
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
*Corresponding author at: Washington University in St. Louis, Box 8111, 660 South Euclid Ave, Saint Louis, MO 63110, USA, 
bances@wustl.edu (B.M. Ances).
1Contributed equally for first authorship.
Author contribution
Jeremy F. Strain: Reports no disclosures.
Nicolas Barthelemy: Could receive part of the profits from any sales of these phosphorylation site tests by C2N, which is in the 
process of licensing or has licensed some IP from the University.
Kanta Horie: Reports no disclosures.
Brian A. Gordon: Involved on a clinical trial sponsored by Avid.
Collin Kilgore: Reports no disclosures.
Andrew Aschenbrenner: Reports no disclosures.
Carlos Cruchaga: Reports no disclosures.
Chengjie Xiong: Reports no disclosures.
Nelly Joseph-Mathurin: Reports no disclosures.
Jason Hassenstab: Reports no disclosures.
Anne M. Fagan: Reports no disclosures.
Yan Li: Reports no disclosures.
Celeste M. Karch: Reports no disclosures.
Richard Perrin: Reports no disclosures.
Sarah B. Berman: Reports no disclosures.
Jasmeer P. Chhatwal: Reports no disclosures.
Neill R. Graff-Radford: Research support includes AbbVie, Novartis, Biogen and Lilly.
Hiroshi Mori: Reports no disclosures.
Johannes Levin: Reports no disclosures.
James Noble: Reports no disclosures.
Ricardo Allegri: Reports no disclosures.
Peter R. Schofield: Reports no disclosures.
Daniel S. Marcus Reports no disclosures.
David M. Holtzman: Cofounded and is on the scientific advisory board of C2N diagnostics, LLC. Is on the scientific advisory board 
of Denali and consults for Genetech and AbbVie. Could receive part of the profits from any sales of these phosphorylation site tests by 
C2N, which is in the process of licensing or has licensed some IP from the University.
John C. Morris: He is currently participating in clinical trials of antidementia drugs developed by Eli Lilly and Company, Biogen and 
Janssen. Dr. Morris serves as a consultant for Lilly USA. Research support from Eli Lilly/Avid Radiopharmaceuticals.
Tammie L.S. Benzinger: Involved in a clinical trial sponsored by Avid.
Eric M. McDade: Research support: NIA, Eli Lilly, Roche, Janssen, GHR Foundation; Advisory Board: Eli Lilly; DSMB: Eli Lilly. 
Could receive part of the profits from any sales of these phosphorylation site tests by C2N, which is in the process of licensing or has 
licensed some IP from the University.
Randall J. Bateman: He is on the scientific advisory board for C2N Diagnostics. Research support from Abbvie, Biogen, Eisai, Eli 
Lilly, and Co/Avid Radiopharmaceuticals, Roche, Janssen, and United Neuroscience. Could receive part of the profits from any sales 
of these phosphorylation site tests by C2N, which is in the process of licensing or has licensed some IP from the University.
Beau M. Ances: Involved in a clinical trial sponsored by Avid.

Author credit statement
Jeremy F. Strain: Processed the DTI data, performed the analyses, interpreted the results and constructed the manuscript.
Nicolas Barthelemy: Processed the CSF data with Mass Spectrometry, assisted in the interpretation of the results and assisted in the 
manuscript.
Kanta Horie: Assisted in the processing of the CSF data with Mass Spectrometry, assisted in the interpretation of the results and 
assisted in the manuscript.
Brian A. Gordon: Assisted in the interpretation of the results and assisted in the manuscript.
Collin Kilgore: Assisted in the DTI processing, interpretation of the results and reviewed the manuscript.
Andrew Aschenbrenner: Assisted in the interpretation of the results and reviewed the manuscript.
Carlos Cruchaga: Assisted in the interpretation of the results and reviewed the manuscript.
Chengjie Xiong: Assisted in the interpretation of the results and reviewed the manuscript.
Nelly Joseph-Mathurin: Assisted in the interpretation of the results and reviewed the manuscript.
Jason Hassenstab: Assisted in the interpretation of the results and reviewed the manuscript.
Anne M. Fagan: Assisted in the interpretation of the results and reviewed the manuscript.
Yan Li: Assisted in the interpretation of the results and reviewed the manuscript.
Celeste M. Karch: Assisted in the interpretation of the results and reviewed the manuscript.
Richard Perrin: Assisted in the interpretation of the results and reviewed the manuscript.
Sarah B. Berman: Assisted in the interpretation of the results and reviewed the manuscript.
Jasmeer P. Chhatwal: Reviewed the Manuscript and is a constituent of the DIAN network.
Neill R. Graff-Radford: Reviewed the Manuscript and is a constituent of the DIAN network.
Hiroshi Mori: Reviewed the Manuscript and is a constituent of the DIAN network.
Johannes Levin: Reviewed the Manuscript and is a constituent of the DIAN network.

HHS Public Access
Author manuscript
Neurobiol Dis. Author manuscript; available in PMC 2022 November 27.

Published in final edited form as:
Neurobiol Dis. 2022 June 15; 168: 105714. doi:10.1016/j.nbd.2022.105714.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by-nc-nd/4.0/


CSF Tau phosphorylation at Thr205 is associated with loss of 
white matter integrity in autosomal dominant Alzheimer disease

Jeremy F. Straina,1, Nicolas Barthelemya,1, Kanta Horiea, Brian A. Gordona,c,d, Collin 
Kilgorea, Andrew Aschenbrennera, Carlos Cruchagaa, Chengjie Xiongc,h, Nelly Joseph-
Mathurinb,c, Jason Hassenstaba,c,h, Anne M. Fagana,c, Yan Lia, Celeste M. Karchb, Richard 
J. Perrina, Sarah B. Bermane, Jasmeer P. Chhatwalf, Neill R. Graff-Radfordg, Hiroshi 
Morih, Johannes Levini, James M. Noblem, Ricardo Allegrij, Peter R. Schofieldk,l, Daniel 
S. Marcusc, David M. Holtzmana,c, John C. Morrisa,c, Tammie L.S. Benzingerb,c, Eric M. 
McDadea, Randall J. Batemana,c, Beau M. Ancesa,b,c,*

aDepartment of Neurology, Washington University, St. Louis, MO 63110, USA

bDepartment of Radiology, Washington University, St. Louis, MO 63110, USA

cKnight Alzheimer’s Disease Research Center, Washington University, St. Louis, MO 63110, USA

dDepartment of Psychological & Brain Sciences, Washington University, St. Louis, MO 63110, 
USA

eDepartment of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA

fDepartment of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA

gDepartment of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA

hOsaka City University School of Medicine Asahimachi, Abenoku, Osaka 545-8585, Japan

iGerman Center for Neurodegenerative Disease (DZNE) Munich, Munich, Germany

jSchool of Medicine, Universidad de Buenos Aires, Viamonte 430, C1053 CABA, Argentina

kNeuroscience Research Australia, Sydney, NSW, Australia

lHope Center for Neurological Disorders, Washington University, St. Louis, MO 63100, USA

mDepartment of Neurology, Columbia University, New York, NY 100310, USA

Abstract

James Noble: Reviewed the Manuscript and is a constituent of the DIAN network.
Ricardo Allegri: Reviewed the Manuscript and is a constituent of the DIAN network.
Peter R. Schofield: Reviewed the Manuscript and is a constituent of the DIAN network.
Daniel S. Marcus: Reviewed the Manuscript and is a constituent of the DIAN network.
David M. Holtzman: Assisted in the interpretation of the results and reviewed the manuscript. John C. Morris: Assisted in the 
interpretation of the results and reviewed the manuscript.
Tammie L.S. Benzinger: Assisted in the interpretation of the results and reviewed the manuscript.
Eric M. McDade: Assisted in the processing of the CSF data with Mass Spectrometry, assisted in the interpretation of the results and 
assisted in the manuscript.
Randall J. Bateman: Oversees the acquisition and processing of the phosphorylation tau site data, assisted in the interpretation of the 
results and reviewed the manuscript.
Beau M. Ances: Managed the project, discussed the imaging methodology, assisted in the interpretation of the results and reviewed the 
manuscript.

Strain et al. Page 2

Neurobiol Dis. Author manuscript; available in PMC 2022 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Background: Hyperphosphorylation of tau leads to conformational changes that destabilize 

microtubules and hinder axonal transport in Alzheimer’s disease (AD). However, it remains 

unknown whether white matter (WM) decline due to AD is associated with specific Tau 

phosphorylation site(s).

Methods: In autosomal dominant AD (ADAD) mutation carriers (MC) and non-carriers (NC) 

we compared cerebrospinal fluid (CSF) phosphorylation at tau sites (pT217, pT181, pS202, and 

pT205) and total tau with WM measures, as derived from diffusion tensor imaging (DTI), and 

cognition. A WM composite metric, derived from a principal component analysis, was used to 

identify spatial decline seen in ADAD.

Results: The WM composite explained over 70% of the variance in MC. WM regions that 

strongly contributed to the spatial topography were located in callosal and cingulate regions. 

Loss of integrity within the WM composite was strongly associated with AD progression in 

MC as defined by the estimated years to onset (EYO) and cognitive decline. A linear regression 

demonstrated that amyloid, gray matter atrophy and phosphorylation at CSF tau site pT205 each 

uniquely explained a reduction in the WM composite within MC that was independent of vascular 

changes (white matter hyperintensities), and age. Hyperphosphorylation of CSF tau at other sites 

and total tau did not significantly predict WM composite loss.

Conclusions: We identified a site-specific relationship between CSF phosphorylated tau and 

WM decline within MC. The presence of both amyloid deposition and Tau phosphorylation at 

pT205 were associated with WM composite loss. These findings highlight a primary AD-specific 

mechanism for WM dysfunction that is tightly coupled to symptom manifestation and cognitive 

decline.
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1. Introduction

Alzheimer’s disease (AD) is diagnosed and staged neuropathologically by the distribution 

and abundance of two hallmark lesions: extracellular amyloid-β (Aβ) plaques and 

intracellular accumulations of phosphorylated tau (p-tau) (Bloom, 2014). Initially Aβ 
plaques deposit in neocortical regions and spread to limbic and subcortical areas. Tau 

pathology is characterized by hyperphosphorylation and subsequent aggregation of tau into 

neurofibrillary tangles (NFTs) and neuropil threads (NTs) (Hu et al., 2016). In multiple 

etiologies of AD, including autosomal dominant AD (ADAD) and late onset AD (LOAD), 

symptomatic individuals have significantly elevated cerebrospinal fluid (CSF) t-tau/Aβ42 

ratio compared to cognitively normal controls (Bateman et al., 2012). Phosphorylation of 

the tau protein is not a single process and in fact 70 different sites along the tau protein are 

known to be altered in AD. Recent work has shown that phosphorylation of tau at specific 

sites is associated with different stages of the disease process (Barthelemy et al., 2020a; 

Barthelemy et al., 2019). For example, elevations in pT205 change after pT181 and pT217, 

and are more strongly associated with gray matter volume. However, relationships between 

pT205 and white matter integrity remain unknown. Since AD pathology involves both gray 
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matter (GM) and white matter (WM), we sought to determine if changes in specific Tau 

phosphorylation sites are associated with WM changes seen in autosomal dominant AD 

(ADAD).

Dynamic changes in p-tau can be differentiated using mass spectrometry to quantify 

the percentage of phosphorylation occupancy at specific sites (Barthelemy et al., 2019). 

Previous studies of CSF p-tau have primarily focused on p-tau181 (pT181) due to its’ relative 

abundance and ease in quantification. Recently, additional CSF Tau phosphorylation sites 

(pT217, pS202, and pT205) have been identified with a temporal order of phosphorylation 

sites occurring with disease progression (Barron et al., 2017; Kimura et al., 2018; 

Shahpasand et al., 2012). Hyperphosphorylation at these sites can differ in the stoichiometry 

suggesting their propensity to be sequestered into brain tau tangles (pT181, pT217, pS202) 

or the soluble (pt205) matrix including CSF (Horie et al., 2020a). Specifically, increased 

percentage of phosphorylation at CSF pT181 and CSF pT217 occur earlier in disease 

progression and have been associated with amyloid accumulation while an increased 

percentage of phosphorylation at CSF pT205 occurs at symptom onset and is associated 

more with neurodegenerative markers (e.g. gray matter (GM) atrophy) (Kimura et al., 2018).

Tau hyperphosphorylation has been associated with not only GM but also WM 

decline (Musi et al., 2018). Animal studies have demonstrated that post-translational 

hyperphosphorylation of tau is necessary for GM and WM loss (Wang et al., 2018). 

Hyperphosphorylation leads to a loss of binding of tau to microtubules that is associated 

with demyelination. This can lead to impaired communication between local and distant 

brain regions (Pierpaoli et al., 1996). This process of myelinoclasis is not considered to be 

a byproduct of neuronal loss but rather a distinct AD-related mechanism that affects WM. 

These changes in WM can be detected in vivo utilizing diffusion tensor imaging (DTI), a 

neuroimaging method that monitors the diffusion of water (Strain et al., 2018). DTI has 

been studied extensively in AD with loss of WM associated with increases in tau positron 

emission tomography (PET) (McDade et al., 2018). Prior work from our group has shown 

that tau PET in temporal regions is tightly coupled to WM loss in LOAD (Strain et al., 

2018).

ADAD provides a unique window to evaluate WM pathology due to AD without age-related 

vascular contributions that are seen with LOAD (Bateman et al., 2012). In particular, ADAD 

individuals are often younger and do not have significant vascular burden typically seen in 

LOAD. Furthermore, ADAD individuals are genetically predisposed to develop symptoms 

at a known age with the estimated “years to symptom onset” (EYO) derived from other 

family members who have a similar mutation (McDade et al., 2018). EYO represents the 

conversion point when cognitive changes manifest and provides a metric of disease “time” 

that is currently unavailable in LOAD. By evaluating WM loss in relation to cognition and 

EYO we can derive the spatial pattern of WM loss seen in ADAD.

This study evaluated whether CSF phosphorylation at various tau sites (pT217, pT181, 

pS202, and pT205) and total tau are associated with WM loss, as quantified by DTI. The 

spatial topography of WM integrity loss across multiple tracts was reduced in dimensional 

space using principal component analysis (PCA) to derive a WM composite. This WM 
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composite measure statistically reduces the number of comparisons but still retains spatial 

information. Within this composite, tracks are weighted differently depending on their 

contribution to the primary component. We examined the decline in WM composite with 

regards to EYO and cognitive changes in ADAD.

2. Methods

2.1. Participants

This original sample included 221 participants from the international Dominantly Inherited 

Alzheimer Network (DIAN) and included 123 ADAD mutation carriers (MC) and 98 non-

carriers from ADAD families (MN). A unique attribute of the ADAD cohort is the capability 

of estimating the conversion to symptomatic cognitive changes based on the average onset 

from other family members with the same genetic mutation. For inclusion within this 

analysis, a participant completed: 1) a general physical, including neurologic examination; 

2) health and medication history questionnaires; 3) a clinical assessment for dementia and 

neuropsychological evaluation; 4) a lumbar puncture for CSF tau; and 5) neuroimaging on 

a 3 T Siemens Tim Trio scanner (Erlangen, Germany). The neurologic examination was 

conducted as part of the clinical dementia rating (CDR) scale to define disease stage. All 

participants or their representatives provided written, informed consent approved by the 

institutional review boards at the respective institution.

2.1.1. Clinical Dementia Rating (CDR)—Experienced clinicians conducted semi-

structured interviews with each participant and a knowledgeable collateral source. The CDR 

was used to evaluate a participant’s degree of impairment (Morris, 1993). A score of CDR 

0 indicates that the individual is cognitively normal, CDR 0.5 corresponds to very mild 

dementia, and CDR ≥ 1 specifies mild-to-moderate dementia. Participants with a score of 

CDR > 0 had a clinical diagnosis of dementia due to AD.

2.1.2. Estimated Years to Onset (EYO)—A unique attribute of the ADAD cohort 

is the capability of estimating the conversion point for cognitive changes. Parental age at 

symptomatic onset was determined from semi-structured interviews with the participant, a 

knowledgeable collateral source, and/or other informants familiar with the parental history 

of disease. The age at onset of the affected parent was determined by estimating the time of 

onset of consistent symptoms (e.g., memory/cognition, motor, or behavior) (Morris, 1993). 

The EYO for each individual from DIAN was defined as the participant’s age at testing 

minus the age at symptom onset for that individual’s affected parent (McDade et al., 2018).

2.2. Cognition

Participants underwent a comprehensive neuropsychological test battery that has been 

previously described (Storandt et al., 2014). A cognitive composite z-score was calculated 

from three domains including: 1) episodic memory (word list delayed recall and logical 

memory delayed recall); 2) processing speed and executive function (Digit Symbol 

Substitution); and 3) general mental status (Mini-Mental Status Examination [MMSE]) 

(Folstein et al., 1975; Wechsler, 1987; Wechsler, 1981). These tests include multiple 

cognitive domains affected by AD and closely mirror the primary cognitive endpoints 

Strain et al. Page 5

Neurobiol Dis. Author manuscript; available in PMC 2022 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used in clinical trials (Bateman et al., 2017; Donohue et al., 2014). Scores from each test 

were standardized to the mean and standard deviation of DIAN MC with EYO ≤ −15 

and averaged together to form a composite score. Due to ceiling effects in the MMSE, an 

adjusted standard deviation was used. A summary value was computed for each participant 

with higher scores indicating better performance.

2.3. CSF

CSF was acquired to evaluate phosphorylation of tau at pT181, pS202, pT205, and 

pT217 using corresponding (p-tau/t-tau) ratios. Further details on CSF preparation has 

been previously described (Barthelemy et al., 2020a). Tau phosphorylation was analyzed 

by nano liquid chromatography-high-resolution mass spectrometry (nanoLC-MS/HRMS) 

using Parallel Reaction Monitoring with Higher-energy collisional dissociation (HCD) 

fragmentation. NanoLC-MS/HRMS experiments were performed using a nanoAcquity 

UPLC system (Waters, Mildford, Massachusetts) coupled to a Fusion Tribrid mass 

spectrometer (Thermo Scientific, San Jose, California). CSF Tau phosphorylation ratios 

were calculated using measured ratios between MS/HRMS transitions of endogenous 

unphosphorylated peptides and 15 N labeled peptides from protein internal standard. 

Each phosphorylated/unphosphorylated peptide endogenous ratio was normalized using the 

ratio measured on the MS/HRMS transitions of the corresponding AQUA phosphorylated/

unphosphorylated peptide internal standards (Barthelemy et al., 2020a).

2.4. Amyloid PET acquisition and analysis

PET imaging was performed using Pittsburgh compound B (PiB) to measure amyloid load. 

Amyloid PET imaging analyses were performed using a previously described PET Unified 

Pipeline (Su et al., 2015). Data from the 40–70-min post-injection window for PiB were 

converted to standardized uptake value ratios (SUVRs) within defined regions of interest 

using the cerebellar cortex as a reference region. Partial-volume correction was performed 

with a regional spread function.

2.4.1. Magnetic Resonance Imaging (MRI) acquisition—MRI data were analyzed 

from participants scanned on 3 T Siemens Tim Trio scanners (Siemens Medical Systems, 

Iselin, NJ). Scanners were calibrated using standard protocols previously described. 

Structural T1 images were acquired using the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) protocol (Jack et al., 2008). High-resolution T2-weighted images were acquired 

with the following parameters: repetition time (TR) = 3200 ms, echo time (TE) = 455 

ms, flip angle = 120°, with a 256 × 256 field of view, and a 1 mm isotropic resolution. 

T2-weighted fluid attenuated inversion recovery (FLAIR) scans (TR = 9000 ms, TE = 90 

ms, inversion time (TI) = 2500 ms, flip angle = 150°, 0.9 × 0.9 × 5.0 mm3 resolution) were 

acquired. In addition, a single diffusion-weighted scan was obtained (2.5 × 2.5 × 2.5, TR 

= 11,000 milliseconds, TE = 87 milliseconds, flip angle = 90°, 64 directions, b-value 1000 

s/mm2) for each participant.

2.4.2. Diffusion Tensor Imaging (DTI) processing—DTI, an imaging modality that 

assesses the flow of water around axons, was used to evaluate WM structural integrity. DTI 

preprocessing included correction for motion and eddy current distortions, followed by skull 
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stripping using FSL 5.0.9 (www.fmrib.ox.ac.uk/fsl). Scans were visually inspected to ensure 

that head movement was <3 mm for all participants during data acquisition. Individuals 

were also excluded if the field of view (FOV) provided insufficient brain coverage. Diffusion 

maps including fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR), 

and axial diffusivity (DA) were generated using DTIFIT. Each diffusion map was warped to 

the FA-FMRIB_58 space, and WM voxels were condensed to a 1-mm-thick skeleton derived 

from tract-based spatial statistics (TBSS) (Smith et al., 2006). The TBSS approach utilized a 

search algorithm to identify the highest FA in the eminent vicinity which alleviated potential 

partial volume effects and registration errors.

2.4.3. MRI volumetric and White Matter Hyperintensity (WMH) processing
—T1-weighted scans were automatically segmented into regions of interest according 

to the Desikan atlas through FreeSurfer 5.3 (Martinos Center for Biomedical Imaging, 

Charlestown, Massachusetts, USA). A trained evaluator reviewed each segmentation output 

and performed manual edits when necessary. Changes associated with vascular disease 

were quantified using WMH volumes derived from FLAIR. An opensource SPM lesion 

segmentation tool that contained a lesion growth algorithm was used to identify WM lesions 

(applied-statistics.de/lst.html). A global WMH volume was calculated and log-transformed 

due to non-normal distribution.

2.5. WM composite

DTI metrics were calculated and converted to a single voxel width skeleton that represents 

the core of the WM constrained by the TBSS pipeline. Skeletonized voxels were overlaid 

onto twelve predefined WM tracts and averaged to yield tract-wise values (Strain et al., 

2017). Briefly, all WM tracts were generated with deterministic tractography algorithms 

and overlapping voxels assigned to specific tracts based on data driven approaches. Tracts 

are comprised of the average values of the skeletal voxels residing within a tract mask. A 

principal component analysis (PCA) identified the optimal linear combination of WM tracts 

that best explained the variance within the MC group only. All MC individuals with DTI 

imaging were incorporated into the PCA (n = 123). Data from NC were not included into 

the formation of the WM composite. However, the primary component derived from the MC 

cohort was projected onto the NC for group comparisons. PCA is a multivariate analysis that 

reveals internal data organization and its variance. This reduced the dimensionality of the 

data into a scalar value (WM composite) based on the primary component. Separate PCA’s 

were performed for each DTI metric [fractional anisotropy (FA), mean diffusivity (MD), 

radial diffusivity (DR), and axial diffusivity (DA)].

2.6. Comparison of Voxel-Wise and WM composites

An additional analysis focused on the spatial topography and inherent bias that can occur 

using a disease population. We analyzed the relationship between CSF Tau phosphorylation 

site (pT181, pS202, pT205, or pT217) and WM loss for the WM composite and an unbiased 

voxel-wise analysis. Both analyses included age and gender as a covariate and involved all 

MC for whom both CSF and DTI data were available.
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The voxel-wise validation of the WM composite was conducted on the white matter skeleton 

generated from TBSS using Randomise (Winkler et al., 2014), a statistical package in FSL. 

A statistical threshold of p < 0.05 corrected for multiple comparisons was performed using 

5000 Monte Carlo permutations and threshold free clustering.

The WM composite was evaluated with a linear regression that used the same statistical 

threshold and FDR correction used to control for multiple comparisons.

2.7. Relationship between WM composite and EYO or cognition

These analyses included age and gender as a covariate and involved all MC for whom both 

CSF and DTI data were available. We evaluated the timing of changes in the WM composite 

in relation to EYO, and whether changes in WM composite were associated with cognitive 

performance. Both linear and quadratic models were performed with the WM composite 

predicted by either EYO or global cognitive score. In addition to the global cognitive 

score we evaluated the individual cognitive domains of memory (Logicial Memory Delayed 

Recall, Word list delayed recall, Paired associates recall) and executive functioning (Digit 

Symbol Substitution, Trail Making Part B, task switching) to determine cognitive domain 

specificity.

Prior work has shown that several CSF Tau phosphorylation sites change at distinct times 

with reference to EYO, but their relationships to cognitive changes are less understood. 

Therefore, we analyzed CSF phosphorylation at each tau site as a function of global 

cognitive performance to determine if decline was tau site specific. A statistical threshold of 

p < 0.05 was set for each analysis.

2.8. WM composite regression

Several factors can contribute to WM loss either in conjunction or independent of AD 

progression. Confounding covariates that can contribute to WM decline were included 

in the analysis that evaluated the relationship between CSF phosphorylation at each tau 

site and WM composite. All MC individuals who had multiple modal imaging and CSF 

were used in a linear regression model to predict WM composite loss with age, white 

matter hyperintensity (WMH) load, amyloid PET SUVR, CSF Tau phosphorylation site, 

and MRI cortical volume included as predictive variables. Each variable, except CSF Tau 

phosphorylation site, was included as a representative potential source of variance for WM 

decline. Increasing age has consistently been associated with WM loss (Molloy et al., 2021). 

WMHs due to cerebrovascular disease are also associated with WM loss (Maillard et al., 

2013). Cortical volume can serve as a proxy for neurodegeneration that occurs due to WM 

loss (Sintini et al., 2018). Finally, AD biomarkers (e.g. amyloid PET accumulation) has also 

been associated with WM loss. The main effects of each of these variables were evaluated 

to determine which predictor(s) significantly contributed to the model. Separate regressions 

were performed for each CSF Tau phosphorylation site with a statistical threshold of p < 

0.05 and adjusted for multiple comparisons (FDR). The following formula represents the 

linear model that was utilized to predict the WM composite with GM representing the 

cortical volume, Aß representing amyloid PET, WMH representing lesion load, and Tau 

representing the different phosphorylation sites (a) for each participant (j).
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WM composite = β0 + β1 ∗ Agei + β2 ∗ Aβi + β3 ∗ GMi + β4 ∗ WMHi + β5 ∗ Tauai

3. Results

3.1. Demographics

The original cohort consisted of 123 MC who had an average age of 36.5 years old and 

consisted of more females than males (M/F = 54/69). Additionally, 98 NC were on average 

39.9 years old and consisted of more males than females (M/F = 52/46). Within this cohort 

38 NC and 72 MC had CSF Tau phosphorylation site measurements. Six NC and 23 MC 

lacked an amyloid PET scan and two additional MC lacked a FLAIR scan resulting in 

32 NC and 47 MC that contained the following data DTI, T1, amyloid PET, FLAIR, and 

Tau phosphorylation sites. Sample sizes for each analysis were maximized based on the 

modalities involved. Further demographic information on the full cohort can be found in 

Table 1.

3.2. WM composite

The resulting primary components, from the entire MC group (n = 123), represent the 

linear combination of WM tracts. For FA, MD, and DR the primary component explained 

greater than 70% of the variance but only 56% of the variance for DA (Fig. 1). The WM 

composite identified for each DTI metric was comprised of four pathways (anterior and 

posterior corpus callosum, cingulum, and forceps major). Since FA, MD, and DR had 

similar topographies, FA was selected as the representative WM composite for subsequent 

analyses. For the remaining analyses individual factor scores from the FA WM composite 

represented an individual’s deviation from this pattern with higher scores representing 

healthier WM.

3.3. WM composite and WM voxel-wise regression analysis

All individuals with CSF and DTI were used in the following analysis (38 NC and 

72 MC). The FA WM composite derived from the MC cohort revealed a significant 

inverse relationship for CSF pT205 (p = 0.0021 FDR corrected) (Fig. 2) but not for other 

phosphorylation sites (Fig. 3). Similar results were observed when a voxel-wise regression 

was performed. Reductions in FA were associated with increases in CSF pT205 but not other 

Tau phosphorylation sites (Fig. 4). Furthermore, the spatial topography of the voxel-wise 

analysis revealed that FA integrity was diminished within the callosal and cingulate tracts 

(p < 0.05 corrected). Significant findings were only observed for the MC group with no 

significant findings seen for NC. These same tracts were key components of the WM 

composite (71% of variance) and may explain the similarity in results between these two 

methods.

3.4. WM composite correlation with EYO and cognitive performance

All individuals that had DTI and CSF were used in the following analysis (38 NC, and 

72 MC). The WM composite was significantly associated with EYO for MC (F = 32.9, p 
< 0.001) but not NC (F = 1.32, p = 0.253) (Fig. 5, right panel). However, the association 
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for the WM composite with EYO for the MC was not significantly different from the NC. 

Although no difference was observed for the regression for MC and NC only MC were 

significantly associated with increased disease severity (EYO). In contrast no significant 

decrease was observed in the NC.

Global cognitive performance was associated with the WM composite and each of 

the CSF Tau phosphorylation sites, but since the WM composite only correlated with 

phosphorylation at T205 we focused on this site for subsequent analyses. In MC, increases 

in the WM composite were associated with better cognitive performance (r = 0.64, p < 

0.001) (Fig. 6: Left). Increases in CSF pT205 were also associated with worse cognition (r 
= 0.525, p < 0.001) (Fig. 6 Right). When assessing each of the separate cognitive domains 

significant associations were only seen for the memory (r = 0.26; p = 0.0039) and executive 

function (r = 0.29, p = 0.0011) domains. This relationship was only present for the entire 

MC cohort but does not survive after removal of CDR > 0 individuals. No relationship was 

observed for NC (not shown). A post hoc partial correlation between pT205 and cognition 

with DTI as a covariate remained significant although considerably weaker suggesting a 

partial mediation (r = −0.3, 0.047).

3.5. Amyloid, GM, and CSF phosphorylation at T205 predict FA WM composite

All individuals that underwent multimodality imaging (amyloid, GM, WM, WMH) and had 

CSF were included into the following analysis (32 NC, 47 MC). Four linear regression 

models (each one included a different ptau site) were used to predict decline in the WM 

composite. In each model the overall linear regression model was significant (all p’s < 

0.001) with large Cohen’s f effect sizes (all >0.9). CSF pT205 was the only site that 

contributed to predicting the WM composite (p = 0.021) in conjunction with amyloid (p 
= 0.026) and gray matter atrophy (p = 0.036) after correction for multiple comparisons 

(Table 2). In each of the linear models, regardless of CSF Tau phosphorylation site, amyloid 

and gray matter atrophy significantly predicted the WM composite. These data suggest the 

combination of amyloid, gray matter atrophy and specific Tau phosphorylation sites are 

associated with WM decline.

4. Discussion

WM changes were evaluated with regards to CSF Tau phosphorylation sites, EYO, and 

cognition in a cohort of MC and NC within the DIAN cohort. A WM composite was 

derived from a PCA to create a single scalar metric for each participant. Loss within 

this WM composite was associated with greater phosphorylation at only CSF pT205 

and not other phosphorylation sites. In particular, WM loss was primarily seen within 

callosal and cingulate projections. Amyloid, gray matter and percentage of phosphorylation 

at site T205 significantly predicted FA WM composite independent of other sources of 

variance. Observed loss in the WM composite occurred near EYO and was correlated with 

cognitive performance both globally and within specific domains (memory and executive 

function). These results suggest that a lower WM composite is associated with increased 

phosphorylation at a specific tau site and occurs relatively late in AD progression.

Strain et al. Page 10

Neurobiol Dis. Author manuscript; available in PMC 2022 November 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The mechanism of phosphorylation specificity that may lead to a decrease in WM integrity 

loss remains unclear. Hyperphosphorylation can potentially lead to both a loss-of-function 

via the destabilization of microtubules (Feinstein and Wilson, 2005) structures or a toxic-

gain-of function that can influence mitochondrial function (Wang and Mandelkow, 2016; 

Hoover et al., 2010; Lasagna-Reeves et al., 2011). Our data support the former given the 

strong association between hyperphosphorylation of T205 and WM decline. Although more 

work is necessary to understand the mechanism suggested here between pT205 and WM 

some distinctions can be made about this particular tau species. The ratio of phosphorylation 

at pT205 elevates around the time of clinical onset which is distinct from pT181 and pT217, 

which start to increase at the preclinical stage and can decline after onset (Horie et al., 

2020b; Barthelemy et al., 2020b; Janelidze et al., 2020). Besides this temporal discrepancy, 

recent work from our colleagues has shown that different p-tau species can have different 

stoichiometry with regards to insoluble versus soluble state (Horie et al., 2020b). In that 

seminal paper, phosphorylated tau at pT181, pT217 and especially pS202 were more likely 

to be insoluble than soluble tau with an insoluble fraction of 30–60%. This implies that these 

p-tau species have higher propensity to be sequestered into insoluble tau. In contrast, pT205 

had an insoluble fraction of approximately only 2% in the AD brain. Moreover, significant 

hyperphosphorylation of T205 found in AD soluble brain extract and CSF indicated only 

partial deposition of this species into tau aggregates even after AD onset, suggesting the 

continuous increase of pT205 in CSF along with the WM composite.

Tau phosphorylation alone did not predict WM decline as the presence of both amyloid and 

tau were significant predictors of WM burden (Mitew et al., 2010). In animal models of AD, 

increasing amyloid plaque load is associated with greater accumulation of phosphorylated 

T205 tau suggesting that amyloid plaques are a prerequisite for phosphorylation of tau at 

this site (Davila-Bouziguet et al., 2019). Furthermore, treatment interventions focused on 

removing amyloid plaque also reduce pT205 suggesting that amyloid may mediate Tau 

phosphorylation at this particular site (Barthelemy et al., 2020a). Prior work has also shown 

that pyroglutamate Aß, which is more associated with AD that other Aß variants (Prelli 

et al., 1988), is associated with memory decline (Sofola-Adesakin et al., 2016; Moro et 

al., 2018) and predicts pT205. In this study the presence of abnormalities in both amyloid 

and tau predicted WM loss, solidifying that pT205 is a strong candidate for the observed 

structural alterations seen in AD (Neddens et al., 2018).

Fractional anisotropy was the main DTI metric studied but disruption of this metric is 

driven by an imbalance of diffusion perpendicular to the axon (DR). An increase in DR can 

translate to a breakdown of hydrophobic properties of myelin. This predominantly reflects 

demyelination which suggest an underlying mechanism for observed WM decline. Although 

our data suggests that demyelination may be the underlying factor for observed changes 

in white matter, additional studies using advanced sequences that parcellate diffusion 

coefficient are needed. Understanding the relationship between WM loss and specific CSF 

Tau phosphorylation sites are important for deciphering the disease progression of AD and 

may facilitate the development of specific therapeutics.

Of the three post-translational mechanisms associated with AD, hyperphosphorylation of 

CSF tau is commonly linked to neurodegeneration and cognitive decline (Wang et al., 2013). 
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In the current study only CSF pT205 was associated with WM composite loss. Recent 

work by our colleagues has shown that changes in CSF pT205 occur later in the disease 

process and coincide with the presence of NFTs (Mondragon-Rodriguez et al., 2014; Hoover 

et al., 2010; Lasagna-Reeves et al., 2011; Horie et al., 2020b; Barthelemy et al., 2020b; 

Janelidze et al., 2020; Mitew et al., 2010; Davila-Bouziguet et al., 2019; Prelli et al., 1988; 

Sofola-Adesakin et al., 2016; Moro et al., 2018; Neddens et al., 2018; Wang et al., 2013). 

When defined by the Braak stages pT205 is focally present in the hippocampus at Braak 

stage III/IV but disseminates to the temporal and cingulate cortices at later stages (V/VI) 

(Neddens et al., 2018). Our current findings are consistent with previous work as reductions 

in WM composite were seen near symptom onset and correlated with cognitive loss. The 

exact mechanism remains unknown but increases in pT205 could be initially protective due 

to the toxic environment (Devos and Hymen, 2017) but continued overexpression could 

cause axonal dysfunction (Kanaan et al., 2011). Additional longitudinal studies using WM 

composites are needed to support its application as a useful biomarker in later stages of 

AD. Furthermore, comparative studies in other disease models, including early-onset AD 

(EOAD), are needed to determine if a similar underlying mechanism is present in other 

younger affected populations.

The current results suggest that AD affects both gray matter (GM) and WM. Prior work 

by our colleagues have shown the changes in pT205 are associated with GM atrophy in 

AD individuals (Barthelemy et al., 2019). However, WM changes are also prominent in 

ADAD, who are younger and lack vascular comorbidities that are typically observed in 

LOAD cohorts. In a separate group of LOAD individuals we have shown that WM changes 

were associated with changes in regional tau PET (Strain et al., 2018). The current findings 

expand on this concept implicating that specific Tau phosphorylation sites may mediate WM 

changes. After including GM atrophy into our model CSF pT205 remained a significant 

predictor of WM composite loss suggesting WM loss not exclusively attributed to gray 

matter atrophy in ADAD. While our approach focused on generalized atrophy, similar 

results were seen when concentrating on local GM changes (e.g. precuneus). These findings 

suggest a WM specific mechanism occur in ADAD.

The spatial topography of the loss in the WM composite was specific for ADAD. Previous 

studies of LOAD have observed WM changes primarily within the temporal lobe and 

were associated with tau pathology (Strain et al., 2018). In ADAD, tau accumulation 

occurs earliest within posterior portions of the brain, especially the precuneus (Gordon 

et al., 2019). The primary WM pathways that contributed to WM composite loss included 

callosal tracts. This topography suggests that changes in posterior WM may be crucial for 

disease progression in ADAD. Further longitudinal studies of ADAD individuals are needed 

to identify additional areas that are subsequently susceptible to disease. The observed 

topography and lack of association with other CSF tau phosphorylated sites supports the 

concept that WM loss is not only spatially specific but site-specific for Tau phosphorylation.

There are several limitations to the current study. We focused on a subset of phosphorylation 

sites within a well characterized cohort of individuals with ADAD. As the technique 

for identifying the percentage of phosphorylation at specific sites improves, additional 

studies that focus on the combination of Tau phosphorylation sites that best associate 
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with loss of WM integrity. This study was the first to incorporate DTI and other 

imaging modalities with CSF Tau phosphorylation sites but did not include other biofluid 

information (e.g. inflammation or metabolic factors). Future studies are needed to examine 

additional mechanisms that may be involved in WM decline associated with specific Tau 

phosphorylation sites. CSF analyses by its nature quantifies soluble tau species and is 

unlikely a direct measure of intracellular tau aggregation. Additional longitudinal studies 

of WM integrity are needed to more robustly evaluate the nature of neuronal dysfunction 

with disease progression. Finally, ADAD believe to be an excellent model for evaluating 

AD progression as EYO is known. However, differences exist between ADAD and LOAD. 

Future studies are needed to confirm if these results are applicable to LOAD.

In summary, this study evaluated the role of white matter integrity loss in association 

with specific CSF Tau phosphorylation sites in ADAD. We identified a WM composite 

that was significantly different in MC compared to NC. The spatial topography of WM 

loss included the callosum and cingulate. Observed WM composite loss occurred near 

symptom onset (EYO 0) and were associated with global and domain specific cognitive 

decline and appeared to be facilitated by the presence of both amyloid accumulation and 

hyperphosphorylation of tau at a specific site.
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Fig. 1. 
This shows the primary component derived from the principal component analysis (PCA) 

for each diffusion tensor imaging (DTI) metric. The amount of variance that is explained 

for the mutation carrier (MC) cohort with a similar pattern observed for each of the DTI 

metrics. For the fig. PCC = Posterior Corpus Callosum; ACC = Anterior Corpus Callosum; 

F Maj = Forceps Major; Cing = Cingulum; F Min = Forceps Minor; ILF = Inferior 

Longitudinal Fasciculus; FOF = Fronto occipital fasciculus; FAT = Frontal Aslant Tract; 

PP = Perforant Pathway; SLF = Superior Longitudinal Fasiculus; UF = Uncinate Fasciculus; 

CS = Corticospinal Tract.
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Fig. 2. 
A negative relationship was observed between WM composite and the percentage of 

phosphorylation at site T205. Residual values were used after extracting the effects of age 

from the WM composite and tau site. Confidence intervals are set at 95%.
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Fig. 3. 
These linear plots show the relationship between the WM composite and the percentage of 

phosphorylation at various tau sites and total tau. Residual values were used after extracting 

the effects of age from the WM composite and tau site. Confidence intervals are set at 95%.
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Fig. 4. 
Results of the voxelwise correlation between PT205 and FA. Blue voxels represent 

significant voxels that survived the correction for MC. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. 
The left panel shows individual tracts involved in the white matter (WM) composite, with 

their corresponding weights in descending order for the PCA. The right panel shows the 

relationship between the WM Composite and estimate years to onset (EYO) for non-carriers 

(NC) (green) and MC (blue). 95% confidence were added for each group. For the fig. PCC 

= Posterior Corpus Callosum; ACC = Anterior Corpus Callosum; F Maj = Forceps Major; 

Cing = Cingulum; F Min = Forceps Minor; ILF = Inferior Longitudinal Fasciculus; FOF 

= Fronto occipital fasciculus; FAT = Frontal Aslant Tract; PP = Perforant Pathway; SLF = 

Superior Longitudinal Fasiculus; UF = Uncinate Fasciculus; CS = Corticospinal Tract. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 6. 
Correlation of cognition with the WM signature region (left) and phosphorylation occupancy 

at site T205 (Right).
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