caspase-1/IL-18 inflammatory cascade and 
alleviated oxidative stress by reducing lipid peroxidation, as well as increasing catalase and superoxide dismutase activities.
Conclusion  These findings suggest the potential neuroprotective effect of Neb in the Cup-induced model of MS in mice, at 
least partially by virtue of shifting microglia towards M2 phenotype, mitigation of NLRP3 inflammasome activation and 
alleviation of oxidative stress.
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Introduction

Multiple sclerosis (MS) is a demyelinating inflammatory 
disease of the central nervous system (CNS) representing the 
main cause of non-traumatic disability in young adults. The 
etiology of MS is not well understood. However, it may be 
related to viral infections, genetic predisposition, and many 
environmental factors (Dobson and Giovannoni 2019). Epi-
demiological studies have shown that MS has an estimated 
worldwide prevalence of 2.8 million people (Walton et al. 
2020). The pathophysiology of MS is complex; including 
peripheral T-cells infiltration into the CNS, oligodendrocytes 

apoptosis, microgliosis, and neuroinflammation leading to 
demyelination and axonal injury (Lassmann 2014a).

Microgliosis plays an essential role in neuroinflammation 
and demyelination (Lassmann 2014b). Microglia, the CNS 
macrophages, are present in two main phenotypes: the clas-
sical pro-inflammatory M1 phenotype and the alternatively 
activated anti-inflammatory M2 phenotype (Xu et al. 2015). 
The M1 microglia exacerbate inflammation by producing 
cytotoxic mediators; such as tumor necrosis factor-alpha 
(TNF-α) and reactive oxygen species (ROS). By contrast, 
the M2 microglia release anti-inflammatory protective 
mediators such as interleukin 10 (IL-10) and hence promote 
tissue repair (Mayer et al. 2016). The nucleotide-binding 
oligomerization domain-like (NOD-like) receptor pyrin-
containing 3 inflammasome (NLRP3) is a multimeric protein 
complex involved in amplifying inflammatory signals by the 
maturation of pro-inflammatory IL-18 (Shen et al. 2018). 
The serum and active lesions of MS patients show higher 
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IL-18 levels (Cannella and Raine 2004; Keane et al. 2018). 
Inhibiting the NLRP3 inflammasome pathway was shown to 
inhibit microglial activation status in vitro by suppressing 
M1 polarization (Ślusarczyk et al. 2018). All the aforemen-
tioned data suggest that suppressing the NLRP3 inflamma-
some is a potential pharmacological target for alleviating 
microgliosis and neuroinflammation.

Demyelination is experimentally induced by the cop-
per chelator, cuprizone (Cup) (Matsushima and Morell 
2001). Feeding of 0.2% (w/w) Cup mixed into rodent chow 
for 5–6 weeks has been widely used to produce consistent 
demyelination in many brain areas; including the largest 
myelinated tract: the corpus callosum (CC) (Hiremath et al. 
1998; Goldberg et al. 2015). Demyelination is evident after 
3 weeks of Cup feeding (Vega-Riquer et al. 2019). The cop-
per-dependent mitochondrial enzyme, cytochrome c oxidase, 
is inhibited by Cup leading to oligodendrocytes apoptosis 
and accumulation of myelin debris triggering recruitment of 
microglia that produce excess pro-inflammatory cytokines 
thus exacerbating demyelination as reviewed (Sen et al. 
2019).

Nebivolol (Neb), a third-generation β-blocker, is an 
anti-hypertensive drug with distinct profile compared to 
other β-blockers due to its vasodilatory effect through the 
nitric oxide (NO) pathway (Kamp et al. 2010). It has been 
recognized as a strong antioxidant and anti-inflammatory 
drug (El-Sheikh et al. 2019). Furthermore, Neb can cross 
blood–brain barrier (BBB) (Prisant 2008) and provides 
neuroprotection against cerebral ischemia/reperfusion 
injury (Heeba and El-Hanafy 2012), reserpine-induced 
neuro-behavioral alterations (Nade et al. 2013) and cispl-
atin-induced depressive-like behavior (Abdelkader et al. 
2017) in rats. Wang et al. showed that Neb reduces amyloid 
neuropathology in a mouse model of Alzheimer’s disease 
(Wang et al. 2013). It has been proven that Neb attenuates 
inflammation and microglial activation by decreasing pro-
inflammatory cytokines secretion and NLRP3 inflamma-
some activation (Xie et al. 2016; Gao et al. 2019).

Accordingly, the present study was conducted to assess 
the potential neuroprotective effect of Neb in the Cup model 
of MS and to characterize the potential mechanism with 
respect to demyelination, oxidative stress, neuroinflamma-
tion and microgliosis in addition to its effect on the NLRP3 
inflammasome pathway.

Material and methods

Animals

Thirty male C57Bl/6 mice, weighing 20–25 g, were pur-
chased from Theodor Bilharz research institute (Giza, 
Egypt). Mice were housed in plastic cages at constant 

temperature (21 ± 2 °C) and under a 12 h light/dark cycle. 
Animals were acclimated for 2 weeks before starting the 
experiment and were provided access to rodent chow and 
water ad libitum. Body weight was measured weekly dur-
ing the experiment. Animal handling strictly complied 
with institutional and international guidelines concern-
ing the care and use of laboratory animals and complied 
with the National Institutes of Health guide for the care 
and use of laboratory animals (NIH Publications No. 8023, 
revised 1978). The experimental protocol was evaluated and 
approved by the research ethics committee of the Faculty of 
Pharmacy, Ain Shams University, Cairo, Egypt (Approval 
number: 274, December 2019).

Drugs and chemicals

Cuprizone [Bis(cyclohexanone) oxaldihydrazone] was pur-
chased from Fluka, Sigma-Aldrich Co. (USA). Nebivolol 
was obtained as a generous gift from Marcyrl Pharmaceu-
tical industries (Cairo, Egypt). Carboxymethyl cellulose 
(CMC) was purchased from El-Nasr Pharmaceutical Com-
pany (Cairo, Egypt). Nebivolol was suspended in 0.5% CMC 
aqueous solution and vortexed thoroughly until a uniform 
suspension was obtained. All other chemicals were of the 
highest pure grade commercially available.

Experimental design

Animals were randomly assigned into one of 5 groups 
(n = 6):

The first group served as a control group and received 
standard rodent chow for 5 weeks and the vehicle (0.5% 
CMC) during the last 2 weeks. The second group received 
a 0.2% Cup diet for 5 weeks plus oral gavage of 0.5% CMC 
during the last 2 weeks. The third and fourth groups received 
a 0.2% Cup diet for 5 weeks plus oral gavage of Neb (5 and 
10 mg/kg/day, respectively) suspended in 0.5% CMC during 
the last 2 weeks (Baumhäkel et al. 2008). The fifth group 
received standard rodent chow for 5 weeks, in addition to an 
oral daily dose of 10 mg/kg Neb in 0.5% CMC during the 
last 2 weeks (Fig. 1).

On day 35, animals were subjected to neurobehavioral 
tests; rotarod test and locomotor activity assessment. Then, 

Fig. 1   Study timeline showing Cup and Neb dosing regimens
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animals were euthanized by cervical dislocation; whole 
brains were excised, and the two hemispheres were sepa-
rated. One hemisphere was stored at− 80 °C for biochemical 
analyses and the other hemisphere was fixed in 10% neutral 
buffered formalin for 72 h for histopathological examination.

Neurobehavioral assessment

Rotarod test

Motor coordination and balance were evaluated using the 
rotarod apparatus. Mice were trained to walk on a rotating 
rod with increasing speed from 4 to 35 rpm over 3 min. On 
the next day, decreased ability to remain on the rotating rod 
(latency to fall) over 5 min was recorded (Chang et al. 2017).

Locomotor activity

Locomotor activity of mice was assessed using an activity 
monitor (Opto-Varimex-Mini Model B, Columbus Instru-
ments, Columbus, OH, USA). Mice (n = 6) were allowed 
1 min habituation in the recording chamber, then, the fre-
quency of interruption of 15 infrared rays (λ = 875 nm, scan 
rate = 160 Hz, diameter = 0.32 cm, and spacing = 2.65 cm) 
was recorded over 5 min in the dark. The locomotor activ-
ity of animals was expressed as counts/5 min (Zhang et al. 
2012; Chang et al. 2017).

Histopathological examination

Histopathological examination was conducted by an inde-
pendent researcher who was blind to the animal treatments. 
Briefly, brain samples were flushed and fixed in 10% neu-
tral buffered formalin for 72 h. Samples were trimmed, pro-
cessed in serial grades of ethanol, cleared in xylene then 
infiltrated and embedded into paraplast wax tissue embed-
ding media. Four micrometer-thick tissue sections were cut 
by rotatory microtome for the demonstration of CC total 
area and mounted on glass slides from different samples. 
For Luxol fast blue (LFB) staining, the sections were depar-
affinized, then rinsed in 100% ethanol and 95% ethanol, and 
then incubated in an LFB solution (0.01% in 95% ethanol) 
overnight at 60 °C. Whole brain sections were processed 
in 0.05% lithium carbonate solution, differentiated in 70% 
ethanol and counterstained with periodic acid–Schiff (PAS) 
stain, and then examined microscopically to detect cortical 
demyelination/remyelination. Six random non-overlapping 
fields were captured from the CC in six sections from each 
group (6 mice/group) for the determination of the posi-
tive area percent of myelinated nerve fibers in CC regions 
stained by LFB. All micrographs were obtained using a full 
HD microscopic camera operated by the Leica application 
module (Leica Microsystems GmbH, Wetzlar, Germany). 

Image analysis was performed using ImageJ software (ver-
sion 1.50i) (Drury,and Wallington 1983).

Assessment of oxidative and nitrosative stress markers

Brain lipid peroxidation levels were measured colorimetri-
cally as thiobarbituric acid reactive substances (TBARS) 
using kits purchased from Biodiagnostic (Giza, Egypt) 
according to the manufacturer’s instructions. Results were 
expressed as nmol malondialdehyde (MDA)/ml. Antioxidant 
catalase (CAT) and superoxide dismutase (SOD) enzymes’ 
activities in the brain were assessed using colorimetric kits 
purchased from Biodiagnostic (Giza, Egypt) according to 
the manufacturer’s instructions. Results were expressed as 
unit/mg protein. Brain NO level was quantified as nitrite and 
measured colorimetrically using a kit obtained from Bio-
diagnostic (Giza, Egypt) according to the manufacturer’s 
instructions. Results were expressed as nmol nitrite/mg 
protein.

Assessment of tumor necrosis factor alpha, interleukin 10 
and interleukin 18

Tumor necrosis factor alpha (TNF-α), IL-10 and IL-18 were 
measured in brain homogenate using a sandwich enzyme 
immunoassay technique utilizing ELISA kits according to 
the manufacturer’s instructions. TNF-α and IL-18 ELISA 
kits were purchased from Elabscience (Houston, USA), 
while IL-10 ELISA kit was purchased from Cloud-Clone 
Corporation (Houston, USA). Concentration was expressed 
as pg/mg protein.

Western blot

Brain whole tissue lysates were prepared using RIPA buffer 
standard protocol (Bio Basic Inc, Markham, Ontario, Can-
ada). Then, samples were centrifuged, and protein quantifi-
cation was performed using Bradford Protein Assay Kit (Bio 
Basic Inc, Markham, Ontario, Canada). Protein (20 μg) was 
loaded per well of a 10% SDS-PAGE gel using electropho-
resis buffer, separated, and then transferred onto a PVDF 
membrane (Bio-Rad Laboratories, Hercules, CA, USA). 
Membrane blocking was done using TBST and 5% BSA 
for 1 h followed by overnight incubation with one of the 
following primary antibodies (1:1000): myelin basic pro-
tein (MBP) (CAT # ab155995; Abcam, Cambridge, MA, 
USA), arginase-1 (Arg-1) (CAT # 93,668; Cell Signaling 
Technology, Danvers, MA, USA), ionized calcium-binding 
adapter molecule 1 (Iba-1) (CAT # 17,198; Cell Signal-
ing Technology, Danvers, MA, USA), cluster of differen-
tiation 86 (CD86) (CAT # ab112490; Abcam, Cambridge, 
MA, USA), inducible nitric oxide synthase (iNOS) (CAT # 
ab136918; Abcam, Cambridge, MA, USA), NLRP3 (CAT # 
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AG-20B-0014, AdipoGen, San Diego, CA, USA) or cleaved 
caspase-1 (CAT # 89,332; Cell Signaling Technology, Dan-
vers, MA, USA). Afterwards, the membranes were rinsed 
and incubated with secondary goat anti-rabbit IgG HRP-
linked antibody solution (1: 5000) against the blotted target 
protein for 1 h at room temperature. Development was done 
using Clarity ™ Western ECL chemiluminescent substrate 
(Bio-Rad Laboratories, Hercules, CA, USA). The signal was 
captured using a Chemi Doc MP imager (Bio-Rad Laborato-
ries, Hercules, CA, USA). Load correction was done using 
anti-β-actin polyclonal antibody (1:1000; CAT# 4970; Cell 
Signaling Technology, Danvers, MA, USA). Quantification 
of band densities was done using imageJ software (version 
1.50i) (Gallo-Oller et al. 2018).

Statistical analysis

Statistical analysis was implemented using GraphPad Prism 
software (version 9, ISI® software, USA). Normality test 
was performed using D’Agostino-Pearson normality test. 
Bartlett’s test was performed to test for homogeneity of 
variances. Since the data proved to be normally distributed 
and have homogenous variances, parametric tests were 
employed. Body weight results were analyzed using two-
way ANOVA followed by Bonferroni post hoc test. Multiple 
comparisons for all other parameters were performed using 
one-way ANOVA followed by the Tukey post hoc test. Data 
were presented as mean ± standard deviation (SD). Inter-
group statistical significance was considered at p value less 
than 0.05.

Results

Neb improved cup‑induced decrease in locomotor 
activity

Administration of Cup for 35 days induced a significant 
decrease in the locomotor activity by 39.95%, as compared 

to the control group (p < 0.0001) (Fig. 2a). Co-treatment 
with Neb (5 and 10 mg/kg) significantly increased the loco-
motor activity in comparison to Cup-intoxicated animals 
by 1.23 (p < 0.05) and 1.48-fold (p < 0.0001), respectively 
(Fig. 2a).

Neb enhanced cup‑induced changes in motor 
coordination and balance

Rotarod test showed that Cup-intoxicated animals spent 
less time on rotarod as evidenced by the statistically signifi-
cant decrease in the latency to fall by 60.58%, compared to 
the control group (p < 0.0001) (Fig. 2b). However, Neb (5 
and 10 mg/kg)-treated animals showed statistically marked 
increase in the latency to fall by 1.36 (p < 0.05) and 2.15-fold 
(p < 0.0001), respectively, as compared to Cup-intoxicated 
animals (Fig. 2b).

Neb reduced cup‑induced body weight loss

As shown in Fig. 3, no significant difference in body weight 
was detected in all experimental groups for the first 13 days 

Fig. 2   The effect of Neb on Cup-induced motor abnormalities. 
a Locomotor activity test. b Rotarod test. Data are presented as 
means ± SD (n = 6). a, b, c: Statistically significant from the con-

trol, Cup and Cup + Neb (5  mg/kg)-treated groups, respectively, at 
P < 0.05. Statistical analysis was performed using one-way ANOVA 
followed by Tukey’s test for multiple comparisons between groups

Fig. 3   The effect of Neb on Cup-induced body weight changes. a, 
b:Statistically significant from the control and Cup-treated groups, 
respectively, at P < 0.05. Statistical analysis was performed using 
two-way ANOVA followed by Bonferroni test for multiple compari-
sons between groups
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of Cup administration. On day 14, two-way ANOVA 
revealed that Cup-treated mice showed a significant body 
weight loss as compared to the control group (p < 0.001). 
Consumption of Cup from day 14 to day 35 led to further 
body weight loss as evidenced by a significant decline in 
body weight, compared to the control group (p < 0.0001). 
Treatment with Neb started from day 21 till day 35. The 
first week of Neb treatment resulted in increase in body 
weight, as compared to the Cup-treated group; however, 
this difference did not reach statistical significance for both 
doses. On the other hand, the last week of co-treatment with 
Neb (10 mg/kg) reduced the significant weight loss of Cup-
exposed mice (p < 0.001). However, the increase in body 
weight of mice co-treated with Neb (5 mg/kg) did not reach 
statistical significance.

Neb attenuated cup‑induced demyelination

Myelin status was assessed by LFB staining of the CC and 
western blotting of MBP. Significant demyelination was 
detectable in Cup-intoxicated mice as shown by a decrease 
in the intensity of LFB staining and the percentage of myeli-
nated neurofibers by 61.85%, compared to the control group 
(p < 0.0001) (Fig. 4). Co-treatment with Neb (5 and 10 mg/
kg) resulted in increase in the intensity of LFB staining and 
the percentage of myelinated neurofibers by 1.28 (p < 0.05) 
and 1.69-fold (p < 0.0001), respectively. In addition, 

Cup-intoxication decreased the protein expression levels of 
MBP by 73.13% (p < 0.0001), in comparison to the con-
trol group (Fig. 5). However, co-treatment with Neb (5 and 
10 mg/kg) upregulated MBP expression by 1.79 (p < 0.01) 

Fig. 4   a Representative photomicrograph of LFB stained CC sections 
(Control group) showing normal positive staining intensity (arrow). b 
Cup group showing a significant decrease in staining intensity (star). 
c, d Cup + Neb (5 and 10 mg/kg), respectively, both showing elevated 
staining intensity as compared to Cup-intoxicated mice (arrow). e 
Neb (10  mg/kg) showing positive staining intensity (arrow). Mag-

nification 400× . f Percentage of myelinated neurofibers resulting 
from LFB expressed as a percentage of control. Data are presented 
as means ± SD (n = 6). a, b, c: Statistically significant from the con-
trol, Cup and Cup + Neb (5  mg/kg)-treated groups, respectively, at 
P < 0.05. Statistical analysis was performed using one-way ANOVA 
followed by Tukey’s test for multiple comparisons between groups

Fig. 5   a Western blot analysis of brain MBP. b Densitometric quanti-
tation of MBP protein expression. Data are presented as means ± S.D. 
(n = 3). a, b, c: Statistically significant from the control, Cup and 
Cup + Neb (5  mg/kg)-treated groups, respectively, at P < 0.05. Sta-
tistical analysis was performed using one-way ANOVA followed by 
Tukey's test for multiple comparisons between groups
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and 3.45-fold (p < 0.0001), respectively, indicating that Neb 
protected against Cup-induced demyelination.

Neb attenuated microglial activation 
and suppressed M1 polarization in cup‑intoxicated 
mice

The protein expression of the microglial activation marker; 
Iba-1, was significantly increased by 6.42-fold (p < 0.0001) 
in Cup-intoxicated mice compared to the control group 
while Neb (5 and 10 mg/kg) administration significantly 
downregulated Iba-1 level by 36.51% (p < 0.001) and 
66.67% (p < 0.0001), respectively, in comparison to Cup-
treated mice. M1 polarization was evaluated by assessing 
M1 markers: CD86, iNOS, NO and TNF-α levels. The pro-
tein expression of CD86 and iNOS was significantly higher 
in Cup-intoxicated mice by 6.6 and 4.8-fold (p < 0.0001), 
respectively, as compared to the control group. Treatment 
with Neb (5 mg/kg) resulted in a significant reduction of 
the protein expression of CD86 and iNOS by 52.94% and 
53.03%, respectively, (p < 0.0001), as compared to Cup-
treated mice. Similarly, Neb (10  mg/kg)-treated mice 
exhibited a significant decline in CD86 and iNOS protein 
expression levels by 79.89% and 71.02%, respectively, 
(p < 0.0001), in comparison to Cup-treated mice (Fig. 6). 
The levels of TNF-α and NO were significantly elevated in 
Cup-intoxicated animals by 1.39 and 1.48-fold, respectively, 
compared to the control group (p < 0.0001). Treatment with 

Neb (5 mg/kg) significantly reduced the levels of TNF-α 
by 14.96% and NO by 12.41% (p < 0.01), as compared to 
Cup-treated mice. Moreover, Neb (10 mg/kg) significantly 
reduced the levels of TNF-α and NO by 32.88% and 23.75%, 
respectively, (p < 0.0001), as compared to Cup-treated mice 
(Fig. 7).

Neb promoted M2 polarization in cup‑intoxicated 
mice

M2 polarization was analyzed using M2 markers; Arg-1 and 
IL-10. As shown in Fig. 8, statistically significant decrease 
in the protein expression levels of Arg-1 was observed in 
Cup-treated mice by 73.54% (p < 0.0001), as compared to 
the control. In contrast, Neb (5 and 10 mg/kg) upregulated 
Arg-1 protein expression by 2.54 and 3.38-fold, respectively, 
(p < 0.0001), in comparison to Cup-intoxicated mice. Inter-
estingly, Cup also reduced IL-10 levels by 24.61% compared 
to the control group (p < 0.0001). However, co-treatment 
with Neb (5 and 10 mg/kg) increased IL-10 levels by 1.16 
(p < 0.05), and 1.35- fold (p < 0.0001), respectively, in com-
parison to Cup-treated mice (Fig. 9).

Neb counteracted NLRP3 inflammasome activation 
in cup‑treated mice

The effect of Neb on NLRP3 inflammasome activation was 
evaluated by assessment of the protein expression levels of 

Fig. 6   a Western blot analysis of brain Iba-1, CD86 and iNOS. b, c 
and d Densitometric quantitation of Iba-1, CD86 and iNOS protein 
expression, respectively. Data are presented as means ± SD. (n = 3). 
a, b, c: Statistically significant from the control, Cup and Cup + Neb 

(5 mg/kg)-treated groups, respectively, at P < 0.05. Statistical analysis 
was performed using one-way ANOVA followed by Tukey’s test for 
multiple comparisons between groups
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NLRP3 and cleaved caspase-1 (Fig. 10) in addition to the 
level of its end-product; IL-18 (Fig. 11). Administration of 
Cup upregulated the protein expression levels of NLRP3 
and cleaved caspase-1 by 4.47 and 5.78-fold, respectively, 
as well as IL-18 level by 1.48-fold, compared to the control 
group (p < 0.0001). Co-treatment with Neb (5 mg/kg) sup-
pressed NLRP3 activation as evidenced by a decrease in 
NLRP3 and cleaved caspase-1 protein expression levels by 
45.33% and 42.93%, respectively, (p < 0.0001), and IL-18 
levels by 9.41% (p < 0.001), in comparison to Cup-treated 
animals. Moreover, treatment of Cup-administered mice 
with Neb (10 mg/kg) downregulated NLRP3 and cleaved 
caspase-1 protein levels by 61% and 79.49%, respectively, 
as well as IL-18 level by 27.21%, (p < 0.0001).

Neb alleviated cup‑induced oxidative stress

Oxidative stress was determined by measuring MDA lev-
els in addition to catalase and SOD activities. Adminis-
tration of Cup resulted in a significant elevation in MDA 
level by 2.08-fold, when compared to the control group 
(p < 0.0001) (Fig. 12a). Administration of Neb (5 mg and 
10 mg/kg) resulted in a statistically significant decline in 
MDA levels by 14.12% (p < 0.01) and 45.65% (p < 0.0001), 
respectively, as compared to Cup-treated mice. Catalase 
activity was significantly reduced by 65.62% (p < 0.0001) 
in Cup-intoxicated animals in comparison to the control 
group. Noteworthy, Neb (5 and 10 mg/kg) administration 
significantly ameliorated Cup-induced decrease in catalase 
activity by 1.65-fold (p < 0.01) and 2.76-fold (p < 0.0001), 
respectively, in comparison to Cup-treated mice (Fig. 12b). 
Likewise, Cup-treated mice exhibited a statistically signifi-
cant decrease in SOD activity by 52.77%, as compared to 
the control animals (p < 0.0001). On the other hand, Neb (5 
and 10 mg/kg)-treated mice showed a statistically signifi-
cant elevation in SOD activity by 1.39-fold (p < 0.01) and 

Fig. 7   The effect of Neb on TNF-α (a) and nitrite (b) levels in the 
brain tissues of Cup-treated mice. Data are presented as means ± SD 
(n = 6). a, b, c: Statistically significant from the control, Cup and 

Cup + Neb (5  mg/kg)-treated groups, respectively, at P < 0.05. Sta-
tistical analysis was performed using one-way ANOVA followed by 
Tukey’s test for multiple comparisons between groups

Fig. 8   a Western blot analysis of brain Arg-1. b Densitometric 
quantitation of Arg-1 protein expression. Data are presented as 
means ± S.D. (n = 3). a, b, c: Statistically significant from the con-
trol, Cup and Cup + Neb (5  mg/kg)-treated groups, respectively, at 
P < 0.05. Statistical analysis was performed using one-way ANOVA 
followed by Tukey’s test for multiple comparisons between groups

Fig. 9   The effect of Neb on IL-10 levels in the brain tissues of Cup-
treated mice. Data are presented as means ± SD (n = 6). a, b, c: Sta-
tistically significant from the control, Cup and Cup + Neb (5  mg/
kg)-treated groups, respectively, at P < 0.05. Statistical analysis was 
performed using one-way ANOVA followed by Tukey's test for multi-
ple comparisons between groups
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1.71-fold (p < 0.0001), respectively, in comparison to Cup-
administered mice (Fig. 12c).

Discussion

The present study aimed to investigate the potential neu-
roprotective effect of Neb in the Cup model of MS and to 
elucidate the possible underlying mechanisms. Our findings 
showed that Neb administration significantly reversed Cup-
induced demyelination, motor abnormalities, and weight 
loss via downregulating NLRP3 inflammasome signaling, 

promoting M2 polarization, and alleviating oxidative stress, 
suggesting the neuroprotective effect of Neb against Cup-
induced model of MS in mice.

Sustained neuroinflammation involving microglia repre-
sents a key pathological hallmark in MS (Fani Maleki and 
Rivest 2019). Counteracting MS neuroinflammatory demy-
elination by targeting microglial M1/M2 phenotypic shift 
and NLRP3 inflammasome pathway has received growing 
attention as evidenced by many studies (Aryanpour et al. 
2017; Barati et al. 2019; Zhang et al. 2021). The Cup model 
highly reflects the neuroinflammatory demyelinating aspects 
of MS pathology. In addition, Cup induces demyelination 
without altering the BBB integrity ensuring no involvement 
of the peripheral inflammatory cells (Bakker and Ludwin 
1987; Gudi et al. 2014). Hence, inflammatory mediators 
and ROS are mainly produced by microglia making the Cup 
model ideal for evaluating the effect of Neb on microgliosis 
and its deleterious role in demyelination.

Microglia, the main CNS immune cells, are implicated 
in CNS development and homeostasis as well as in clearing 
debris (Ginhoux et al. 2013). Disturbance of CNS homeo-
stasis leads to microglial activation for protection against 
tissue damage. However, chronic activation in neurode-
generative diseases evokes a state of excessive microglial 
activation causing a cycle of inflammation and neurotoxic-
ity rather than resolving the damage (London et al. 2013). 
On the other hand, the neuroprotective role of microglia 

Fig. 10   a Western blot analysis of brain NLRP3 and cleaved cas-
pase-1. b Densitometric quantitation of NLRP3 protein expression. c 
Densitometric quantitation of cleaved caspase-1 protein expression. 
Data are presented as means ± SD. (n = 3). a, b, c: Statistically signifi-

cant from the control, Cup and Cup + Neb (5 mg/kg)-treated groups, 
respectively, at P < 0.05. Statistical analysis was performed using 
one-way ANOVA followed by Tukey’s test for multiple comparisons 
between groups

Fig. 11   The effect of Neb on IL-18 levels in the brain tissues of 
Cup-treated mice. Data are presented as means ± SD (n = 6). a, b, c: 
Statistically significant from the control, Cup and Cup + Neb (5 mg/
kg)-treated groups, respectively, at P < 0.05. Statistical analysis was 
performed using one-way ANOVA followed by Tukey’s test for mul-
tiple comparisons between groups
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in MS has been well-documented; microglia phagocytize 
myelin debris, recruit oligodendrocytes progenitor cells and 
release regenerative factors for remyelination (Napoli and 
Neumann 2010). This dual role of microglia is explained by 
the fact that they exist as two activation patterns; classical 
pro-inflammatory M1 activation and alternative anti-inflam-
matory M2 activation (Mayer et al. 2016). New therapeutic 
strategies should suppress harmful effects of aberrant micro-
glial activation while retaining microglial physiological neu-
roprotective functions thus selective M2 polarization rather 
than complete microglial inhibition should be our target (Du 
et al. 2017).

M1 microglial activation is associated with excessive pro-
duction of pro-inflammatory cytokines, such as TNF-α as 
well as enzymes; such as iNOS for NO production. This is in 
addition to the upregulation of cell surface molecules; such 
as CD86 (David and Kroner 2011; Orihuela et al. 2016). 
On the other hand, M2 microglial activation results in the 
release of anti-inflammatory cytokines; such as IL-10 and 
enzymes; such as Arg-1 for tissue repair (David and Kroner 
2011). Our study showed that Cup intoxication significantly 
increased M1 markers levels (TNF-α, iNOS, NO and CD86) 

and suppressed M2 markers levels (IL-10 and Arg-1). This 
finding comes in line with many reports proving that M1 
polarization contributes to Cup-induced inflammatory 
cascade (Aryanpour et al. 2017; Barati et al. 2019). Neb 
treatment significantly decreased the levels of M1 markers 
and augmented the levels of M2 markers. It was previously 
shown that Neb can suppress M1 polarization by reducing 
the density of macrophages expressing the M1 marker CD68 
(Pyka-Fosciak et al. 2013). To the authors’ knowledge, this 
is the first study to demonstrate that Neb promotes M2 polar-
ization which strengthens the promising modulatory effect 
of Neb on microglia-derived neuroinflammation.

iNOS and Arg-1 are markers of M1 and M2 polarization, 
respectively (David and Kroner 2011) with a common sub-
strate (arginine) but different products making iNOS a potent 
inducer of inflammation, that is counteracted by Arg-1 (Kuo 
1998; Aryanpour et al. 2017). Excessive expression of iNOS 
by activated microglia and associated high levels of NO 
is a hallmark of MS lesions (Smith and Lassmann 2002). 
Various mechanisms explain the deleterious role of NO in 
demyelination. The current study showed that Cup-induced 
increase in iNOS protein expression and NO levels were 
coincident with low Arg-1 protein expression. This effect 
was attenuated by the Neb administration. The decrease of 
NO levels by Neb may be attributed to the fact that iNOS is 
not significantly expressed in the CNS unless inflammation 
occurs (Hanisch and Kettenmann 2007; Ghasemi and Fatemi 
2014). Hence, lower NO levels were detected in Neb-treated 
mice, by virtue of regulation of microglial phenotypic 
switching and subsequent reduction in M1-associated iNOS 
expression. This comes in line with another study which 
showed that Neb reduced NO levels in cisplatin-induced 
nephrotoxicity (Morsy and Heeba 2016).

Additionally, Iba-1 is a microglial surface protein which 
is widely used to assess all microglia regardless of their 
phenotype (Ito et al. 1998; Walker and Lue 2015). In our 
demyelinating model, Cup significantly increased Iba-1 pro-
tein expression, while co-treatment with Neb significantly 
suppressed it which further support our data indicating alle-
viation of neuroinflammation and microgliosis.

NLRP3 inflammasome is a multimeric protein complex 
involved in sensing danger signals. It is composed of sen-
sor protein NLRP3, apoptosis-associated speck-like (ASC) 
adaptor protein and executor enzyme pro-caspase-1. The 
NLRP3 inflammasome complex formation triggers process-
ing pro-IL-1β and pro-IL-18 into their active forms (Shen 
et al. 2018). Over-activation of NLRP3 inflammasome acti-
vation is implicated in MS pathogenesis as evidenced by 
elevated levels of caspase-1 and IL-18 in MS patients serum 
and cerebrospinal fluid (CSF) (Losy and Niezgoda 2001; 
Keane et al. 2018). Many studies showed that NLRP3 regu-
lates microglial phenotypic switching suggesting that inhibi-
tion of NLRP3 inflammasome represents a potential strategy 

Fig. 12   The effect of Neb on oxidative stress markers: MDA levels a, 
catalase b and SOD c activities in the brain tissues of Cup-intoxicated 
mice. Data are presented as means ± SD (n = 6). a, b, c: Statistically 
significant from the control, Cup and Cup + Neb (5  mg/kg)-treated 
groups, respectively, at P < 0.05. Statistical analysis was performed 
using one-way ANOVA followed by Tukey’s test for multiple com-
parisons between groups
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for alleviating neuroinflammation (Heneka et al. 2013; Liu 
et al. 2018; Cui et al. 2020).

The potential pathological implication of the NLRP3/
caspase-1/IL-18 pathway in Cup-induced demyelination is 
suggested by increased NLRP3 levels in Cup-fed animals, 
compared to the control. In addition, Jha et.al demonstrated 
that the knockout of NLRP3, caspase-1 or IL-18 gene 
delayed Cup-induced demyelination and neuroinflamma-
tion (Jha et al. 2010). In accordance, our study showed that 
Neb significantly decreased NLRP3 and cleaved caspase-1 
protein expression as well as IL-18 levels in Cup-fed mice 
compared to untreated Cup-fed animals, highlighting the 
anti-inflammatory effect of Neb. This further confirms the 
modulatory effect of Neb on microglial activation status pre-
viously suggested by the current study as the suppression 
of NLRP3 inflammasome and its downstream inflammatory 
mediators contributed to the alleviation of microgliosis. This 
finding is in line with previous studies that demonstrated 
the inhibitory effect of Neb on NLRP3 inflammasome in a 
rat model of obesity-induced myocardial toxicity (Xie et al. 
2016) and vascular remodeling (Gao et al. 2019).

In the present study, Cup-intoxicated mice exhibited 
motor abnormalities as evidenced by decreased locomotor 
activity and latency to fall in the rotarod test in agreement 
with previous studies (Ghaiad et al. 2017; Abd El Aziz 
et al. 2021). This is explained by the fact that Cup-induced 
CC demyelination impairs bilateral motor coordination 
(Liebetanz and Merkler 2006). Furthermore, Cup led to 
body weight loss in line with many previous studies (Hashi-
moto et al. 2017; Elbaz et al. 2018). Co-treatment with Neb 
resulted in significant improvement in motor performance in 
addition to reversing Cup-induced body weight loss. These 
results may be related to Neb antioxidant and anti-inflam-
matory effects demonstrated in this study.

The MBP is an essential myelin protein involved in the 
assembly and compaction of myelin sheath layers (Fulton 
et al. 2010). In the present study, Cup decreased MBP gene 
expression in accordance with the results of other studies 
(Chen et al. 2014; Abdel-Maged et al. 2020) as Cup chelates 
copper which is essential in myelin compaction resulting in 
myelin destabilization and degeneration (Frid et al. 2015). 
However, we showed, for the first time, that Neb treatment 
significantly increased MBP expression, as compared to the 
Cup group. This finding is in line with the histopathological 
examination which showed increased LFB staining intensity 
and the percentage area of myelinated fibers. Hence, Neb 
treatment reversed Cup-induced changes in myelin status 
due to its antioxidant, anti-inflammatory and modulatory 
effect on microglia activation shown in this study.

The copper-chelating agent, Cup, chelates the cop-
per of the mitochondrial enzyme cytochrome c oxidase 
hence disturbing the electron transport chain leading to 

mitochondrial dysfunction and excessive generation of 
ROS resulting in the reduction of the antioxidant enzymes 
such as catalase and SOD (Ghaiad et al. 2017). In addi-
tion, it was found that Cup increases MDA levels in the 
corpus callosum leading to cell death (Largani et al. 2019). 
Myelin is characterized by a high lipid-to-protein ratio 
essential for myelin-packed structure (Williams et  al. 
1993) which makes myelin prone to oxidative damage. 
In our study, Cup intoxication-induced oxidative stress as 
shown by elevated MDA levels and decreased catalase and 
SOD enzymatic activities which is consistent with previ-
ous studies (Shiri et al. 2020). Administration of Neb alle-
viated Cup-induced oxidative stress by decreasing MDA 
levels and increasing catalase and SOD enzymatic activi-
ties. These findings are consistent with previous studies 
proving antioxidant properties of Neb (Nade et al. 2013; 
Imbaby et al. 2014; Refaie et al. 2018; El-Sheikh et al. 
2019).

In conclusion, the current study investigated the poten-
tial neuroprotective effect of Neb in the Cup model of 
MS. We demonstrated that oral administration of Neb 
significantly counteracted Cup-induced demyelination, 
motor impairment and weight loss. In addition, Neb alle-
viated oxidative stress, attenuated neuroinflammation and 
microgliosis by modulating the microglial activation state 
and suppressing the NLRP3 inflammasome pathway. It is 
worth noting that, according to the FDA body surface area 
conversion (Food and Drug Administration 2005; Nair 
and Jacob 2016), the tested Neb doses are close to the 
clinically used doses with reported safety and tolerability 
(Fongemie and Felix-Getzik 2015). Taken together, Neb 
might prove beneficial in the management of MS.
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