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A single-cell analysis reveals tumor hetero-
geneity and immune environment of acral
melanoma

Chao Zhang 1,7, Hongru Shen2,7, Tielong Yang1,7, Ting Li1, Xinyue Liu1,
Jin Wang1,3, Zhichao Liao1, Junqiang Wei1, Jia Lu1, Haotian Liu 1, Lijie Xiang1,
Yichen Yang2, Meng Yang2, Duan Wang4, Yang Li 2, Ruwei Xing1, Sheng Teng1,
Jun Zhao1, Yun Yang1, Gang Zhao5, Kexin Chen 6 , Xiangchun Li 2 &
Jilong Yang 1

Acral melanoma is a dismal subtype of melanoma occurring in glabrous acral
skin, and has a higher incidence in East Asians. We perform single-cell RNA
sequencing for 63,394 cells obtained from 5 acral and 3 cutaneous melanoma
samples to investigate tumor heterogeneity and immune environment. We
define 5 orthogonal functional cell clusters that are involved in TGF-beta sig-
naling, Type I interferon, Wnt signaling, Cell cycle, and Cholesterol efflux
signaling. Signatures of enriched TGF-beta, Type I interferon, and cholesterol
efflux signaling are significantly associated with good prognosis of melanoma.
Compared with cutaneous melanoma, acral melanoma samples have sig-
nificantly severe immunosuppressive state including depletion of cytotoxic
CD8+ T cells, enrichment of Treg cells, and exhausted CD8+ T cells. PD1 and
TIM-3 have higher expression in the exhaustive CD8+ T cells of acral mela-
noma. Key findings are verified in two independent validation sets. This study
contributes to our better understanding of acral melanoma.

Acral melanoma (AM) is a subtype of melanoma developed in the skin
of the acral such as palm, sole, and subungual areas1,2. Although the
absolute incidence of AM is rare, it accounts for approximately 50% of
melanoma cases in East Asia. AMhas a genetic landscape characterized
by structural rearrangements and amplifications, and without the UV

signatures of cutaneous melanoma (CM)2. For instance, AM has less
common BRAF and RAS mutations and harbor a higher rate of KIT
mutations and amplification. However, a phase II clinical trial showed
that Imatinib was ineffective for AM with KIT mutations3. Recent stu-
dies showed that anti-PD1 treatment is less effective in AM4.While anti-
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PD-1 immunotherapy can increase the objective response rate of
melanoma to 38%5, but for AM it is only 16.6%6. Although the genomic
characterization of AM has been intensively explored in several stu-
dies, it is still not clear why AM does not respond well to
immunotherapy7,8. Therefore, it is needed to further explore the
intrinsic features of AM from other aspects such as the tumor het-
erogeneity and immune environment by other more accurate meth-
ods, such as single-cell sequencing.

The ecological environment of melanoma composes of tumor
cells, immune cells, fibroblast cells, and endothelial cells etc. Single-
cell sequencing provides an unprecedented opportunity to dissecting
tumor environment ofmelanoma. In recent years, a lot of studies were
dedicated to exploring immune environment and tumor hetero-
geneity of melanoma. Tirosh and colleagues reported distinct features
that had been linked to intrinsic resistance to RAF/MEK inhibition9 in
CM via single-cell sequencing. Andrade and colleagues reported two
distinct gene expression programs of natural killer cells that are indi-
cative of significant functional specialization such as cytotoxicity and
chemokine synthesis in melanoma10. Sade-Feldman and colleagues
identified two distinct states of CD8+ T cells associated with patient
tumor regression or progression and a single transcription factor,
TCF7, which could predict positive clinical outcome in an independent
cohort of checkpoint-treated patients11. However, single-cell tran-
scriptomeprofiling of AM remains unavailable. Therefore, we intended
to explore microenvironment of AM.

In this study, we perform single-cell sequencing to systematically
investigate the tumor heterogeneity and immune environment of AM
and CM patients. We find that AM and CM patients are characterized
by expression signatures of TGF-beta signaling, Type I interferon, Wnt
signaling, Cell cycle, and Cholesterol efflux signaling. AM patients are
featured by the severe immunosuppressive state in comparison with
CMpatients. The key findings are verified in two independent datasets.

Results
scRNA-Seqof the ecosystemof acralmelanomabydeep learning
In the discovery set, we obtained 63,394 cells for 5 acral and 3 cuta-
neous tumor specimens from 6 melanoma patients subjected to
scRNA-seq (Supplementary Fig. 1). Detailed clinical and pathological
information were provided in Fig. 1A and Supplementary Table 1. The
pathological diagnosis of all samples has been reconfirmed by
pathologists. There are seven primary and one lymph node metastatic
tumor samples. We collected the pre- and post-treatment samples
from one patient who received immunotherapy (Supplementary
Fig. 1). We performed scRNA-seq for 2 acral and 1 cutaneous tumor
specimens collected from different time period as internal validation
set and collected expression matrices of 9 acral tumor specimens
conducted by Li and colleagues12 as external validation set. Meanwhile,
we performed whole-exome sequencing, immunofluorescence stain-
ing, drug treatment experiment at cellular level and transcriptome
sequencing of 57 melanoma samples (Supplementary Fig. 1).

We identified 50 distinctive cell clusters (Fig. 1B) that belong to
immune cells andnon-immune cells byMiscell13 (seeMethods section).
The immune cells were primarily divided into T cells (CD3D, CD3E), B
cells (MS4A1, CD79A), natural killer cells (FGFBP2, KLRD1), monocytes,
and macrophages (LYZ, CD68, CD14). The non-immune cell clusters
were made up of melanoma cells (MLANA, PMEL, MITF, DCT), endo-
thelial cells (VWF, PECAM1) and fibroblast cells (COL1A1, COL3A1)
(Fig. 1C). Thesemarkers were able to distinguish cell types in the study
conducted and defined by Tirosh and colleagues9 (Supplementary
Fig. 2A–C). We observed that AM and CM were distinguishable by the
composition of these cell clusters, especially the immune cells
(Fig. 1D). We observed that cells from the internal and external vali-
dation sets are well mixed with cells from the discovery set (Supple-
mentary Figs. 3A and 4A with kBET coefficient of 0.846 and 0.827,
respectively.

Distinct functional signatures of the melanoma tumor cells
We grouped melanoma tumor cells into 5 main subgroups based on
Gene Ontology analysis (see Methods section, Fig. 2A, B) and found
that these 5 subgroups were characterized by distinct functional sig-
natures (Signature1–5). Signature 1 was involved in cholesterol trans-
portation and phospholipid efflux. Signature 2 was enriched for Wnt
signaling pathway and oxidative phosphorylation circuits. Signature 3
was featured by enrichment of Cell cycle circuits such as G2M check-
point and E2F targets. Signature 4 was associatedwith TGF-β signaling.
Signature 5 was enriched for interferon response (Fig. 2C). These five
signatures were discovered in the internal and external validation sets
(Supplementary Figs. 3B–E and 4B–E) and exhibited high correlation
with discovery set (Supplementary Figs. 3F and 4F).

Pseudo-temporal transition trajectory of melanoma tumor cells
In pseudo-time analysis, we randomly selected 4980 high-quality
tumor cells to establish a pseudo-temporal ordering reflective of cell
lineage (see Methods section). Our result showed that the aforemen-
tioned 5 tumor cell subgroups were in different developmental states.
Melanoma cells from Subgroups 2 and 3 were mainly at the root of
phylogenetic tree. Thismight indicate that cell fromSubgroups 2 and3
were likely to be primitive tumor cells. Melanoma cells from Sub-
groups 1, 4, and 5 were at the mid-end of development with better
differentiation (Fig. 2D). We also investigated the transcriptional
changes associated with transitional states and observed that mela-
noma cells couldbe categorized into 3 pseudo-temporal phases. Phase
1 was predominated by Subgroups 2 and 3, which is characterized by
upregulated genes expression of UQCRH, PSMA7, LDHA, and NDUFC2
(Fig. 2E). Phase 2, predominated by Subgroup 1, was characterized by
upregulation of APOE, APOC1 and PLTP. Phase 3 was dominated by
Subgroups 4 and 5 upregulated by genes associated with Type I
interferon signaling (IFIT3, IFIT2, IRF1) and heat response (HSPA1A,
HSPA1B; Fig. 2E).

Prognostic significance of melanoma tumor cell functional
signatures
For the 6 patients enrolled for scRNA-seq in this study, they were
divided into two groups C1/C2 according to their signatures and
there is a trend of difference in overall survival between these two
groups (Fig. 2F–H and Supplementary Table 1). We further examined
the association of these signatures with survival in the TMCH-57 and
TCGA SKCM cohort14. We clustered the 57 samples from TMCH-57
cohort into C1/2 groups. C1 is enriched for Signatures 2, 3 and C2 is
enriched for Signatures 1, 4, 5 (Fig. 2I). The overall survival of C2
patients was significantly better than that of C1 (Fig. 2J, Log-rank test,
HR = 0.34, 95% CI: 0.15–0.78, p = 0.0075). Overall survival of C1 ver-
sus C2 in AM remains different (Fig. 2K, Log-rank test, HR = 0.42, 95%
CI: 0.18–1.02, p = 0.05). We divided 452 patients from TCGA skin
cutaneous melanoma cohort into C1/2 groups based on enrichment
score of the aforementioned five functional signatures (see Methods
section). The C2 group was enriched for Signatures 1, 4, and 5, while
the C1 group was enriched for Signatures 2 and 3 (Supplementary
Fig. 5A). The C2 group has better overall survival outcome in com-
parison with C1 group (Supplementary Fig. 5B, Log-rank test, HR =
0.64, 95% CI: 0.46–0.88, p = 0.005).

In addition, we observed that these five expression signatures of
AM were distinct from CM in our single-cell dataset (Supplementary
Fig. 5C). For these 6 patients, 4 patients with AM patients were enri-
ched for Signatures 1, 4, and 5 while the other 2 CM patients were
enriched for Signature 2 and 3 (Supplementary Fig. 5D). And in the
TMCH-57 cohort, almost all CM samples belonged to C1, while C2
basically consisted of AM samples (Supplementary Fig. 5E). The
patients with AM had better overall survival than patients with CM
(Supplementary Fig. 5F, Log-rank test, HR = 2.53, 95% CI: 1.27–5.05,
p =0.007). This speculation was further verified by survival analysis of
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602 melanoma patients collected from Tianjin Cancer Hospital (Sup-
plementary Fig. 5G, Log-rank test, HR = 1.86, 95%CI: 1.47–2.34,
p = 9.18e-08). The survival of AM patients was better than CM in four
clinical stages (Supplementary Fig. 5H–K). Therefore, we suggest that
the difference in survival between AM and CMmay originate from the
different proportions of tumor cells with different functions.

Immune microenvironment of acral melanoma
We divided the 16011 cells from cell clusters that were annotated to be
immune cells (Fig. 1B) into 50 clusters and subsequently grouped them
into 6 cell types (Fig. 3A, see Methods section). The identified cell
clusters were featured by distinct marker genes (Fig. 3B). The T cell
cluster consisted of 5 CD4+ T cell subgroups, 8 CD8+ T cell subgroups
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and Cell cycle T cells (Fig. 3C). The Treg subgroup highly expressed
IL2RA, FOXP3, and IKZF2, co-stimulatory (CD28, TNFRSF9, and ICOS)
and inhibitorymarkers (TIGIT, CTLA4, and LAYN). The CD4-CCR7, CD4-
LEF1, and CD8-CCR7 subgroups were naïve T cells, whichweremarked
with expression of CCR7, LEF1, and SELL genes. The CD4-NR4A1 and
CD8-NR4A1 subgroups were tissue-resident memory T cells that were
featured by high expression of CD69 and NR4A1. The cytotoxic T cell

subgroups consisted of CD8-GZMK and CD8-MT1E that were char-
acterizedbyhigh expressionofGZMK,GZMA,GNLY, andNKG7, and low
expression of genes in involved in immune checkpointmediation such
as HAVCR2(TIM-3), PDCD1(PD-1) and LAG3. CD8-PDCD1 and CD8-LAG3
subgroups were immunosuppressive CD8+ T cells that were marked
with high expression of CTLA4, HAVCR2 (TIM-3), PDCD1 (PD-1), LAG3,
and TIGIT (Fig. 3C).
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We observed that marginal higher infiltration of Tregs in AM as
compared with CM (Fig. 3D, median odds ratio = 7.42, adjusted P-
value = 0.09). In the internal validation set, the proportion of Tregs in
CM3 was significantly lower than in AM5 (Fisher’s exact test, OR =
0.416, adjusted P-value = 1.246e-11) and AM6 (Fisher’s exact test,
OR =0.393, adjusted P-value = 8.802e-12) (Supplementary Fig. 6B).
Multiplex immunofluorescence staining of 8 samples (5 AM and 3 CM)
confirmed that FOXP3+Tregs is indeedmore prevalent inAM than that
inCMpatients (Fig. 3E, F,Wilcoxon rank-sumtest,Median: 0.137 versus
0.056, P-value = 2.337e-06). None of the other T cell subgroups
showed significant differences in AM versus CM. In addition, CD8-
MT1E, which is a CD8+ T cell subgroup, was characterized by high
expression of MT1E and MT2A and enriched in two deceased AM
patients (Supplementary Fig. 5L–N).

CD8+ T cells reside in different transition trajectory states in
acral melanoma versus cutaneous melanoma
We applied Monocle15 to construct the developmental trajectories
of the six aforementioned CD8+ T cell subgroups (see Methods
section). The results showed that the pseudo-time trajectory
initiates with CD8-CCR7 and CD8-NR4A1 subgroups via an inter-
mediate state (i.e. CD8-GZMK and CD8-MT1E subgroups), and
ends in the exhausted state (i.e. CD8-PDCD1 and CD8-LAG3 sub-
groups) (Fig. 4A). Starting with the naive signature, the cytotoxic
signature continued from themiddle of the trajectory towards the
end, and the exhausted signature was predominantly upregulated
at the end (Fig. 4B). Meanwhile, we found that the early and late
states were mainly distributed in AM and lymph node metastases
samples, while the intermediate state was predominated in CM
(Fig. 4C). The transition distributions were different among acral,
cutaneous and lymph node metastasis melanoma (Fig. 4C). As
compared with CM, the exhausted signature score of AM was
significantly higher (See Methods section; Fig. 4D, Wilcoxon rank-
sum test, Median: 1.71 versus 1.39, adjusted P-value = 5.67e-05),
while the cytotoxicity signature and resident scores were sig-
nificantly lower (Fig. 4D, Wilcoxon rank-sum test, Median: 4.09
versus 4.88, adjusted P-value = 6.42e-08). In the internal valida-
tion set, the CD8+ T cells of AM samples exhibited lower cyto-
toxicity as compared with CM (Supplementary Fig. 6C, Wilcoxon
rank-sum test, Median: 2.17 versus 4.30, adjusted P-value = 1.06e-
12). We applied multiplex immunofluorescence staining to further
confirm this result (see Methods section). As shown in Fig. 5A, B,
samples from AM contained more exhausted CD8+ T cells
(marked with PD1 and TIM-3), in contrast to CM samples, which
were rich in cytotoxic CD8+ T cells (marked with GZMB).

These six CD8+ T cell subgroups were categorized into 3
phases based on transcriptional changes along developmental
trajectories (Fig. 4E). The phase 1 was predominated by CD8-CCR7
and CD8-NR4A1 subgroups. Functional analysis showed that phase
1 was involved in positive regulation of lymphocyte activation,
cellular response to heat, and cellular response to tumor necrosis

factor (Fig. 4E). Phase 2 was characterized by the high expression
of classical cytotoxic genes and low expression of T cell exhaustion
markers. Phase 2 was involved in detoxification of copper ion
(associated with MT1E and MT2A), antigen processing and pre-
sentation, and Wnt signaling pathway (Fig. 4E). Phase 3 was char-
acterized by high levels of T cell exhaustion-related markers and
associated with response to decreased oxygen levels (Fig. 4E).
Among acral, cutaneous and lymph node metastasis melanoma,
GNLY and GZMA appear to be up-regulated in Phase 2 but down-
regulated in Phase 3 (Fig. 4F). PRF1 was up-regulated from the
beginning of the phase 2 towards the end of development, and
were more prominent in AM (Fig. 4F). In the phase 3, PD1 and TIM-3
were highly expressed in AM (PD1, AM versus CM, p < 0.01; TIM-3,
AM versus CM, p < 0.01), while CTLA4, TIGIT, and LAG3 were more
prominent in CM (Fig. 4G). The exhausted CD8+ T cells of the acral
melanoma are also characterized by high expression of PD1 and
TIM-3 in internal validation set (Supplementary Fig. 6D–F). Multi-
plex immunofluorescence staining experiments further confirmed
that PD1 and TIM-3 were more expressed in AM, while GZMB was
more prominently expressed in CM (Fig. 5A–C). Compared with
CM, CD8+ T cells of AM were dominated by exhausted state and
decreased cytotoxicity. These also indicated that AM patients are
more likely to develop resistance to immunotherapy. In addition,
the exhausted CD8+ T cells of AM patients were characterized by
high expression of PD1 and TIM-3. Therefore, selective multi-target
immunotherapy may benefit AM patients.

Combined anti-TIM-3 and anti-PD1 treatment increased tumor
cell apoptosis in Acral melanoma
We performed in vitro cell experiments to further explore that com-
bined application of anti-PD1 and anti-TIM-3 may benefit AM patients
(seeMethods section, Supplementary Fig. 1 and Fig. 5F–H).We isolated
tumor cells and CD8+ T cells from fresh tumor tissues of AM and CM
patients, respectively. CD8+ T cells were divided into 4 groups and co-
raised with different immune checkpoint inhibitor drugs (including
anti-PD1, anti-TIM-3, anti-PD1+ anti-TIM-3 and control groups) for
1 hour, and then co-cultured with tumor cells for 24 hours and detec-
ted the apoptotic ratio of tumor cells (Fig. 5F). The results showed that
the apoptosis ratio of AM tumor cells were obviously increased in the
anti-PD1 combinedwith anti-TIM-3groups, and the combination group
showed a superimposed effect. The apoptosis ratio of CM tumor cells
was not obviously increased in the anti-TIM-3 group, and that of
combination groupwas similar to that in the anti-PD1 group (Fig. 5G,H,
gating strategy in Supplementary Fig. 10). Thus, our data suggest a
strategy to overcome the resistance of immunotherapy in AM, such as
the combination of anti-PD1 and anti-TIM-3.

T cell repertoire of acral melanoma
To explore differences in T-cell receptors between the two melanoma
subtypes, we performed immune repertoire sequencing on 6 of the
samples involved in this study. The results showed that the number of

Fig. 2 | Five subgroups of melanoma cells. A t-SNE plot showing the clusters and
subgroups of melanoma cells. 5 subgroups are circled with corresponding colors.
B t-SNE plot showing the cell origins by color, according to the samples (left panel)
or subtypes (AM/CM, right panel). C Heatmap showing the expression score by
ssGESA in the 46 clusters (5 Signatures), including biological functions and names
of related signal pathways. Source data are provided as a Source Data file.
D Pseudotime-ordered analysis of melanoma cells from AM and CM samples.
Melanoma subgroups and samples are labeled by colors. E Heatmap showing the
dynamic changes in gene expression along the pseudotime. FHistogram indicating
the proportion of signatures in melanoma of each analyzed samples. G Heatmap
showing the signature ratio of 8 single-cell samples and clustering into C1 and C2.
Significance was determined using a two-sided, unpaired Wilcoxon rank-sum test
relative to group C1 (n = 4 samples) for group C2 (n = 4 samples, Signature1 P-

value = 0.029, Signature2 P-value = 0.029), **P-value < 0.05. H Kaplan–Meier ana-
lysis showing theoverall survival rate of 6 patients, characterized byC1 (red) andC2
(green). IHeatmap showing the expression scoreof 57TMCH-cohort patient’s bulk-
RNA data by ssGESA in the 5 signatures, including 2 clusters of NMF and 2 subtype
of melanoma, and each signature categories into two groups with median value.
Source data are provided as a Source Data file. J Kaplan-Meier analysis showing the
overall survival rate of 57 TMCH-cohort patients, characterized by C1 (orange) and
C2 (blue). The numbers of patients and the risk classification are indicated in the
figure. Significancewas calculated using the log-rank test. Source data are provided
as a SourceDatafile.KKaplan–Meier analysis showing the overall survival rate of 42
AM inTMCH-57cohort, characterizedbyC1 (orange) andC2 (blue). Thenumbersof
patients and the risk classification are indicated in the figure. Significance was
calculated using the log-rank test. Source data are provided as a Source Data file.
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clonotypes presented a lower level in the AM samples compared to the
CM samples (Supplementary Fig. 7A). We show the clonal proportion
of each sample and the CDR3 length between the two melanoma
subtypes in Supplementary Fig. 7B, C. Clonal diversity of T-cell
receptors in AM also showed lower levels, compared with CM (Sup-
plementary Fig. 7D–F). VDJ gene usage of T cell receptors has been
shown in Supplementary Fig. 7G.

Differences before and after treatment in an immune-resistant
patient with acral melanoma
Wecompared the changes in theproportionof immune cells in the two
AM samples (Acral3-pre and Acral3-post) before and after immu-
notherapy in one patient. It was found that the pre-treatment samples
had more CD8+ T and Cycle T cells, while the post-treatment one was
more prominent in CD4+ T and B cells (Fig. 6A). We also identified the
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differentially expressed genes (DEGs) of CD8+ T cells between these
two samples (Fig. 6B). The pathways of immune functions were upre-
gulated in pre-treatment such as antigen processing and presentation
and NF-kappa B signaling, while those pathways were not enriched in
post-treatment sample (Fig. 6C). In addition, we compared the devel-
opmental trajectories of CD8+ T cells before and after the treatment.
CD8+ T cells in the phase 2 of trajectory, cytotoxic CD8+ T cells, were
higher abundance before the anti-PD1 therapy (Fig. 6D), and genes
(GNLY, GZMB and PRF1) related to cytotoxicity also showed high
expression levels (Fig. 6E and Supplementary Fig. 8A, B). The results of
the multiplex immunofluorescence staining experiment further con-
firmed that the proportion of CD8+ T cells decreased, while the pro-
portion of CD4+ T cells and B cells increased in the Acral3-post sample
(Fig. 6F, G). To validate our investigation about the changes of the
proportion of immune cells during the immunotherapy, two validated
datasets of melanoma patients who had received immunotherapy
were used11,16. In the Sade-Feldman’s cohort11, non-response patients
showed a significant increase in the proportion of CD4+ T cells and a
decrease trend in the proportion of CD8+ T cells (Supplementary
Fig. 9A–C). Ratio of these immune cells in response group is provided
in Supplementary Fig. 9D. In the 42 pairs of Bulk-RNA cohort16,17, which
patients with CM, the results also showed the same trend, the pro-
portion of CD8+ T cells decreased in SD and PD groups (Supplemen-
tary Fig. 9E, F). Ratio of these immune cells in CR and PR group is
provided in Supplementary Fig. 9G, H. The phenomenon indicated
that the cytotoxicity of CD8+ T cells was reduced and the original
immune-related functions were defuncted after receiving anti-PD1
therapy.

We also found that the genomic amplification of chromosome 4
was apparent in melanoma cells of the post-treatment sample but
absent in those of pre-treatment sample (Supplementary Fig. 8C).
There are 44 on chromosome 4 exhibited differential expression in
cells from post-treatment sample as compared with pre-treatment
sample (See Methods, Supplementary Fig. 8D). These 44 genes also
exhibited higher expression in post-treatment sample versus pre-
treatment CM samples in the PD group patients from the study of
clinical trial (NCT01621490) dataset16,17 (Supplementary Fig. 8D).
Meanwhile, 12 of these genes were significantly overexpressed in PD
patients compared to CR and PR patients (Supplementary Fig. 8E).
These 44 genes were enriched in EGFR signaling and cell cycle phase
transition (Supplementary Fig. 8F).

Discussion
We provided a single-cell transcriptome landscape for AM in com-
parison with CM. Our study provided a broad understanding of tumor
microenvironment and cellular composition in AM. We unveiled 5
functional signatures from melanoma cells and linked them to the
prognosis. AM is different from CM in that AM patients are mainly
composed of Signatures 1, 4, and 5, which are related to good prog-
nosis. This finding was exemplified by the better overall survival of AM
patients as comparedwith theCM. Study from Lim and colleagues also
reported that the overall survival of AM was better than that of non-
acralmelanomasbased on a single instiution study in Korea18. Thus, we
suggest that the melanoma tumor cell heterogeneity which is

characterized by the different signatures might has prognostic sig-
nificance, regardless of the tumor types of AM or CM.

In tumor immunity, Treg cells are involved in tumor development
and progressionby inhibiting antitumor immunity19.Treg cells induced
by the PD-1 pathway may also assist in maintaining immune home-
ostasis, keeping the threshold for T-cell activation high enough to
safeguard against autoimmunity20. We found that Treg cells were
higher inAM than those in CM.Higher abundance of Treg is associated
with immunotherapeutic resistance. Thereby, we speculated that the
response rate of AM is lower than CM in the context of immunother-
apy. Recent study showed that theORRof AM (16%)was lower than the
ORR of no-acral CM (31%)4,6. An explanation to this observation is that
infiltration of Treg prevent tumor cells from being killed by immune
cells, and thus develop resistance to immune checkpoint inhibitors21,22.

AM had a high proportion of CD8+ T cells in the initial state and
exhausted state. CD8+ T cells with cytotoxicity signature were rela-
tively few in AM and quickly transformed into an exhausted state of
high expression immunosuppressive marker genes. Our result
revealed that PD1 and TIM-3 were highly expressed in samples of AM,
while LAG3, TIGIT, and CTLA4 displayed lower expression. Those indi-
cated that combination of PDCD1 (PD-1) andHAVCR2 (TIM-3) blockades
might benefit patients with AM. This inference has also been further
confirmed in drug experiments at the cell level in vitro. It is also
expected tomake further progress in animal experiments and random
clinical trials. By contrast, patients with CM were characterized by
exhausted CD8+ T cells that expressed high level of LAG3 and CTLA4.
This implied that the combination of LAG3 and CTLA4 inhibitorsmight
be more appropriate for CM patients.

We observed that Immune infiltration is scarce in patients with
AM, which was also reported in previous study12. However, AM has
better overall survival as compared with CM. This is probably due to
differences of tumor signatures underlying AM and CM. For instance,
AM was enriched for cholesterol metabolism. Upregulation of the
cholesterolmetabolismwas associatedwith favorable survival in lower
grade glioma23.

In the comparative analysis of samples before and after immu-
notherapy, it was showed that the patient’s immune environment had
undergone major changes. The post-treatment immune environment
had more CD4+ T and B cells, while less CD8+ T and Cycle T cells
comparing to the pre-treatment sample. Similar trend was validated in
other datasets with the cutaneous melanoma patients received
immunotherapy. The CD8+ T cells of the samples post-treatment had
lost their original immune function, and the ratio of CD8+ T cells with
cytotoxicity was reduced. These are probably the reasonswhy the anti-
PD1 treatment of this AM patient was not effective.

Interestingly, we found genomic amplification of chromosome 4
in two AM samples and identified 44 differential expression genes
which may be associated with immunotherapy resistance. These 44
genes were enriched in EGFR and cell cycle pathway. A previous study
showed thatEGFR canup-regulate the expression of PD-L1, and causing
immunosuppression. This means that immunotherapy combined with
EGFR pathway related gene (TRIM2, GAB1, SPRY1) inhibitors may
improve the effectiveness of immunotherapy24. In addition, we found
that 12 of these 44 genes exhibited higher expression in the SD and PD

Fig. 3 | Immune cell components in acral and cutaneousmelanoma.A t-SNEplot
showing the clusters of immune cells and cell origins by color, according to
immune cell types (upper panel), samples (lower left panel), and subtypes (AM/CM,
lower right panel). B Dot plot showing percent expression and average expression
of 50 immune cell clusters, including 6 main types of immune cells. The top bars
label the clusters corresponding to specific cell types. C Heatmap indicating the
expression of selected gene sets in T subtypes, including naive, resident, inhibitory,
cytokines, co-stimulatory, transcriptional factors (TF), Treg, MT1E, cell cycle, and
cell type. Source data are provided as a SourceDatafile.DRadarplots depicting the
Odds Ratio between a pair of AM and CM samples. E Representative images of

multiplex immunofluorescence staining in formalin-fixed paraffin-embedded
(FFPE) tissues, indicating CD4+ FOXP3+ cells, in paired AM and CM samples. Scale
bar, 200μm and 50μm. F Boxplots illustrating the fraction of Treg in AM (yellow;
Acral1, Acral2, Acral3-pre, Acral3-Post, Acral4) and CM (blue; Cutaneous1, Cuta-
neous2, Cutaneous1-lym), respectively. Box center lines, bounds of the box, and
whiskers indicate medians, first and third quartiles, and minimum and maximum
values within 1.5×IQR (interquartile range) of the box limits, respectively. Sig-
nificance was determined using a two-sided, unpaired Wilcoxon rank-sum test
relative to AM (n = 25 fields) for CM (n = 15 fields, P-value = 2.337e-06). Source data
are provided as a Source Data file.
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group in comparison with CR+ PR group patients with cutaneous
melanoma. This finding needs to be further verified in the data set of
acral melanoma patients receiving immunotherapy.

The melanoma samples subjected to single-cell sequencing are
from Chinese patients and the sample size is limited. The key findings
in our study was partially verified in the external dataset from mela-
noma patients treated in the US (race and ethnicity information not

provided)9,11,12. However, it remains elusive with respect to the similai-
rities and differences of tumor heterogeneity andmicroenvironment in
melanomas among different races and ethnicities. Recently, Biermann
and colleague dissected tumor ecosystem of treatment-naïve mela-
noma patients with brain metastasis25. It is also worthwhile to integrate
and compare data from our study and Biermann and colleague to
provide better understanding of racial disparities in melanomas.
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In conclusion, this study enables better understanding of the
tumor ecosystem heterogeneity between AM and CM, in terms of
immune and tumor phenotypes. Our results can be a valuable
resource, facilitating a deeper understanding of the mechanisms
associated with AM and assisting in developing more effective ther-
apeutic targets and biomarkers for immunotherapies in AM patients.

Methods
Ethic approval
All clinical specimens in this study were collected with informed con-
sent for research use and were approved by the Tianjin Medical Uni-
versity Cancer Hospital institutional Review Boards in accordancewith
the Declaration of Helsinki, under protocol number bc2022110. Con-
sent to publish relevant clinical information potentially identifying
individuals (e.g., age, gender, overall survival time, clinical stage, etc.)
was obtained. No compensation was provided to the participants in
this study.

Single-cell RNA sample collection and sequencing
We collected 5 acral and 3 cutaneous melanoma samples as discovery
set and 2 acral and 1 cutaneous melanoma samples as internal valida-
tion set. The tissue samples were obtained with patient informed
consent and approval of the Tianjin Medical University Cancer Insti-
tute and Hospital. Fresh tumor samples were surgically removed from
patients and immersed in a complete medium containing 90% Dul-
becco’s modified eagle medium (DMEM; catalog number: 11054001,
GIBCO) and 10% fetal bovine serum (FBS; catalog number: 16140071,
GIBCO), and transported to the lab in a refrigerated container. Suitable
small tissue blockswere cut into pieces (diameter 1–3mm). Single cells
were prepared in the Chromium Single Cell Gene Expression Solution
using the Chromium Single Cell 3′ Gel Bead, Chip, and Library Kits v2
(10× Genomics) as per the manufacturer’s protocol. In all, about
10,000 total cells were loaded to each channel with an average
recovery of 8000 cells. The cells were then partitioned into Gel Beads
in Emulsion in the Chromium instrument, where cell lysis and bar-
coded reverse transcription of mRNA occurred, followed by amplifi-
cation, shearing, and 3′adapter and sample index attachment. Libraries
were sequenced on Hiseq Xten at BGI, Beijing, China. On average,
120Gb of raw data were generated for each sample.

Single-cell sequencing analysis
Raw base call (BCL) files were analyzed using CellRanger (v2.1.1). The
“mkfastq” commandwas used to generate FASTQ files and the “count”
command was used to generate raw gene-barcodematrices aligned to
the 10XGenomicsGRCh38 Ensembl build 84genome (v1.2.0). Thedata
from all 7 samples were combined in R (v3.6.2) using the Read10X
function from the Seurat package (v3.1.5), and an aggregate gene
expressionmatrix and Seurat object (63,394 samples and 35124 genes)
were generated. The gene expression matrix was normalized by log2
transformation and scaled each gene by subtracting its mean and
dividingwith standarddeviation.Weextracted feature representations
of single-cell using Miscell13. The gene expression signatures of single

cells were captured by deep neural network. In this study, Momentum
Contrast algorithm26,27 was used to learn similar representation of
single-cell expression by narrowing the gap between the augmented
and corresponding original gene expression profiles, which consisted
of a deep neural network of 63 layers with dense connection as feature
encoder and multi-layer perceptron (MLP) as project head to map
features learned by the encoder network to space where contrastive
learning is applied. Data augmentation was used to increase data
diversity and mimic data variation, and the operations included ran-
domshufflingor zeroingout 20%of gene expression values. Stochastic
gradient descent algorithm28 was used to train themodel in parallel on
two graphic processing units for 299 epochs with an initial learning
rate of 0.24,weight decayof 0.0001 andbatch size of 256. The learning
rate was decayed by 0.1 at epoch 150 and 250. The model was devel-
oped with PyTorch package (v 2.3.1). The K-nearest neighbor graph
was built on gene expression signatures of single-cells using Scanpy29

(v2.1). The gene expression signatures of single-cell were embedded
into two dimensions by t-distributed stochastic neighbor embedding30

(t-SNE). The neighbor graph was used to find clusters by Leiden
algorithm31. and a n-neighbors parameter set to “k = 5”. The cluster-
specific marker genes were identified by MAST algorithm32 using
Seurat “FindAllMarkers” function. The resulting single-cell clusters
were visualized in t-SNE representations and annotated to biological
cell types by canonical marker genes (Fig. 1C).

RNA-sequencing data analysis
RNA sequencing was performed using frozen tissue extracts of 57
melanoma patients. RNA was extracted following the Trizol reagent
(Invitrogen™, catalog number: 15596026) manual. mRNA library was
constructed using MGIEasy mRNA library kit following the manu-
facturer’s instructions. Libraries were sequenced on an DNBSEQ-G400
sequencer for PE150 cycles. Reads were aligned to a human reference
genome (GRCh38) using subread aligner33. The RNA read counts were
normalized using the edgeR R package. Expression of each RNA was
transformed to TPM. Gene set enrichment analysis was performed
using the GSVA package (v1.34.0) and plots with pheatmap package
(v1.0.12) in R.

Whole exome sequencing
We performed whole-exome sequencing (WES) for frozen tissues
obtained from 8 patients with melanoma. We dissolved the frozen
tissue (~10–12 8μm sections) in PBS in order to remove OCT. Genomic
DNA of the tissue was subjected to DNeasy Blood and Tissue Kit
(QIAGEN, Hilden, Germany). We used theWES capture kit of Agilent V6
(60 Mbp) and performed pair-end sequencing of 100bp for ×100
coverage on the BGISEQ-500 instrument (BGI Group, Shenzhen, China).

TCR sequencing and analysis
We amplified immune repertoires of TCRs by amplicon-rescued mul-
tiplex nested PCR with primers targeting V- and C-genes (iRepertoire,
Huntsville, AL, USA). Firstly, 1 µg of RNA was placed in a reaction with
HTIvc (TCR) primers for different barcodes (iRepertoire) and reagents

Fig. 4 | Analysis of CD8+ T cell transition states in acral melanoma and cuta-
neous melanoma samples. A Pseudotime-ordered analysis of CD8+ T cells from
AM and CM samples. T cell subtypes are labeled by colors. B 2D pseudotime plot
showing the dynamics of naïve (upper panel), cytotoxic (middle panel), or
exhausted signals (lower panel) in CD8+ T cells, from AM and CM samples. Source
data are provided as a Source Data file. C 2D graph of the pseudotime-ordered
CD8+ T cells, from AM (left panel), CM (middle panel), and Lym (right panel)
samples. The cell density distribution, by state, is shown at the top of the figure.
Source data are provided as a SourceData file.DViolin plot showing the expression
of co-stimulatory, cytotoxic, resident, and inhibitory signature genes in CD8+
T cells in AM (yellow; Acral1, Acral2, Acral3-pre, Acral4) and CM (blue; Cutaneous1,
Cutaneous2) samples. Box center lines, bounds of the box, and whiskers indicate

medians, first and third quartiles, and minimum and maximum values within
1.5×IQR (interquartile range) of the box limits, respectively. Significance was
determined using a two-sided, unpaired Wilcoxon rank-sum test relative to AM
(n = 2422 cells) for CM (n = 400 cells, adjusted P-value were Exhausted, 5.67e-05,
Cytotoxicity, 6.42e-08, Co-stimulatory, 0.06, Resident, 4.99e-10). Source data are
provided as a Source Data file. E Heatmap showing the dynamic changes in gene
expression along the pseudotime (lower panel). The distribution of CD8 subtypes
during the transition (divided into 3 phases), alongwith the pseudo-time. Subtypes
are labeled by colors (upper panel). F, G Two-dimensional plots showing the
dynamic expressionCytokines genes (F) and checkpoint genes (G) during the T cell
transitions along the pseudo-time. Error bands show local polynomial regression
and the 95% confidence interval, respectively.
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from theOneStepRT-PCR kit (Qiagen). Secondly, 2 µl of PCR1 products
were placed in a reaction containing Illumina common primers (iRe-
pertoire) and reagents from Multiplex Master Mix kit (Qiagen). The
PCR2 products were purified using QIAquick gel extraction Kit (Qia-
gen). Sequencing was conducted on the BGISEQ-500 instrument (BGI
Group, Shenzhen, China). Alignment onto the germline V-, D-, and
J-genes was performed with Smith–Waterman algorithm. Identity was

called according to IMGT/GENE-DB34. R package“immunarch”(v 0.6.7)
was used to analyze the data.

Composition of acral melanoma
The AM tumor cell subgroups were clustered based the biological
function, and the shared genes of these clusters were identified as the
marker genes of melanoma tumor function modules. Single-sample
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Gene Set Enrichment Analysis (ssGSEA)35 was used to calculate sepa-
rate enrichment score of function module for each melanoma sample
in TCGA14. The melanoma cohort was clustered subgroup using Non-
negative Matrix Factorization (NMF) algorithm36.

Cell developmental trajectory
The cell lineage trajectory of CD8+ Twas inferred by usingMonocle237.
We excluded CD8-HOPX and CD8-EOMES cells according to their TCR
identity due to their distinct TCRs and development processes relative
to other CD8+ cells. Firstly, we used the “relative2abs” function in
Monocle2 to convert TPM into normalized mRNA counts and created
an object with parameter “expressionFamily = negbinomial.size” fol-
lowing the Monocle2 tutorial. We used the “differentialGeneTest”
function to derive DEG from each cluster and genes with a q-value < 1e-
5 were used to order the cells in pseudotime analysis. After the cell
trajectories were constructed, differentially expressed genes along the
pseudotime were detected using the “differentialGeneTest” function.

Pathway analysis and functional annotation
We used Gene Ontology enrichment analysis and Single-sample Gene
Set Enrichment Analysis (ssGSEA) for functional analysis. Gene sig-
natures scores of samples were evaluated using R package GSVA. GO
and KEGG analyses were performed by applying the “clusterProfiler”
package.

Definition of cell scores and signatures
We used the average expression (measured by log2 (CPM+ 1) of 5
resident markers (RUNX3, NR4A1, CD69, CXCR6, and NR4A3), 7 cyto-
toxicity associated genes (PRF1, IFNG,GNLY,NKG7,GZMB,GZMA,CST7,
and TNFSF10), 5 exhausted markers (CTLA4, HAVCR2 /TIM-3, LAG3,
PDCD1/PD-1, and TIGIT) and 6 costimulatory molecular genes (ICOS,
CD226, TNFRSF14, TNFRSF25, TNFRSF9, and CD28) to define the resi-
dent, cytotoxic, exhausted, and costimulatory score for CD8+ T cells.
We used non-negative matrix factorization algorithm implemented in
R package NMF (v 0.23.0) to extract the characteristics of samples
based on the identified genemodule scores. The features ofmalignant
cells were definedwith themean log2 (CPM+ 1) normalized expression
of 5 modules signature genes.

Survival analysis
Kaplan-Meier survival was used to analyze the prognosis of between
groups by R package survival (v 3.1.12). We used the log-rank test to
calculate differences of survival curves.

Identification of differentially expressed genes
We considered CD8+ T cells from different states of Acral3 sample to
identify the DEGs between before and after the PD-1 treatment. The
“limma” package was used to identify DEGs with a P value < 0.05 and
logFC >0.5.

Multiplex immunofluorescence staining
For fluorescent multiplex immunohistochemistry (mIHC) analysis, a
five-color fluorescence kit based on tyramide signal amplification
(TSA) were used following the manufacturer’s protocol (abs50013,
AbsinBioscience, China)38. In brief, tissue sectionswere incubatedwith

primary antibodies as described in the above IHC protocol in two or
three sequential cycles before application of corresponding secondary
antibodies (PerkinElmer) and TSA solution for AlexaFluor488, Alexa-
Fluor555, AlexaFluor594 and AlexaFluor647, respectively. The follow-
ing primary antibodies were used: anti-CD8A (1:200, CST, catalog
number: 85336, Clone numbers: D8A8Y), anti-CD4 (1:200, Abcam,
catalog number:ab133616, Clone numbers: EPR6855), anti-CD20
(1:200, Abcam, catalog number: ab78237, Clone numbers: EP459Y),
anti-FOXP3 (1:200, CST, catalog number: 98377, Clone numbers:
D2W8E™), anti-TIM3 (1:200, Abcam, catalog number: ab241332, Clone
numbers: EPR22241), anti-PD1 (1:200, CST, catalog number: 86163,
Clone numbers: D4W2J), anti-GZMB (1:200, Abcam, catalog number:
ab255598, Clone numbers: EPR22645-206), anti-CCR7(1:200, Abcam,
catalog number: ab32527, Clone numbers: Y59). After the last TSA
cycle, DAPI was counterstained at a dilution of 1:1000 for 10min.
Fluorescent images (300ms exposure time) were obtained with an
AxioImager.Z2 microscope (Carl Zeiss, Germany).

Sorting CD8+ T cells and melanoma tumor cells
Fresh melanoma tissues were obtained from AM and CM patients. The
tissues were minced, and trypsin was added, followed by shaking for 2h
and filtering through a 40μm mesh to obtain a single-cell suspension.
Human CD8+ immunomagnetic bead solution (Miltenyi Biotec) was
added to single-cell suspension. The samples were incubated for 15min
at 4 °C and washed once with buffer, and the suspension cells were
passed through the MS column in the magnetic field. Then, the column
was removed from themagnet and 1mL of wash buffer was added to the
top of the column and the plunger (in the same package as the column)
was immediately used to force the buffer through the column. The col-
lected cells were used for the subsequent experiments, as CD8+ T cells.

Human tumor cell bead solution (Miltenyi Biotec) was added to
single-cell suspension. The samples were incubated for 15min at 4 °C
and washed once with buffer, and the suspension cells were passed
through the MS column in the magnetic field. The collected cells were
used for the subsequent experiments, as melanoma tumor cells.

Drug incubation of CD8+ T
We divided CD8+ T cells into four groups, including no drug added,
10 µg/mL PD1 inhibitor added, 10 µg/mL TIM-3 inhibitor added, 10 µg/
mLTIM3 inhibitor and 10 µg/mLPD1 inhibitor added, and incubated for
1 Hours.

Co-culture of CD8+ T cells with melanoma tumor cells
To investigate whether CD8+ T cells can more effectively kill tumor
cells after receiving immune checkpoint inhibitor treatment. Four
groups of 105 CD8+ T cells and tumor cells at a ratio of 5:1 were sup-
plemented with 10% foetal bovine serum (FBS) (containing 60mg/L
penicillin and 100mg/L streptomycin) and co‐cultured at 37 °C in a 5%
CO2 incubator for 24 hours.The apoptosis of melanoma tumor cells
was assessed by using an Apoptosis Kit (BD Biosciences).

Detection of apoptosis by Flow cytometry analysis
An apoptosis assay (FITC Annexin V Apoptosis Detection Kit I, BD
Biosciences)wasused todetect apoptosis ofmelanoma tumor cells co‐
cultured with CD8+ T cells. The cells were washed twice with cold PBS

Fig. 5 | Validation experiment of multiplex immunofluorescence staining and
drug treatment at cellular level. A, B Representative images of Multiplex
immunofluorescence staining in Formalin-fixed paraffin-embedded (FFPE) tissues,
indicating CD8A+ PD1+, CD8A+ TIM-3+, and CD8A+ GZMB+ cells, in paired AM (A)
and CM (B) samples. Scale bar, 200μm and 50μm. C–E Boxplots illustrating the
fraction of PD1+ (C), TIM-3+ (D), and GZMB+ (E) CD8+ T cells in AM (yellow; Acral1,
Acral2, Acral3-pre, Acral3-Post, Acral4) and CM (blue; Cutaneous1, Cutaneous2,
Cutaneous1-lym), respectively. Box center lines, bounds of the box, and whiskers
indicate medians, first and third quartiles, and minimum and maximum values

within 1.5×IQR (interquartile range) of the box limits, respectively. Significance was
determined using a two-sided, unpaired Wilcoxon rank-sum test relative to AM
(n = 25 fields) for CM (n = 15 fields, P-value = 2.204e-07, 0.0001293, 5.966e-10,
respectively). Source data are provided as a Source Data file. F Flow chart of drug
treatment experiment at cellular level. G, H AM cells (G) and CM cells (H) were
untreated, treated with anti-PD1, treated with anti-TIM-3, treated with anti-PD1 and
anti-TIM-3 for 24h and then labeled with Annexin V-FITC and PI-PE. The bar-plots
represent the ratio of early apoptosis (Q3) and total apoptosis (Q2 +Q3) across for
each treatment group.
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andwere resuspended in 1× binding buffer at a concentration of 1 × 106

cells/ml. Then, 100 µL of the solution (1 × 105 cells) was transferred to a
5‐mL culture tube, and 5 µL of FITC Annexin V and 5 µL of PI were
added. The cells were gently vortexed and incubated for 15minutes at
room temperature (25 °C) in the dark. Finally, 400 µL of 1× binding
buffer was added to each tube. Analysis was performed by flow cyto-
metry (Beckman Coulter).

CNV analysis of single-cell
The large-scale chromosomal copy number variations of melanoma
tumor cellswere identifiedusing inferCNVR routine (version 1.5.1). The
chromosomal region in genetic profiles was inferred based on the
average expression of single-cells. A random sample of 1000 tumor
cells were taken from each sample, and stromal cells (1938 endothelial
cells and 1624 fibrocytes) were taken into control group. Other
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parameters were set as default. The 44 differentially expressed genes
were screened by comparing the expression of all genes on chromo-
some4 in the samples before and after immunotherapy treatment. The
comparisons of patients with different immunotherapy RECIST out-
come were performed using the gene expression variation between
pretherapy and post-treatment.

Statistics analysis
Cell distribution comparisons between AM and CM were performed
using Wilcoxon rank-sum test or Fisher’s exact test. All statistical ana-
lyses and presentation were performed using R. Statistical tests used in
figures were shown in figure legends and statistical significance was set
at p<0.05 or adjusted p<0.1. Two-sided test was used if not specified.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw DNA sequencing, TCR sequencing and single-cell RNA
sequencing data generated in this study have been deposited in the
Sequence Read Archive (SRA) database under accession code
PRJNA862451. The raw bulk RNA sequencing data generated in this
study have been deposited in the Gene Expression Omnibus (GEO)
database under accession code GSE215121. The processed single-cell/
bulk RNA data are available at the GEO database under accession code
GSE215121. The remaining data generated in this study are provided in
the Supplementary Information or Source Data file. Source data are
provided with this paper. The publicly data used in this study are
available in the GEO database under accession code GSE72056,
GSE189889, and GSE120575 Source data are provided with this paper.

Code availability
The source code of Miscell is available at https://github.com/
lixiangchun/Miscell.
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