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Abstract

Signal transducer and activator of transcription 5 (STAT5) promotes cell survival and instigates 

breast tumor formation, and in the normal breast it also drives alveolar differentiation and 

lactogenesis. However, whether STAT5 drives a differentiated phenotype in breast tumorigenesis 

and therefore impacts cancer spread and metastasis is unclear. We found in two genetically 

engineered mouse models of breast cancer that constitutively activated Stat5a (Stat5aca) caused 

precancerous mammary epithelial cells to become lactogenic and evolve into tumors with 

diminished potential to metastasize. We also showed that STAT5aca reduced the migratory 

and invasive ability of human breast cancer cell lines in vitro. Furthermore, we demonstrated 

that STAT5aca overexpression in human breast cancer cells lowered their metastatic burden in 
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xenografted mice. Moreover, RPPA, Western blotting, and studies of ChIPseq data identified 

several EMT drivers regulated by STAT5. In addition, bioinformatic studies detected a correlation 

between STAT5 activity and better prognosis of breast cancer patients. Together, we conclude 

that STAT5 activation during mammary tumorigenesis specifies a tumor phenotype of lactogenic 

differentiation, suppresses EMT, and diminishes potential for subsequent metastasis.
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INTRODUCTION

The STAT family of transcriptional factors comprises STAT1, 2, 3, 4, 5A, 5B, and 6 [1]. 

STAT5a is the principal STAT family member expressed in the mammary glands at all 

stages of mammary development except during involution [2]. It is usually phosphorylated 

and activated by Janus kinase 2 (JAK2) following prolactin and other cytokine hormones 

binding to their cognate receptors. Phosphorylated STAT5a proteins then homodimerize (or 

sometimes heterodimerize with another family member), translocate to the nucleus, and 

transactivate genes that regulate lobuloalveolar formation and milk production as well as cell 

survival, as we and others have reported [3–6].

Although not often mutated, STAT5 (referring to STAT5a/b as most commercial antibodies 

cannot distinguish these two highly homologous proteins) is known to be activated in 

breast atypia [7], ductal carcinoma in situ (DCIS) [8], and between 20 and 70% of human 

breast cancers [9–11]. pSTAT5 is found primarily in estrogen receptor α positive (ERα+) 

mammary tumors, but also in a subset of HER2+ tumors as well as triple-negative breast 

cancer (TNBC) [9–11]. The oncogenic potential of this lactogenic protein has been tested in 

animal models. STAT5a activation alone does not generally transform mammary cells [6, 8] 

although there are a few reports suggesting that transgenic expression of activated or even 

wild-type Stat5a in mice may lead to mammary tumors in a small proportion of the mice 

with a long latency [12–14]. On the other hand, constitutively activated Stat5a (Stat5aca) 

can potently accelerate mammary tumorigenesis initiated by an oncogene such as ErbB2 
(HER2), likely via transactivation of anti-apoptosis genes that lower the apoptosis anticancer 

barrier often activated during tumor initiation [8].

While STAT5 can instigate breast tumor formation, STAT5 and nuclear STAT5 were 

detected less in high-grade breast cancer than in low-grade tumors, less in invasive 

carcinomas than in the prognostically more favorable secretory carcinoma subtype, and 

less in metastases than in primary tumors [9–11, 15, 16]. Higher STAT5 or pSTAT5 levels 

are also correlated with better patient overall and disease-specific survivals [10, 11, 15, 

16]. These association studies suggest that STAT5 may be a favorable prognostic factor. 

In accordance, a few in vitro studies also showed that activation of PRL-JAK2-STAT5 

signaling in cultured breast tumor cells can induce alveolar differentiation and suppress 

migration, invasion, and epithelial to mesenchymal transition (EMT) [17–19], but in vivo 
evidence confirming these observations is lacking. On the contrary, in two experimental 
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metastasis mouse models, STAT5 was found to stimulate triple-negative breast cancer bone 

metastasis [20] and prostate cancer lung metastasis [21]. Furthermore, in clinical studies, 

high STAT5 activity was associated with advanced stage and poor outcome of prostate [22] 

and hepatocellular carcinoma [23]. Besides, STAT5 has been reported to promote EMT in 

several cancers of non-breast origin [21, 23–26]. Nonetheless, it remains unclear whether 

STAT5 activation drives alveolar and lactogenic differentiation during breast tumorigenesis 

and whether STAT5 affects metastasis of breast cancer in vivo.

In this study, we investigated the causal roles of STAT5a (the predominant isoform of 

STAT5) in alveolar and lactogenic differentiation during mammary tumorigenesis and 

progression in two different mouse models of breast cancer and in human breast cells 

cultured in vitro and as xenografts. We also studied potential mechanisms and their 

implications in breast cancer patients. These studies have uncovered a dichotomous function 

of STAT5 in breast tumorigenesis and metastasis.

RESULTS AND DISCUSSION

STAT5a activation causes alveolar differentiation of precancerous mammary lesions 
initiated by ErbB2

We previously reported that mammary intraductal injection of a Rous Sarcoma virus-derived 

vector (RCAS) can be used to deliver genes into the mouse mammary epithelia made 

susceptible to infection by transgenic expression of tva (encoding the receptor for RCAS) 

using the MMTV LTR promoter [27]. RCAS-mediated expression of a gene encoding a 

constitutively activated version of Stat5a (Stat5aca) drove alveolar differentiation and milk 

production in the absence of a pregnancy but rarely, if ever, induced precancerous lesions or 

tumors after many months [6, 8]. On the other hand, two weeks after intraductal injection 

of both RCAS-FLAG-Stat5aca and RCAS-HA-ErbB2ca, precancerous lesions (defined as at 

least 3 layers of atypical cells growing into lumen [8]) were detectable by H&E staining 

(Fig. S1A) and 31% of these lesions were positive for both HA and FLAG (Fig. S1B, S1C). 

To test whether STAT5a affects the differentiation status of precancerous cells, we stained 

these lesions for two differentiation markers associated with milk production, β-casein and 

perilipin-2 (PLIN2, or adipophilin). We found abundant amounts of β-casein and PLIN2 

in lesions positive for both ErbB2ca and STAT5aca, but much less expression in lesions 

positive for ErbB2ca only (Fig. 1A, S1D). These data demonstrate that STAT5a activation 

in precancerous lesions specifies an alveolar and lactogenic fate to the cells, similar to the 

impact of the STAT5 activation in the normal epithelial cells [6, 28].

STAT5 activation leads to a functionally differentiated tumor phenotype

We previously reported that STAT5a activation accelerated tumorigenesis initiated by 

ErbB2ca based on the observation that MMTV-tva female mice co-injected with RCAS-HA-

ErbB2ca and RCAS-FLAG-Stat5aca developed mammary tumors significantly faster than 

age-matched MMTV-tva mice injected with RCAS-ErbB2ca alone [8]. These data predicted 

that the small proportion of co-infected cells (approximately 8% [8]) were much more 

competitive in tumorigenesis than cells expressing ErbB2ca only. Immunohistochemistry 

for HA and FLAG on the tumors from the co-infected mice detected double positivity 
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in 7 of 13 (53.8%) tumors while the remaining 6 tumors (46.2%) expressed ErbB2ca 

only (Fig. S1E, S1F). And 5 of the 7 double-positive tumors exhibited near uniform 

positivity for FLAG, compared to moderate proportion scores in precancerous lesions (Fig. 

S1G). As expected, Kaplan-Meier tumor-free survival curves of mice bearing ErbB2ca+/

STAT5aca+ tumors separated well from those of mice bearing ErbB2ca+/STAT5aca- tumors, 

which became inseparable from that of age-matched mice infected by RCAS-ErbB2ca 

alone (Fig. S2A). In accordance with our previous report of STAT5 primarily promoting 

tumorigenesis via suppressing the apoptosis anticancer barrier (rather than proliferation) [8], 

ErbB2ca+/STAT5aca+ tumors produced increased levels of BCL2 and BCL-xL (BCL2L1) 

(Fig. S2B, S2C), pro-survival proteins reported to be STAT5 targets [29, 30] although 

this transcriptional control has been controversial [31]. We next examined whether STAT5 

activation also specifies a differentiated mammary tumor phenotype. Immunohistochemistry 

confirmed robust expression of both β-casein and PLIN2 in all 5 STAT5aca+ tumors 

examined while 3 of 5 STAT5aca- tumors didn’t show any β-casein expression, and 4 

of 5 exhibited low levels of PLIN2 (Fig. 1A). Together, while confirming our previous 

observation that STAT5 activation accelerates ErbB2-initiated tumorigenesis likely by 

suppressing the anticancer barrier, these data show that STAT5 induces a functionally 

differentiated phenotype of tumors initiated by ErbB2 activation.

Activation of STAT5a during tumor initiation restricts the metastatic potential of HER2+ 
mammary tumors in mice

To test whether STAT5a-caused functional differentiation in tumor cells affects their 

metastatic potential, we compared the tumor burden in lungs by H&E. Figure 1B shows 

representative images of H&E staining of lungs at euthanasia when the primary ErbB2ca+ 

tumors with or without STAT5aca reached 1.5 cm in diameter. Twelve of 30 (40 %) mice 

bearing ErbB2ca-only mammary tumors harbored nests of tumor cells in the lungs. In 

contrast, only 1 of 16 (6.25%) mice bearing ErbB2ca+/STAT5aca+ tumors presented tumor 

nests in the lungs (Fig. 1C). This 6-fold decrease of lung metastases suggests that the 

activation of STAT5 restricts the metastatic potential of ErbB2-initiated mammary tumors.

STAT5a overexpression leads to a more functionally differentiated tumor phenotype of ER+ 
breast cancer initiated by PIK3CAH1047R

To test whether this STAT5 impact on tumor cell differentiation and metastasis is broadly 

applicable among a wide range of breast tumors, we tested the effects of STAT5 activation 

in mammary tumors initiated by PIK3CA, the proto-oncogene mostly commonly mutated 

in human breast cancer, especially in the ER+ subtype [32]. PIK3CA is too large to 

be expressed using RCAS, but we have reported that intraductal injection of lentivirus 

(FUCGW) carrying PIK3CAH1047R, leads to ER+ mammary tumors in mice [33], while 

others have reported similar tumors using transgenic expression of mutated PIK3CA [34, 

35]. Therefore, we intraductally injected FUCGW-PIK3CAH1047R alone or together with 

FUW-FLAG-Stat5aca into the mammary glands of FVB female mice, and compared the 

features of the resulting mammary tumors by H&E staining and immunostaining. All 

8 tumors initiated by PIK3CAH1047R alone were well differentiated ductal carcinoma 

with extensive glandular formation, in accordance with our previous report of tumors 

induced by FUCGW-PIK3CAH1047R [33]. All 8 tumors in mice co-injected with both 
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viruses produced both PIK3CAH1047R and STAT5aca, highlighting their collaborative roles 

in mammary tumorigenesis (Fig. 2). Besides, all STAT5aca+ tumors exhibited advanced 

pathological features including high-grade nuclear pleomorphism, high mitotic rates (>15 

mitoses per 10 HPF’s), extensive areas of necrosis, and some metaplastic areas of 

squamous differentiation (Fig. 2). (This increase in aggressive pathological features was not 

observed in comparing tumors initiated by ErbB2ca vs. ErbB2ca/Stat5aca.) However, these 

PIK3CAH1047R/STAT5aca tumors remained ERα+ (Fig. 2). Consistent with our observation 

in tumors initiated by both ErbB2ca and Stat5aca, all 8 PIK3CAH1047R/STAT5aca tumors 

exhibited robust expression of both β-casein and PLIN2, indicative of elevated lactogenic 

differentiation, while all 6 PIK3CAH1047R only tumors showed negligible β-casein and 

PLIN2 expression (Fig. 2). However, we could not assess the impact of STAT5aca on 

metastasis in this model, since mice bearing PIK3CAH1047R-only tumors or PIK3CAH1047R/

STAT5aca tumors did not develop detectable lung metastases at the ethnical end point 

of primary tumors reaching 2.0 cm in diameter. Together, these data suggest that STAT5 

activation causes a more functionally differentiated phenotype in mammary tumors initiated 

by PIK3CA activation although the tumors with higher STAT5 activity appear more 

aggressive histopathologically.

Activation of STAT5a restricts the metastatic potential of human breast cancer cells in vitro 
and in vivo

To determine whether STAT5 activation affects the metastatic ability of human breast 

tumor cells, we stably introduced STAT5aca using a lentiviral vector into two human breast 

lines and compared their migratory and invasive capacity with their corresponding control 

cells. STAT5aca decreased the migration and invasion abilities of MCF10A-PIK3CAH1047R 

by approximately 70-80% (Fig. 3A, 3B, S3A), and those of MCF7 by approximately 

50% (Fig. S3B) while STAT5aca didn’t affect the growth of MCF10A cells (Fig. S3C). 

Furthermore, we compared two MCF10A cell sublines in a 3D Matrigel culture. While both 

MCF10A-PIK3CAH1047R and MCF10A-PIK3CAH1047R/STAT5aca grew similarly shaped 

spheres initially (day 4), with time, the former developed invasive protrusions while the 

latter remained spherical (Fig S3D). These in vitro data suggest that STAT5a hinders breast 

cancer metastasis.

Next, we tested whether STAT5aca affects human breast cancer metastasis in vivo. 

We intraductally implanted MCF10A-PIK3CAH1047R cells and MCF10A-PIK3CAH1047R/

STAT5aca cells into the #4 mammary glands of female NSG mice. IVIS imaging and 

tumor palpation indicate that STAT5aca does not significantly impact the growth of these 

MCF10A-PIK3CAH1047R cells (Fig. S4A, S4B), in accordance with our in vitro data (Fig. 

S3C). When tumors reached 2.0 cm in diameter, we harvested soft organs (ovaries, spleen, 

kidneys, liver, brain, and lungs) and bones for ex vivo IVIS-imaging to quantify metastasis. 

We found that 6 of the 8 mice (75%) implanted with MCF10A-PIK3CAH1047R showed 

metastases in distant organs (Fig. 3C), which was confirmed by H&E (Fig. S4C), while 

none of the 4 mice implanted with MCF10A-PIK3CAH1047R/STAT5aca had a detectable 

metastatic signal in any organ (Fig. 3C, 3D). To determine the stage at which STAT5 

influences metastasis, we tail vein-injected MCF10A-PIK3CAH1047R cells and MCF10A-

PIK3CAH1047R/STAT5aca cells into NSG mice, and compared the mice for pulmonary 
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metastatic burden over a window of 6 weeks by in vivo IVIS imaging. As shown in 

Fig. 3E and 3F, the two groups developed lung metastasis overtime without discernable 

differences, suggesting that STAT5a does not significantly impact metastatic development 

after intravasation. Taken together, these in vitro and in vivo results indicate that STAT5 

activation restricts metastatic potential of human breast cancer cells primarily by suppressing 

local migration, invasion and possibly intravasation.

High STAT5A level predicts favorable outcome in breast cancer patients

By immunohistochemical staining of breast cancer specimens, STAT5 activation has been 

correlated with ER+ breast cancer with a more favorable prognosis [10, 11], but this 

potential biomarker has not been studied in large public datasets or within specific breast 

cancer subtypes. Therefore, to further explore the prognostic potential of STAT5 in breast 

cancer patients, we performed bioinformatic analyses to compare outcome of patients 

bearing STAT5-low vs. STAT5-high breast tumors in two publicly available datasets. Due 

to the scarcity of STAT5 and pSTAT5 protein data in public datasets, we compared tumors 

with high vs. low mRNA levels of STAT5A (which has Spearman correlation of 0.37 

with STAT5A protein levels in TCGA based on LinkedOmics [36]). In the EMC-MSK 

dataset [37, 38], we found that higher STAT5A mRNA levels were correlated with a better 

metastasis-free survival when all patients were included (p = 0.0251; Fig. 3G). When the 

patients were separated into ERα+, HER2+ and TNBC subtypes, the association was highly 

significant among the ERα+ breast cancer patients but was not detected in HER2+ patients 

or triple-negative patients (Fig. S5A). Consistent with the finding, in the METABRIC 

Database [39, 40], higher STAT5A expression was associated with better relapse-free 

survival among all breast cancer patients (Fig. 3H), and also in Luminal A, and Luminal 

B patients, but not among other subtypes (Fig. S5B). In addition, higher STAT5A expression 

was associated with better overall survival among all breast cancer patients in METABRIC 

Database (Fig. 3I),

As a transcription factor, STAT5 potentially regulates expression of multiple genes in breast 

tumors. Therefore, we next asked whether a STAT5 gene expression signature is correlated 

with patient outcome. While a STAT5-dependent gene set in the normal mouse mammary 

gland has been reported [41], a STAT5 gene signature in human breast cancer cells is not 

yet available. We performed RNAseq on a panel of human breast cancer cell lines carrying 

vector vs. lenti-STAT5aca, and generated a STAT5A gene signature consisting of 105 genes 

that are upregulated in any 4 out of 6 pairs (Supplementary Table 1). This STAT5A signature 

exhibited a significant correlation with STAT5A mRNA levels in METABRIC and TCGA 

breast cancer datasets (Fig. S6A, S6B). In the TCGA dataset, higher STAT5A signature 

scores were associated with better disease-free survival, although STAT5A mRNA levels 

were not associated with disease-free survival (Fig. S6A). Likewise, in the METABRIC 

dataset, this gene signature was associated with better relapse-free survival although it 

lacked power to correlate with outcome in breast cancer subtypes (Fig. S6C). Since 

EMC-MSK dataset is based on Microarray and does not include many of the genes in 

our signature, we did not attempt correlation analysis. Together, these bioinformatic data 

indicate that STAT5 expression levels and activity can serve as a biomarker for favorable 

prognosis for breast cancer patients, especially patients with ERα+ breast cancer. However, 
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the power of prediction is relatively modest, and STAT5a mRNA and its gene signature do 

not always agree possibly due to several reasons, including uncertain correlation between 

STAT5a gene expression levels and protein activity levels (which the gene signature) and 

potential contributions of STAT5b and other STAT family members to the gene signature 

levels in patients.

STAT5a alters protein levels that regulate epithelial-mesenchymal transition (EMT)

To gain insight into mechanisms by which STAT5 activation blocks breast cancer metastasis, 

we used the reverse-phase protein array (RPPA) to identify proteins expressed differentially 

between murine mammary tumors initiated by PIK3CAH1047R vs. PIK3CAH1047R/Stat5aca. 

Among 243 antibodies detecting total and phosphorylated proteins, 90 were different 

between these two groups of tumors (Fig. S7). The top 4 down-regulated proteins in the 

PIK3CAH1047R /STAT5aca tumor cohort include a prominent EMT driver, Slug (SNAI2) 

and a key EMT marker, Vimentin (VIM) (Fig. 4A). We confirmed by Western blotting 

that STAT5aca suppressed these two proteins, and we also detected decreased levels of 

another EMT regulator, ZEB1 and the mesenchymal marker N-cadherin (CDH2), as well as 

increased levels of the epithelial marker E-cadherin (CDH1) and the milk protein β-casein 

in murine mammary tumors (Fig. 4B). We validated these data in human breast cancer cells 

by comparing MCF10A-PIK3CAH1047R cells vs. MCF10A-PIK3CAH1047R/STAT5aca cells 

(Fig. 4C), and we additionally detected STAT5a-mediated suppression of two more EMT 

regulators, Snail (SNAI1) and TWIST (Fig. 4C), consistent with previous studies in cell 

cultures [19].

To determine if STAT5 regulates the transcription of these genes, we first performed real-

time PCR on these human cancer cells. Consistent with the findings in proteins, mRNA 

levels of CDH2, VIM, SNAI1, SNAI2, TWIST1 and ZEB1 were decreased by STAT5aca, 

but CDH1 and ZEB2 were not affected (Fig. 4D). Interestingly, we also found an increase 

of miR200c, a microRNA which was reported to suppress the EMT programs via a ZEB/

miR-200 feedback loop [42]. Importantly, the analysis of published ChIPseq data comparing 

mammary gland cells with different gene dosages of Stat5a and Stat5b at lactation day 1 

[43] revealed that multiple EMT-related genes, including Vim and Zeb1, Zeb2, had STAT5 

bound to their promoters or gene bodies (Fig. 4E, S8, S9), suggesting that STAT5 may 

regulate EMT via transactivation of EMT regulators.

This study using multiple in vivo models as well as multiple cell lines demonstrates a 

dichotomous role of STAT5 in cancer initial development and subsequent metastasis (Fig. 

4F). We previously published that STAT5 accelerates precancerous lesion progression by 

lowering the apoptosis anti-cancer barrier (without a significant impact on cell proliferation) 

[8, 44]. The data presented in this study further strength this previous finding and show 

a diminished impact of STAT5 on growth of established breast tumor cells especially 

if PIK3CA is activated. On the other hand, our ErbB2 and PIK3CA mouse model data 

demonstrate that STAT5 also programs precancerous and cancerous cells into a functionally 

differentiated state that is characterized by the expression of alveolar markers and milk 

proteins (Fig. 1, 2). These data provide in vivo support to previous reports of JAK2-STAT5 

signaling in promoting alveolar differentiation of cultured breast cancer cells [18, 19]. 

Lin et al. Page 7

Oncogene. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Of note, it remains to be determined whether the gain of these alveolar features truly 

caused these precancerous cells to gain or lose stem/progenitor properties compared to other 

precancerous cells that did not acquire STAT5 activation. It has been reported that certain 

alveolar cells marked by the expression of the whey acidic protein gene, a transcriptional 

target of STAT5, can gain multipotency following a reproductive cycle [45, 46], and that 

they are probably the cells of origin of tumors in mice transgenic for ErbB2 [47].

Using both in vitro and in vivo experiments, we further demonstrate that STAT5 suppresses 

EMT and restrains early steps of metastasis including migration and invasion although 

exerting no significant impact on tumor cells that have already disseminated (Fig 3). It 

is conceivable that a more differentiated epithelial state may counter EMT activators and 

hinder migration, invasion, and metastasis, but it remains to be determined how much 

functional differentiation per se contributes to blocked metastasis. Furthermore, while 

STAT5 regulates multiple EMT-related genes likely via transcriptional activation (Fig. 

4), the crucial EMT regulators directly controlled by STAT5 remain to be elucidated. 

In addition, as multiple previous studies have reported STAT5’s promotion of EMT and 

metastasis [20, 21, 23–26], the molecular mechanism for these apparently opposing roles of 

STAT5 on EMT in different tissue contexts remains to be investigated.

In conclusion, while it promotes breast cancer formation at least partly by suppressing the 

apoptosis anticancer barrier and may be a chemoprevention target [8, 44], STAT5 activation 

initiates a lactogenic network in precancerous and cancerous cells, suppresses EMT, and 

impairs cancer migration, invasion, and dissemination to distant organs, consequently 

serving as a potential biomarker in breast cancer prognosis (Fig. 4F).

MATERIAL AND METHODS

Animals

Wild-type FVB/N mice and MMTV-tva transgenic mice (on the FVB background) were 

bred in house. NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ (NSG) mice were purchased from the 

Jackson lab (Bar Harbor, ME, USA). The animal experimentation protocol was approved by 

the BCM institutional Animal Care and Use Committee, and conducted under the guidelines 

described in the NIH Guide for the Care and Use of Laboratory Animals.

Virus production and titration

The plasmid RCAS-HA-ErbB2ca carrying the HA-tagged constitutively activated ErbB2 
mutant gene was reported in our previous work [27]. The plasmid RCAS-FLAG-Stat5aca [6] 

carries the FLAG-tagged activated mutant of STAT5a, which was subcloned from the pMX-

Stat5a1*6 [48]. The plasmid FUCGW-PIK3CAH1047R [33] carries a constitutively active 

mutant of PIK3CA along with a GFP marker. The plasmid FUW-Stat5aca was constructed 

by subcloning Stat5a1*6 to the FUW vector and adding a mCherry cassette by infusion 

cloning. The production and titration for both avian retrovirus and lentivirus were performed 

as described before [27, 49, 50]. All mice were randomized at the time of experiments.
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Mouse tumor model generation

Virus and breast cells were delivered into mouse mammary glands by intraductal injection 

as previously described [50–52]. To generate HER2+ mammary precancerous lesions and 

tumors, 10-week-old MMTV-tva (MA) female mice were intraductally injected via the #4 

teat with RCAS-HA-ErbB2ca (5 × 104 IUs per gland) alone or together with RCAS-FLAG-

Stat5aca (107 IUs per gland). The injected mammary glands were harvested 2 weeks after 

virus injection for precancerous lesion studies. Tumors were scored when the diameter 

reached ~2-3mm and can be detected by palpation. The length and width of tumors were 

measured with a caliper twice per week until the tumor size reached the ethical endpoint 

(1.5-2 cm). To generate ER+ mammary tumors, 10-week-old female mice in FVB/N 

background were intraductally injected with FUCGW-PIK3CAH1047R (107 IUs per gland) 

alone or together with FUW-FLAG-Stat5aca (7 × 107 IUs per gland). For the spontaneous 

metastasis model, 10-week-old NSG mice were intraductally implanted with luciferase-

tagged MCF10A-PIK3CAH1047R cells or MCF10A-PIK3CAH1047R/STAT5aca cells (30 000 

cells per gland). The lesion burden was determined biweekly by bioluminescence for 16 

weeks post cell implantation when >50% of mice developed palpable tumors. The metastasis 

burden across organs was determined by bioluminescence at harvest. For the experimental 

metastasis model, these two groups of cells were tail vein-injected into 10-week-old 

NSG mice (1 × 106 cells per mouse). The metastasis burden was determined weekly by 

bioluminescence for 6 weeks following tail vein injection.

Cell culture and stable line generation

Breast MCF10A sublines stably expressing PIK3CAH1047R and/or Stat5aca were generated 

by transducing luciferase-tagged cells with lentiviruses carrying FUCGW-PIK3CAH1047R 

[33] or matched vector FUCGW and/or FUW-Stat5aca-mCherry or matched vector FUW-

mCherry. In brief, cells were incubated with viral particles (M.O.I.=10) and 10 μg/mL 

polybrene, centrifuged at 1 100 xg for 30 min at 37°C, and washed with PBS. After passage, 

cells were FACS-sorted for GFP and/or mCherry. 3D culture assay was performed as 

published [53]. In brief, 5 000 MCF10A cells in media containing 2% growth factor-reduced 

Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) were plated to 8-well chamber slides 

precoated with a base layer of 100% Matrigel. 3D growth was imaged at day 4 and day 

7. Breast cancer cell lines MCF7, BT20, MDA-MB-231, T47D were transduced with FUW-

Stat5aca-mCherry or matched vector FUW-mCherry and FACS-sorted to derive sublines.

Immunohistochemistry (IHC) and immunofluorescence (IF)

Immunochemistry staining was performed using the Vectastain Elite ABC system (Vector 

Laboratories, Burlingame, CA, USA) and developed using DAB as chromogen (Agilent 

Dako, Santa Clara, CA, USA). The antibodies used in this study include anti-HA (#3724, 

1:4 000, Cell Signaling Technology, Danvers, MA, USA), anti-FLAG (#8146, 1:400, 

Cell Signaling Technology), anti-β-casein (sc-166530, 1:600, Santa Cruz Biotechnology, 

Dallas, TX, USA), and anti-BCL-xL (sc-8044, 1:200, Santa Cruz Biotechnology). For IF 

staining, the anti-PLIN2 (NB110-40877, 1:600, Novus Biologicals, Littleton, CO, USA) 

primary antibody was used. Sections were incubated with primary antibodies overnight 

at 4°C, followed by 30 min incubation with Alexa Fluor 568-conjugated anti-rabbit 
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antibodies (#A11011, 1:200, Invitrogen, Waltham, MA, USA). The slides were mounted 

with VECTASHIELD Antifade Mounting Medium with DAPI (Vector Laboratories).

Western blotting

Murine tumors were ground in a mortar with liquid N2, and proteins were extracted in 

lysis buffer (MPER) containing protease inhibitor. Proteins from MCF10A and MCF7 were 

extracted by cell lysis in RIPA buffer (Bio-Rad, Hercules, CA, USA). 30 to 50 μg of 

protein per lane were separated in SDS-PAGE and transferred onto nitrocellulose membrane 

(Bio-Rad) for incubation with antibodies and detection using an ECL chemiluminescent 

kit (ProteinSimple, San Jose, CA, USA). The antibodies used include antibodies against 

BCL-2 (sc-7382, 1:1 000, Santa Cruz Biotechnology), BCL-xL (#sc-8044, 1:1 000, 

Santa Cruz Biotechnology), E-cadherin (Cell Signaling Technology, #3195, 1:1 000), N-

cadherin (#610920, 1:1 000, BD Biosciences), Vimentin (#5741, 1:1 000, Cell Signaling 

Technology), Snail (#3879, 1:1 000, Cell Signaling Technology), Slug (#9585, 1:1 

000, Cell Signaling Technology), FLAG (#8146, 1:1 000, Cell Signaling Technology), 

β-casein (#MA1-46056, 1:1 000, Invitrogen), TWIST (#sc-81417, 1:1 000, Santa Cruz 

Biotechnology), ZEB1 (#70512, 1:1 000, Cell Signaling Technology), and β-actin (#A5441, 

1:5 000, Sigma-Aldrich, St. Louis, MO, USA). At least three independent biological repeats 

were performed.

Transwell migration and invasion assay

Transwell migration and invasion assays were performed as we described previously [54]. 

The MCF-10A cells were seeded at 20 000 cells per well and incubated 16 hours for 

migration assay or seeded at 50 000 cells per well for 20 hours for invasion assay. MCF-7 

cells were seeded at 50 000 cells and incubated for 16 hours for migration assays and 100 

000 cells per well for 48 hours for invasion assays. At least three independent experiments 

were performed.

Reverse phase protein array (RPPA) analysis

Reverse phase protein array assays were carried out as reported previously [55]. Protein 

lysates were prepared from tumors with modified tissue protein extraction reagent (TPER; 

Pierce, Thermo Scientific, Appleton, WI, USA) and a cocktail of protease and phosphatase 

inhibitors. Then 243 antibodies against total or phosphorylated protein were used. The full 

list of antibodies is at https://www.bcm.edu/centers/cancer-center/research/shared-resources/

cprit-cancer-proteomics-and-metabolomics/reverse-phase-proteinarray.

Real-time PCR

Cells were lysed with TRI Reagent (Sigma-Aldrich). Total RNA was purified from 

cells using Direct-zol RNA Microprep Kit (Zymo Research, Irvine, CA, USA). cDNA 

synthesis from mRNA was carried out using a SuperScript III First-Strand Synthesis System 

(Invitrogen), and Takyo No Rox SYBR MasterMix dTTP Blue (Eurogentec, Fremont, CA, 

USA) was used for real-time PCR assay. For microRNA, the miRCURY LNA miRNA 

PCR Starter Kit (QIAGEN, Germantown, MD, USA) was used to construct cDNA and 

also real-time PCR assay. All qPCR assays were conducted in a CFX96 qPCR Instrument 
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(Bio-Rad). Four independent repeats were performed. mRNA was normalized to human 

acidic ribosomal protein (hARP). miR-200c was normalized to miR-103a. The primers used 

for the PCR are:

CDH1: 5’-CAGGTCTCCTCTTGGCTCTG-3’ and 5’-GACCGGTGCAATCTTCAAAA-3’; 

CDH2: 5’-GTGCATGAAGGACAGCCTCT-3’ and 5’-AGCTTCTCACGGCATACACC-3’; 

VIM: 5’-CGAAAACACCCTGCAATCTT-3’ and 5’-CTGGATTTCCTCTTCGTGGA-3’; 

SNAI1: 5’-CTTCTCTAGGCCCTGGCTG-3’ and 5’-CATCTGAGTGGGTCTGGAGG-3’; 

SNAI2: 5’-TCGGACCCACACATTACCTT-3’ and 5’-TGACCTGTCTGCAAATGCTC-3’; 

TWIST1: 5’-GGACAAGCTGAGCAAGATTCA-3’ and 5’-

CGGAGAAGGCGTAGCTGAG-3’; ZEB1: 5’-AGCAGTGAAAGAGAAGGGAATGC-3’ 

and 5’-GGTCCTCTTCAGGTGCCTCAG-3’; ZEB2: 5’-

TTTCAGGGAGAATTGCTTGA-3’ and 5’-CACATGCATACATGCCACTC-3’; hARP: 5’-

CACCATTGAAATCCTGAGTGATGT-3’ and 5’-TGACCAGCCCAAAGGAGAAG -3’.

Bioinformatic studies of clinical data from public datasets, ChIPseq data study, and 
statistical analyses

Clinical data were collected from the Erasmus Medical Center/Memorial Sloan-Kettering 

(EMC-MSK) dataset [37, 38], the METABRIC dataset [39, 40] and the TCGA dataset 

[56, 57]. To generate STAT5A signature, we built 6 pairs of human breast and cancer 

cell lines with or without STAT5aca overexpression (MCF10A, MCF10A-PIK3CAH1047R, 

MCF7, BT20, MDA-MB-231, T47D) for RNAseq analysis (Novogene, China), and 

fold change of gene expression was calculated based on the ratio of fpkm values in 

STAT5aca overexpressed samples vs vector controls. We generated a STAT5A gene signature 

consisting of 105 genes that were induced over 2-fold by STAT5aca overexpression in at 

least 4 of the 6 cell lines and calculated STAT5A gene signature scores using z-score 

method. Survival R package was used to compare Kaplan-Meier survival curves using the 

log rank test.

ChIPseq data of STAT5 sequentially knockout mice at lactation day 1 were previously 

published [43]. The EMT-related gene list is derived from EMTome by Vasaikar et al 

[58]. Raw public data were downloaded with accession number GSE37646 and GSE40930. 

STAT5A ChIPseq raw data (GSE40930) were mapped to mm10 with BWA (0.7.4). We 

called significant peaks using MACS2 (2.2.7.1) with default parameters. To find out EMT 

genes bound by STAT5A, bedtools (2.28.0) was applied to intersect significant peak regions 

and gene promoters or gene bodies. We utilized deeptools (3.5.1) to generate normalized 

bigwig files from bam files with RPGC normalization method. RNA-seq data (GSE37646) 

were mapped to mm10 using STAR (2.5.2b) and then counted using HTSeq (2.7).

For tumor growth of HER2+ tumors, Kaplan-Meier survival curves were analyzed by Prism 

9, and P values were calculated using the log-rank test. For assessment of spontaneous 

metastasis, the P value was calculated by Fisher’s exact test. A two-tailed Student’s t test 

was applied for all other experiments. Results are expressed as the mean ±SD.
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Figure 1. STAT5aca causes lactogenic differentiation in ErbB2ca-induced precancerous lesions 
and tumors, and it blocks lung metastases.
(A) Representative images of immunochemistry (IHC) staining for FLAG in STAT5aca and 

two milk production markers, β-casein and PLIN2, in precancerous lesions and tumors. 

Scale bars: 50 μm. N = 5 for tumor comparison; N = 7 for precancerous lesion comparison.

(B) H&E images of a pulmonary metastatic nodule from a ErbB2ca-initiated primary tumor 

and a benign lung from a mouse bearing a ErbB2ca/STAT5aca primary tumor. Scale bars: 50 

μm.
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(C) Summary of the lung metastatic incidence in mice infected by RCAS-ErbB2ca alone and 

in mice bearing ErbB2ca+/STAT5aca+ tumors. The Fisher’s exact test was used and *P < 

0.05.
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Figure 2. STAT5aca causes functional differentiation of mammary tumors initiated by 
PIK3CAH1047R.
Representative images of tumor sections stained by H&E and for the indicated markers. 

Scale bars: 100 μm. N = 6-8.

Lin et al. Page 18

Oncogene. Author manuscript; available in PMC 2023 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. STAT5aca restricts the metastatic potential of human breast tumor cells, and higher 
STAT5a levels are associated with better prognosis of patients.
(A&B) Dot plots showing the migration and invasion of MCF10A cells carrying the 

indicated genes. Values in Y-axis are normalized to the PIK3CAH1047R group. The number 

of biological replicates is indicated by the filled circles. The Student’s t test was used. ***P 
< 0.001, ****P < 0.0001.

(C) Representative images of bioluminescence signals in the soft organs (upper panel: 

ovaries, spleen, kidneys; lower panel: liver, brain, lungs) and bones from mice implanted 

with MCF10A cells carrying PIK3CAH1047R (P) or PIK3CAH1047R/STAT5aca (P/S).
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(D) Quantification of combined signals in (C). The Student’s t test was used. * P < 0.05. 

Each filled circle represents a mouse. P, PIK3CAH1047R (N = 8); P/S, PIK3CAH1047R/

STAT5aca (N = 4).

(E) Representative images of bioluminescence signals in the NSG mice at 6 weeks post tail 

vein injection of MCF10A cells carrying PIK3CAH1047R or PIK3CAH1047R/STAT5aca.

(F) Quantification of the metastasis burden. Each filled symbol represents a mouse. P, 

PIK3CAH1047R (N = 8); P/S, PIK3CAH1047R/STAT5aca (N = 6). Values in Y-axis are photon 

flux from lungs of individual animals.

(G) Kaplan-Meier plot of metastasis-free survival of patients stratified according to tumor 

STAT5A mRNA expression in the EMC-MSK dataset (N = 557). The patients were assigned 

into high or low STAT5A group using the median of STAT5A mRNA expression as the 

cutoff.

(H&I) Kaplan-Meier plots of relapse-free survival (G) and overall survival (H) of patients 

stratified according to tumor STAT5A mRNA expression in the METABRIC Dataset (N = 

1 903). The patients were assigned into high or low STAT5A group using the median of 

STAT5A mRNA expression as the cutoff.
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Figure 4. STAT5aca suppresses breast cancer EMT.
(A) The top 4 proteins decreased in PIK3CAH1047R/STAT5aca+ tumors detected by RPPA. N 

= 7.

(B & C) Western blotting for the indicated proteins.

(D) Real-time PCR analysis for the indicated genes and miRNA. Data were normalized 

to the paired MCF10A-PIK3CAH1047R group. mRNA was normalized to human acidic 

ribosomal protein (hARP). miR-200c was normalized to miR-103a. Student’s t test was used 

and n = 4. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001
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(E) ChIPseq data showing STAT5 binding to both the promoter and gene body region of 

Vim, and the gene body of Zeb1 and Zeb2.

(F) Model depicting the dichotomous impact of STAT5 on breast cancer formation and 

metastasis. While promoting tumorigenesis by lowering the apoptosis anticancer barrier, 

STAT5 also defines an alveolar differentiation fate (white dots), preventing EMT and 

metastasis.
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