
Article https://doi.org/10.1038/s41467-022-34947-6

U.S. winter wheat yield loss attributed to
compound hot-dry-windy events

Haidong Zhao 1, Lina Zhang 2, M. B. Kirkham 1, Stephen M. Welch1,
John W. Nielsen-Gammon 3, Guihua Bai4, Jiebo Luo 5, Daniel A. Andresen6,
Charles W. Rice1, Nenghan Wan 1, Romulo P. Lollato 1, Dianfeng Zheng 7,
Prasanna H. Gowda 8 & Xiaomao Lin 1,2

Climate extremes cause significantwinter wheat yield loss and can causemuch
greater impacts than single extremes in isolation when multiple extremes
occur simultaneously. Here we show that compound hot-dry-windy events
(HDW) significantly increased in theU.S. Great Plains from 1982 to 2020. These
HDW events were the most impactful drivers for wheat yield loss, accounting
for a 4% yield reduction per 10 h of HDW during heading to maturity. Current
HDW trends are associated with yield reduction rates of up to 0.09 t ha−1 per
decade and HDW variations are atmospheric-bridged with the Pacific Decadal
Oscillation. We quantify the “yield shock”, which is spatially distributed, with
the losses in severely HDW-affected areas, presumably the same areas affected
by the Dust Bowl of the 1930s. Our findings indicate that compound HDW,
which traditional risk assessments overlooked, have significant implications
for the U.S. winter wheat production and beyond.

Despite continued increase worldwide, wheat yields in some parts of
the world have stagnated and even collapsed1,2, raising serious con-
cerns associated with sustainable production in the face of climate
change3,4. Recent studies have examined the risks of single, extreme
climatic events in causing yield losses5, such as drought (precipitation-
based)6,7, heat waves8, or cold events9. There are also studies that have
examined the effects of multiple extreme climate events on agri-
cultural yields in conjunction, but not as compound events10,11. How-
ever, events that combine adverse climate variables, not all of which
are necessarily extremes, could lead to more significant impacts on
wheat yields than any single type of shock acting alone. The Inter-
governmental Panel on Climate Change (IPCC) Special Report on Cli-
mate Extremes (SREX) in 20123

first defined compound events as “(1)
two or more extreme events occurring simultaneously (spatial) or
successively (temporal), (2) combinations of extreme events with
underlying conditions that amplify the impact of the events, or (3)

combination of events that are not themselves extremes but lead to an
extreme event or impact when combined.” This definition has recently
evolved into “a combination of multiple drivers and/or hazards that
contribute to societal or environmental risk”12–14. With respect to such
compound events, few efforts have evaluated their impacts, and most
of the existing research has focused on changes or distribution shifts
of crop water supply and temperature. The simultaneous combination
of high temperature, low relative humidity, andhighwind events in the
near-surface atmospheric boundary layer [hereafter referred to as hot-
dry-windy events (HDW)] poses a particular climate risk to global
crops11,15,16, especially in the United States Great Plains that experience
irregular, hot, dry, and windy conditions coupled together17–19. For
example, a decadeofdrought occurred in the 1930s in theU.S. and this
decadal drought desiccated much of the agricultural land surface of
theU.S. Great Plains causing oneof themost severe environmental and
social catastrophes in the world, namely the 1930s “Dust Bowl”20. The
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Dust Bowl area is the world’s largest, contiguous land mass with low
rainfall9 and is the U.S. heartland for winter wheat production. In this
agricultural area, the spring-summer HDW events have statistically
increased since the 1950s17,21. However, to our knowledge, the con-
sequence of HDWwith respect to hard winter wheat production in the
U.S. has not yet been assessed.

Previously, the standard practice in determining climate-crop
relationships for winter wheat has been to partition its growth stages
by fall, winter, and spring calendar seasons9,19. The use of such fixed
calendars with subsets of seasons or months, however, might poten-
tially misrepresent the climate-crop association22 due to varied local
phenological timings, stage-specific crop sensitivity to adverse
weather, differences in crop management, and spatially variable
regional climates7. Hence, unlike most studies using annual and/or
seasonal climate extreme indices, we used climate indices directly
derived from the winter wheat life cycle, which we divided into three
phenological stages: planting to jointing (PT-JT), jointing to heading
(JT-HD), and heading tomaturity (HD-MT) based on phenological data
(Supplementary Text 1; Supplementary Figs. 1 and 2; and Supplemen-
tary Table 1). We digitized most of these phenological data from hard
copies of Winter Wheat Performance Tests Reports or scanned ima-
geries across SouthDakota (SD), Nebraska (NE), Colorado (CO),Kansas
(KS), Oklahoma (OK), and Texas (TX) in the U.S. Great Plains. The
subdivision of the growing season based on crop phenology has a
biological meaning as PT-JT represents wheat conditions associated
with crop establishment, tillering, and winter survival; JT-HD encom-
passes a large portion of the critical period for grain number deter-
mination; and HD-MT corresponds to both the later portion of grain
number determination and the majority of the individual grain weight
determination23.

Crop growth and development as well as yield formulation
showed a threshold response to climate variation7 including
temperature5,24,25, atmospheric humidity26, and ambient wind speed27.
We defined hourly HDW events as the hours of co-occurrence of
temperature (T)≥ 32 °C, relative humidity (RH) ≤ 30%, and wind speed
(U) ≥ 7m s−1 at 10m above the ground, as described in previous
studies21,28. Crop water stress can be due to excessive loss of water or
an inadequate soil water supply29. For the former, the main cause is a
rapid transpiration of the crop, often occurring in less than a fewhours
due to atmospheric dryness. Specifically, low atmospheric humidity
creates a demand that pulls water from plants and causes excessive
transpiration which induces a water deficit in the crop that restricts
growth. The latter, however, can result from long-term precipitation
deficits or inadequate soil moisture over a period of several days30. In
recent studies31,32, themain focuswason the relationship between crop
yields and inadequate soilwater supply determined by precipitation or
soil moisture. However, some studies have indicated that atmospheric
dryness, a rapid water demand occurring in less than a few hours,
impacts severely plants even if soil water supply is adequate33 and
concluded that low relative humidity in the atmosphere can be more
important to gauge the ecosystem impacts of dryness34,35. In our study,
the hot-dry-windy (HDW) combination is a transient and compound
extreme event including atmospheric dryness that commonly occurs
within several hours. Hence, we used low relative humidity to define a
dry event.

We focused primarily on the effects of often overlooked hourly
HDW events during HD-MT (HDWHD-MT), i.e., grain-filling periods on
1982–2020 winter wheat yields in the U.S. winter wheat belt that
includes the states of SD,NE, CO, KS, OK, andTX. These states produce
nearly all the high-quality hard red winter wheat in the U.S.9.

Results and discussion
HDW trends
We found that the main, annual HDW-affected areas occurred in
southwest Kansas and the panhandle areas of Oklahoma and Texas in

the U.S. (Fig. 1a red and gray boundaries). These frequent HDW-
affected areas were also verified by independent climate observing
stations (Fig. 1b) (Supplementary Text 2 and 3). More importantly, the
majority of the upward HDWHD-MT trends at county levels were sta-
tistically significant and were located inside the area above the 75th
percentile of annual HDWHD-MT (Fig. 1a). Both the frequent, annual
HDW-affected area and the locationswith the greatest upwardHDWHD-

MT trend from 1982 to 2020 were the same as the Dust Bowl-affected
locales of the 1930s20,36 (Fig. 1b). Such averaged spatial patterns and
increasing trend patterns of HDW were consistent with limited, indi-
vidual station observations from 1982 to 2020 (Supplementary Text 3
and Supplementary Figs. 3 and 4).

Upward trends in all relevant individual extreme climate events
(Supplementary Fig. 5) increased as did the frequencyof occurrence of
HDWHD-MT for most of the counties across all six states (Fig. 1a) (Sup-
plementary Fig. 6). Increased trends of HDWHD-MT were statistically
significant in the most HDW-affected areas at a rate up to 8 h per
decade (Fig. 1a). A partial correlation analysis conducted to examine
the most critical factor modulating the occurrence of HDW, suggests
that high temperature events are a major control variable (Supple-
mentary Fig. 7).

HDW impacts on wheat yields
To assess impacts of HDW and single-variable climate extremes on
wheat yield variability at different phenological stages, a linear mixed-
effects model37 was constructed for climate-crop interaction
mechanics including freezing days (Frez, days), extreme degree days
(EDD, °C days), precipitation (Prcp, mm), and HDW (hours) (Supple-
mentary Fig. 1) in the U.S. winter wheat belt7,38. In the following, stan-
dardized climate indices39 are referred to as ‘standard units’ to explain
their effects on yields (Fig. 2a and Supplementary Table 2). The linear
mixed-effects model was also tested with untransformed climate
indices in their original units (Supplementary Table 3) to directly
interpret impacts using their natural scales (see Methods for model
equations and details). The results showed that 59% of the variation in
yields can be explained by climate indices (r2 = 0.59). HDWHD-MT sig-
nificantly dominated yield variabilitywith a 3.5%yield loss per standard
unitor a 4%yield lossper 10 h (padj < 0.001), followedby EDDJT-HD (2.2%
yield loss per standard unit) (padj < 0.001) (Fig. 2a and Supplementary
Tables 2 and 3). Next, we compared impacts of individual, bivariate,
and trivariate compound events on yields. We found that hot (H) and
compound hot-winds (H&W) did not significantly impact wheat yields,
nor did the windy (W) and compound (D&W) events but yields were
significantly reducedwhen the compound hot-dry (H&D) event occurs
(Fig. 2c). Interaction of high temperature and dry events reduces the
storage capacity of the wheat grain by decreasing the number of cells,
starch granules, the duration of cell division, and dry matter
accumulation40. Importantly, we found that HDW events show the
largest negative influence on wheat yields (Fig. 2c). Dry winds
accompanying high temperature damage plant parts that actively and
photosynthetically supply the head (e.g., the flag leaf in wheat),
resulting in sterile florets and yield loss41,42. The impacts of theHDWon
wheat yields were further assessed during early, middle, and last sub-
stages of the HD-MT stage. We found that the HDWoccurrence during
the middle sub-stage (around the floral stage) of the HD-MT stage
shows the largest influence on yields (Fig. 2d).

The climate-driven yield trends (Fig. 3) indicated that single cli-
mate extreme events provided negative impacts during phenological
stages. HDWHD-MT are associated with a yield loss at a rate of up to
0.09 t ha−1 per decade in counties severely affected by HDWHD-MT

(Fig. 3a), suggesting HDWHD-MT were the most influential drivers
among those studied associated with yield variability (or loss) in
the U.S. winter wheat belt. We further disentangled the total
effects of HDW trends into three sub-stages during HD-MT stage
and found the severe impacts mainly occur during the middle and last
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sub-stages (Fig. 3b). Thiswas generally consistent with the results from
heat shock experiments in a controlled environment43 where it is
concluded that themiddle and last sub-stages causemoredamage and
reduction compared to the early sub-stage of heading to maturity in
wheat yield. These severe HDWHD-MT impacts were spatially located in
the same area as the Dust Bowl that occurred in the 1930s (Fig. 3b).

HDW teleconnections relations
We think the Pacific Decadal Oscillation (PDO)44, as displayed in Fig. 4a
(color shading), is the atmospheric bridge and provides natural dec-
adal changes in the climate system for these severe HDWHD-MT coun-
ties, where they also have high rate of increase during the past 40 years
(Fig. 1a, gray colors). A decadal variationofHDWHD-MT signals showed a
clear opposite pattern correlatedwith the PDO (ρ = −0.65) from 1951 to
2020 (Fig. 4b). The 9-year moving average trends (Fig. 4b) coupled
with PDO variations44,45 suggested that the approximate HDWHD-MT

periodicity was >40 years and the HDWHD-MT anomalies mostly fluc-
tuated from −30 to 30 h during April to June. Such decadal variations
of HDWHD-MT provide important implications for U.S. wheat produc-
tion (Figs. 2–4).

Climate-driven yield shocks
To further examine climate impacts (Fig. 2) using spatial patterns of
yield loss, we studied the anomalous behavior of climate indices dur-
ing yield shock years.Wedefined a “yield shock” year as a year inwhich
the yield changepercentage fromafive-yearmoving average fell below
each county’s 25th percentile from 1982 to 2020 inclusive (Fig. 5a) (see
Methods for details). The yield shocks could accordingly be attributed
to multiple causative climate indices. Specifically, when a yield shock
occurred, we found the main climate indices corresponding with
anomalouswheat yieldswere EDDJT-HD in the central winter wheat belt,
diagonally distributed from the panhandles of OK and TX to north-
eastern KS, and EDDHD-MT in the western areas. Both of these factors

impaired wheat physiological processes critical to reproduction46.
Excessive PrcpHD-MT that occurred in the eastern U.S. Southern Great
Plains47 are associated with yield reductions via soil moisture satura-
tion, waterlogging, disease exposure, and lodging48. Additionally,
drought conditions (lower precipitation) are associated with reduced
yields in thewestern and northernparts of the study domain. Themost
HDW affected areas corresponding to the yield shocks were located in
the western U.S. hard winter wheat belt within the same footprint as
the 1930s Dust Bowl17,20 (Figs. 1 and 5f). These anomalous climate
indices are most likely the main yield shock drivers across the states
and sub-regions, and they support our findings drawn from statistical
modeling (Fig. 2a, b) and provide the spatial sensitivities of winter
wheat yieldswith respect to climate indices including compoundHDW
events (Fig. 5).

In this study, we focused on the impacts of HDW along with other
main climate indices (Frez, EDD, and Prcp) on winter wheat yields. The
mechanism of compound HDW exposure, like other climate com-
pound events11,12,18, is shaped by extreme climate drivers, agronomic
management, and cropping forces, which cause their impacts to be
amplified compared to the impacts from those same events (Fig. 2c)
occurring in a univariate way11,12. Crop vulnerability under HDW
exposure can be complicated depending on the wheat varieties not
only due to varying phenology, but also inherent genetic heat stress
tolerance, water management, and the interaction of other hazards
such as pests and diseases at various climate and agronomic scales.
This is particularly true for winter wheat systems, given the long
growing season that spans three distinct calendar seasons (fall, winter,
and spring). To possibly mitigate HDW impacts on wheat yields, the
observed HDW trends and impacts in the context of climate change
underscore the need to adapt crop management and genetics to
concurrent hot, dry, and windy conditions. The likelihood of the
continuation of HDW in the U.S. Great Plains might be ‘atmospheric-
bridged’ by the PDO variations. Unlike El Niño and La Niña events (an

Fig. 1 | Hot-dry-windy events (HDW) trends (hours per decade) during the
heading-maturity stage (HDWHD-MT) from 1982–2020 and annual average of
HDWHD-MT from climate observing stations. a Annual HDWHD-MT trends for all
winter wheat counties; the black dots indicate that HDW trends were statistically
significant; and the gray and red boundaries indicate HDW areas above the 75th

(>5 h) and 95th (>15 h) percentiles of annual averagedHDWHD-MT hours in our study
domain including South Dakota (SD), Nebraska (NE), Colorado (CO), Kansas (KS),
Oklahoma (OK), and Texas (TX). b Annual averaged HDWHD-MT estimated from
climate observing stations; the shading indicates marginal, severe, and severest
1930s Dust Bowl areas.

Article https://doi.org/10.1038/s41467-022-34947-6

Nature Communications |         (2022) 13:7233 3



inter-annual scale), the PDO temporal evolution is marked by a varia-
bility of ~50–70 year periodicity49. Cropping adaptations might avoid
antagonisms among individual stress processes considering com-
pound HDW events could ramp up in the future, especially when their
occurrence is modulated with locations (climate), wheat varieties
(genetics), and crop management conventions (water and chemical
management by local or regional farmers). Thus, further studies are
needed to better understand the relationship between compound
extreme events and crop yield, including evaluating impacts directly
associatedwith changes of frequency and intensity (i.e., amplitudes) of
HDW occurrence during the grain-filling period in the U.S. wheat belt.
The exploration of the HDW-yield relationship in this study is a first
step towards understanding the impacts of potential compound cli-
mate extreme events on crop yields, because HDW involves the co-
occurrence of three, dependent hazards: unusual heat, drought, and
high winds. Our results showed that compound HDW are associated
with negative impacts at a scale well beyond which any one of them,
being in an extreme state, might have caused on its own.

In summary, the severe HDW-affected areas over the past 39 years
were similar to the areas affected by the Dust Bowl of the 1930s, and
HDW trends during the HD-MT period significantly increased in the
U.S. hard winter wheat belt. HDW during the HD-MT stage was the
most influential climate index affectingwinter wheat yields, andwinter
wheat productivity has apparently been reduced by increased HDW
events during the last 39 years. The statistical significance of climate
extreme indices coincided with the spatial patterns of hard winter
wheat yield shocks in the U.S. winter wheat belt. Our results highlight
the fact that climate change can significantly impact winter wheat

production not only through changes or distribution shifts from
single-variable climate extremes such as heat stress, drought events,
and cold damage but also more importantly through climate change-
related compound climate events, which amplified the impacts on
wheat yields. In the context of climate change adaptation, our study
shows that the combination of hot, dry, and windy conditions is an
under-appreciated risk to food production in the U.S. as well as in the
world’s winter wheat production areas.

Methods
Winter wheat county selection
To ensure robust analysis and modeling, county-level yields were
collected only for those counties with >5000 acres of harvested hard
winter wheat and at least 20 years of available yield data. Accordingly,
yield data from 339 counties across six states, i.e., South Dakota (SD),
Nebraska (NE), Colorado (CO), Kansas (KS), Oklahoma (OK), and Texas
(TX), were used in the study. The county-level hard winter wheat yield
data between 1982 and 2020 were obtained from information pro-
vided by the United States Department of Agriculture’s National
Agricultural Statistics Service (USDA-NASS). All yield data in this study
were directly taken from survey yields, and the irrigation fraction was
<5% on average in our study domain19.

Climate
Hourly climate data of 2-m air temperatures (T, °C) and relative
humidity (RH, %), computed from dew point temperature50, and 10-m
wind speed (U, m s−1) were obtained from the ERA5-Land dataset from
1982 to 2020. The ERA5-Land is a global atmospheric reanalysis

Fig. 2 | Estimated effects of climate indices on winter wheat yields relative to
the average yield. a The yield effects are expressed as a percent of area-weighted
average yield (grand average= 2.4 t ha−1) across our studydomain per standard unit
of climate indices (Supplementary Table 2). One standard unit of climate indices in
their distributions across the study domain is 14.77days for FrezPT-JT, 0.89 days for
FrezJT-HD, 0.35 °C days for EDDJT-HD, 2.81 °C days for EDDHD-MT, and 9.03h for HDW.
Frez stands for freezing; EDD stands for extreme degree days; HDW stands for hot-
dry-windy events. PT-JT is the planting to jointing stage; JT-HD is the jointing to
heading stage; HD-MT is the heading to maturity stage. b The percent change in
yield as a function of the cumulative precipitation (Prcp) by growth stages. The

shaded bands represent the one adjusted standard error of regression in the ori-
ginal units (mm). Histograms show the frequency of county-year accumulated
precipitation for specific phenological stages. The three vertical lines represent the
95th percentile of Prcp for corresponding phenological stages. c Yield effects of
climate indices including individual extreme events (hot, H; dry, D; wind, W),
bivariate events (hot-dry, H&D; hot-windy, H&W; dry-windy, D&W), and trivariate
compound events (hot-dry-windy, HDW). d Yield sensitivity to HDW (bars) and
frequency of county-year HDW (histograms) during early, middle, and last sub-
stages from HD to MT stage. The error bars indicate one clustering standard error
(SE) and asterisks denote the significance (**p ≤0.05); NS, not significant (p > 0.05).
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Fig. 3 | Climate contributions to yield trends from 1982 to 2020. a Yield trends
associated with freezing days (Frez) and extreme degree days (EDD) during the
jointing (JT) toheading (HD) stages, andwith the EDD, precipitation (Prcp), andhot-
dry-windy (HDW) during the heading (HD) to maturity (MT) stages. Box plots

indicate median (middle line), 25th, 75th percentile (box) and 5th and 95th per-
centile (whiskers). Each dot represents individual county-level climate-driven yield
trends. b The spatial distribution of HDW-driven yield trends during early, middle,
and last sub-stages of HD-MT stage and total HD-MT stage.

Fig. 4 | The partial Spearman’s rank correlation coefficient between Pacific
Decadal Oscillation (PDO) and hot-dry-windy (HDW) anomalies (after detren-
ded)duringApril-June from1951 to 2020 inour studydomains includingSouth
Dakota (SD), Nebraska (NE), Colorado (CO), Kansas (KS), Oklahoma (OK), and
Texas (TX). a The spatial correlation coefficient between PDO and HDW anomalies
where the temperature effect was controlled. b Time series of both PDO and HDW

detrended anomalies. The HDW anomaly time series was averaged from the region
with above the 95th percentile of annual averaged HDW (Fig. 1a). Dashed lines
represent the raw anomaly (base period for anomaly: 1981–2010) and solid lines
with shadowed areas represent the smoothed time series. The smoothing was
conducted by a 9-year moving average. ρ refers to correlation coefficient.

Article https://doi.org/10.1038/s41467-022-34947-6

Nature Communications |         (2022) 13:7233 5



product produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF)51. The Centre recently has significantly
improved the accuracy of the data for all types of land surface appli-
cations. Daily precipitation (mm) data were obtained from the
Parameter-elevation Regressions on Independent Slopes Model
(PRISM) data, which was developed based on observing networks and
was commonly used to assess the relationship between precipitation
and crop growth and development52,53. The county-level climate data
were from the nearest grid points to the county centroid.We also used
quality-assured station observations from the Met Office Hadley Cen-
tre’s global sub-daily station dataset (HadISD)54 to verify the spatial
distribution of annualHDWduring theheading tomaturity stage (Fig. 1
and Supplementary Text 2). The climate dataset sources are listed in
Supplementary Table 4.

Phenology
The phenological data included planting dates from 230 experimental
stations and harvesting dates from 186 experimental stations (Sup-
plementary Fig. 2a, d). Therewere three stations in Texasdocumenting
the heading dates (Supplementary Fig. 2c). The maturity dates were
inferred from dates 14 days prior to harvesting dates55 for all county-
years. Wheat jointing and heading dates were estimated using the
accumulated GDD required for winter wheat maturity56. In each
county-year combination, we partitioned the life cycle of winter wheat

into three phenological stages: planting to jointing (PT-JT), jointing to
heading (JT-HD), and heading to maturity (HD-MT) (Supplementary
Tables 1 and 5; Supplementary Text 1; Supplementary Figs. 1 and 2).

Model development
We used a linear mixed-effects model to examine the impacts of cli-
mate indices including HDW (hours), freezing days (Frez, days),
extreme degree days (EDD, °C days), and precipitation (Prcp, mm)
(Supplementary Fig. 1). Themodel with site- and year- fixed effects was
used to estimate the impacts of climate indices on yields:

Y i,t = ðfW i,t ;βenvÞ+ ci + yt + εi,t ð1Þ

where Yi,t is the yield at county i in year t. The f(Wi,t; βenv) represents the
effects of county-specific weather (Wi,t) in either standard units or
original units on yields. Two control predictors are a county-specific
vector (ci) to account for time-invariant spatial heterogeneity and a
time-fixed effect vector (yt) to control yield improvements and/or
changes in crop breeding technologies and innovations in crop
production practices over time (Supplementary Fig. 8). εi,t is the
random error term. The error terms εi,t might be heteroskedastic and
autocorrelated in year and county domains. Therefore, two-way
clustering standard errors (SEs)57 were implemented to consider the
effects of heteroskedastic and autocorrelation in estimating

Fig. 5 | Yield shock distributions and a decomposition of yield shock drivers.
a Spatial distributionof the county-level yield shock.b–fThe concurrent changes in
climate indices including freezing days (Frez, (b)), extreme degree days (EDD, (c))

from the jointing (JT) to heading (HD) stage, as well as including EDD (d), pre-
cipitation (Prcp, (e)), and hot-dry-windy (HDW, (f)) from the heading (HD) to
maturity (MT).
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coefficients in Eq. (1). This adjusted standard error leads to more
conservative adjusted p-values (padj) (Supplementary Tables 2 and 3)
that we used.Models that logarithmically transformed yields were also
tested, and all the results were similar or consistent when using
logarithmyields rather than original yields. Our preferred specification
used yields because thismodel hadmore explanatory power andmore
normally distributed residuals.

To directly compare the yield sensitivity to climate indices, we
standardized the original climate data as “standardized anomaly” (also
known as z-score) by subtracting the mean and then dividing by one
standard deviation. This transformation achieved the standardized
regression coefficients and can be used to explain sensitivities with
respect to individual climate indices (referred to as ‘per standard
unit’)58, and is also widely used to assess the impacts of excessive
rainfall on maize yields59. In addition to the modeling with standar-
dized predictors (Fig. 2a and Supplementary Table 2), climate indices
without any data transformation were also used to fit the model for
straightforward interpretation on their natural scales (Supplementary
Table 3).

Yield sensitivity
The yield sensitivity was reported based on phenological stages (p = 1,
2, and 3 for PT-JT, JT-HD, and HD-MT stages, respectively) (Supple-
mentary Figs. 1 and 2) for each county-year, representing a life cycle of
winter wheat. The weather function is defined as follows:

f
�
Wi,t ;βenv

�
=
X2

p= 1

β1,pFrezi,p,t +
X3

p= 2

β2,pEDDi,p,t

+
X3

p= 1

β3,pPrcpi,p,t + β4,pPrcpi,p,t
2

� �
+β5HDWi,t

ð2Þ

where Frez measured the exposure days where the minimum tem-
peratures were below the thresholds38. EDD referred to the accumu-
lation of degree days over 32 °C60, and Prcpi,p,t and Prcpi,p,t2 accounts
for a quadratic polynomial effect for the cumulative precipitation
during the phenological phase p.HDW is accumulated over theHD-MT
period. FrezHD-MT, EDDPT-JT, HDWPT-JT, andHDWJT-HDwere not included
in the model due to their infrequent occurrence under actual
conditions (<5% of the year-county combination). The thresholds
selected for specificphenological stages aredetailed in Supplementary
Fig. 1. Additionally, we further expanded themodel (Eq. 2) to assess the
impact of HDW occurrence on wheat yields during the specific sub-
stage of heading to maturity. We partitioned the heading-maturity
stage into three sub-stages (i.e., early, middle, and last sub-stages) and
statistically estimated the sub-stage specific HDW influence on yields.

Whether or not the compoundHDWevents amplified the impacts
on wheat yields during the HD-MT stage motivated us to compare
impacts of individual and compound extreme events on wheat yields.
we re-analyzed extreme climate events into individual, bivariate, and
trivariate compound events: (1) only hot [H: T ≥ 32 °C but (RH > 30% &
U< 7m s−1)]; (2) only dry [D: RH ≤ 30% but (T < 32 °C & U< 7m s−1)]; (3)
only high winds [W: U ≥ 7m s−1 but (T < 32 °C & RH> 30%)]; (4) com-
pound hot-dry [H&D: (T ≥ 32 °C & RH ≤ 30%) but U < 7m s−1]; (5) com-
pound hot-winds [H&W; (T≥ 32 °C & U ≥ 7m s−1) but RH > 30%]; (6)
compound dry-winds [D&W; (RH ≤ 30% & U ≥ 7m s−1) but T < 32 °C];
and (7) compound hot-dry-windy [HDW: T ≥ 32 °C & RH ≤ 30% &
U ≥ 7m s−1]. These classified events are treated separately so that we
could evaluate their individual impacts within our statistical model
(Eqs. 1 and 2). The impact of climate indices on yields (Fig. 3) were
quantified61,62 by multiplying the yield sensitivity with respect to cli-
mate indices in original units (Supplementary Table 3) and the trend
values of corresponding climate indices (Supplementary Fig. 9e–h).

Statistical analysis
All trend values in this study were estimated by ordinary least-square
regression, but the statistical significance was tested by Mann-Kendal
analysis throughout our study at a 95% confidence level63 or otherwise
indicated. The Mann-Kendal method can accommodate data that are
not normally distributed, and is insensitive to outliers. Because the
HDW could be viewed as count data, as an alternative, Poisson
regression63 was also used in the HDW trend analysis. The results
showed that the p-values fromPoisson regressionwere consistentwith
the Mann–Kendal method and their trend values were also consistent
with the least-square regression (Supplementary Fig. 6). Finally, linear
correlationmeasures (both the Pearson and Spearmanmethods) were
used to evaluate correlations at the 95% confidence level. We analyzed
temporal-spatial correlation between PDO and HDWwith 70-year data
(1951–2020). To minimize the climate change effects on correlations
between PDO and HDW, we used partial Spearman’s rank correlation
to estimate correlation between the PDO and HDW anomaly by con-
trolling mean temperature (April-June) effects.

Yield shock drivers
Relative yield change percentage (Y’) for county i in year t was calcu-
lated as,

Y 0
i,tð%Þ=

Y i,t � 1
5

Pi = t + 2
i = t�2 Y i

1
5

Pi= t + 2
i= t�2 Y i

× 100 ð3Þ

Here, Y′ is relative to the 5-year running mean yield (Yi), thus
removing the interannual variation19.We thendefined a yield shock year
in each county as a year in which Y’ fell below the 25th percentile over
total yield years. The concurrent changes in climatic indices, calculated
by the difference between the mean during yield shock years and the
mean over the whole period (1982–2020) for each county (Fig. 5b–f),
were considered potential climate drivers for yield shocks.

Robustness checks
To consolidate our analysis, we conducted a series of robustness
checks.We first re-calculatedHDWevents using a total of 36-threshold
combinations: 4 temperatures [30, 31, 32, and 33 °C] × 3 relative
humidity [25, 30 and 35%] × 3 wind speeds [6, 7, and 8m s−1] (Supple-
mentary Fig. 10). Then, we assessed the model (Eqs. 1 and 2) for each
threshold combination. Results showed that the sensitivity of wheat
yield toHDWevents was −0.09 t ha−1 (10 h)−1 on the average of these 36
combinations, ranging from −0.06 to −0.13 t ha−1 (10 h)−1 (Supple-
mentary Fig. 11). The averaged HDW effect is equal to the result we
showed (Fig. 2a). This result indicates that the threshold we used can
represent an averaged-level HDW effect.

To increase the confidence of HDW influence on wheat yields, we
used both the quadratic temperature and the temperature bins’model
(Supplementary Text 4). We found that including temperature bins’
variables during three phenological stages provides an explicit non-
linear turning point of temperature (i.e., 27 °C during PT-JT, 29 °C
during JT-HD, and32 °CduringHD-MTperiods) but it didnot offset the
parameter estimate for HDW impacts in the model (Supplementary
Fig. 12). Specifically, yield sensitivity derived frommodel of Eqs. 1 and 2
is slightly lower than the sensitivities in the quadratic temperature
model and slightly larger than that in the temperature bins’ model
(Supplementary Fig. 12b). Details associated with the robustness
checks section are provided in Supplementary Text 4.

Data availability
The original data (phenological dates and yields of winter wheat) and
underlying data have been deposited through a public repository at
https://doi.org/10.6084/m9.figshare.19224693.v5. Climate data sup-
porting the findings of this study are from publicly available datasets
with specific links provided in the Supplementary Information.
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Code availability
The code used in this study to showmain findings is available through
a public repository at https://doi.org/10.6084/m9.figshare.19222548.
v6. Other codes are available from the corresponding author upon
request.
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