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A B S T R A C T   

Introduction: This study investigates the influence of vaccination along with other pandemic- 
related factors on driving, transit, and walking in New York City (NYC). The results of this 
study help inform policymakers of the weight of their decisions in a pandemic setting as well as 
factors to consider when modeling transportation during a pandemic. 
Methods: In this study, ARIMAX time series analysis was performed on driving, transit, and 
walking data from Apple Mobility Trends Reports. The data was segmented into two categories 
“pre-vaccine” and post-vaccine” for both Manhattan and Brooklyn. The independent variables 
were primarily COVID-19 statistics (vaccination, case counts, deaths, etc.) along with additional 
predictors aggregated from Google Community Mobility Reports, Google Trends, Citi Bike, Na
tional Oceanic and Atmospheric Administration (NOAA), and the Oxford Covid-19 Government 
Response Tracker (OxCGRT). 
Results: Vaccination led to increases in driving, transit, and walking in Brooklyn but was not as 
statistically significant in Manhattan (the only effect being on walking trips). Despite this, 
vaccination was not the strongest influencer on transportation. The COVID-19 policy score var
iable had the highest standardized β in nearly every model, indicating that stricter lockdown 
policies were the main factor discouraging travel. Furthermore, the lifting of these policies 
contributed to increases in travel numbers more than vaccination. 
Conclusions: In the event of future pandemics or health crises, NYC policymakers should be aware 
that they play a significant role in mitigating infectious diseases. The public is seemingly more 
responsive to policy than anything else. Similar studies should be conducted in other cities as the 
public response may vary based on other factors.   

1. Introduction 

Individuals traveling via modes such as transit significantly contributed to the initial outbreak of the COVID-19 virus and the re- 
surges after (Harris, 2020; Zhao et al., 2020). An accurate forecast of travel demand early in the pandemic would have helped 
decision-makers implement the correct policies to reduce the number of individuals traveling thus, mitigating the rapid spread of the 
virus. Aggregate trip generation models and disaggregate mode choice models are very popular tools for travel demand forecasting. 
Unfortunately, decision-makers were not equipped with accurate trip generation and mode choice information because the models 
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were unable to accurately forecast travel demand during the pandemic (Abdullah et al., 2021). Trip generation models generally use 
aggregate socio-demographic data such as income, employment status, vehicle ownership, and household size, within a region. Mode 
choice models also typically, depend on disaggregate socio-demographic data, with the addition of variables related to perceptions 
such as travel time, cost, distance, comfort, and safety (Vredin Johansson et al., 2005). These existing travel models failed to account 
for pandemic-related factors such as vaccination status, COVID-19 policies, perceptions of social distancing, mask usage, and clean
liness (Abdullah et al., 2020; Chen et al., 2022; Liu et al., 2020; Wang and Noland, 2021). 

Transportation demand during the pandemic has also been affected by COVID-19 statistics such as cases, hospitalizations, and 
deaths (Barbieri et al., 2021; Chen et al., 2022; Teixeira and Lopes, 2020; Tokey, 2021). The findings were that higher COVID-19 
statistics led to reduced transportation numbers across all modes. However, the influence of COVID-19 vaccination on travel has 
scarcely been investigated in transportation-based studies thus far. Zhong et al. (2021) observed that transit ridership increased by 
0.439% for every percent increase in first-dose vaccination rates and 0.676% for every percent increase in complete vaccination rates, 
in the United States. There were a few limitations to this study with regards to transportation planning: 1) modes such as driving, and 
walking were excluded which are crucial for urban planning 2) the study was across the United States which does not accurately reflect 
transit demand in specific locations and does not allow for comparison of vaccination impacts by location. 3) there is no comparison 
between the effects of COVID-19 statistics and vaccination. In our study, these limitations are addressed by:  

1) investigating the influence of first dose and complete set (2+ dose) vaccination on increases in the number of driving, walking trips 
(in addition to transit) during the pandemic  

2) comparing this influence in two different boroughs in NYC: Manhattan, and Brooklyn  
3) comparing the influence of COVID-19 cases, deaths, hospitalizations, and policy against the influence of vaccination on 

transportation 

2. Literature review 

There is a scarcity of literature on the impact of vaccination on transportation. As mentioned before, Zhong et al. (2021) observed 
that transit ridership increased by 0.439% for every percent increase in first-dose vaccination rates and 0.676% for every percent 
increase in complete vaccination rates, in the United States, but it was also stated that “the role of vaccination in public transportation 
has been minimally discussed.” Zhong et al. (2021) was cited by two other papers, which we reviewed to see if there was any further 
insight into the impact of vaccination on transportation. The first paper used regression models in a secondary analysis finding that 
expenditure related to transportation increased by 0.0093 units for every percent increase in vaccination rates and the transportation 
variable was significant at α = 0.01 (Aslim et al., 2022). Being a secondary analysis, there were few details about the transportation 
spending data, therefore conclusions concerning the effect of vaccination on transportation cannot be drawn. It is unclear what was 
included in transportation expenditure and what the units were. Furthermore, increases in transportation spending do not necessarily 
equate proportionally to increases in the number of trips. The second paper is a literature review paper that suggested that vaccination 
would reduce the public risk perception of COVID-19 leading to increases in public transit ridership (Albalate et al., 2022). 

However, most studies primarily focus on how vaccination led to reductions in infection, hospitalization, and death rates (Chen 
et al., 2022; Eyre et al., 2022; Wang et al., 2022). The study from Wang et al. (2022) used an interesting approach, rather than looking 
at vaccination numbers, vaccination-related policies were the focus of the study. It was found that vaccination policies did mitigate the 
spread of the virus which in turn led to increases in mobility. This begs the question of whether vaccination numbers or policy was 
influencing transportation demand. While our study does take into consideration the impact of COVID-19 restriction policies it does 
not include vaccination policies. 

3. Methods 

3.1. Modeling approach 

In this study autoregressive integrated moving average (ARIMA) models with additional regressors, also known as ARIMAX models 
were estimated: 

yt =
∑p

i=1
φiyt− i +

∑q

i=1
ϴiεt− i +

∑n

i=1
βiXi + εt 

φi is the coefficient for the autoregressive term and p is the number of times that the autoregressive term is lagged. Rather than 
using just the previous value (yt− 1) or one lag, like in a basic time series model, yt− i is used, allowing for any number of lags. ϴi is the 
coefficient for the moving average term and q is the number of times the moving average term is lagged. The moving average term uses 
previous errors as predictors for yt. This assumes that previous variance from unexplained factors is affecting the current value. The 
term βi refers to the coefficient for the regressor or predictor variables, Xi and n depend on the number of regressors. βi and Xi constitute 
a typical regression model. Adding regressors to the ARIMA model can improve its accuracy by reducing the unexplained variance 
found in the error term (Kongcharoen and Kruangpradit, 2013; Rizalde et al., 2021). εt is the remaining error or variance that was not 
capture by the model. 
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3.2. Data aggregation 

The predictor variables in Fig. 1 were aggregated from the New York State Health Department, Google Community Mobility Re
ports, Google Trends, Citi Bike, NOAA and the OxCGRT/New York Times News. The dependent variables were from Apple Mobility 
Trends Report. The variables used in this study were selected based on the following criterion: 1) the data sources are open access, 2) 
the data relates to transportation demand based on previous research, 3) the data is available at the city-wide level 4) the data is 
collected and changing at a daily level or weekly level (which can be manipulated to the daily level) and 5) the dataset is available from 
February 15th, 2020, to January 27th, 2022. As a result of our criteria, socio-economic data did not fit well in the model specification. 
These kinds of variables, which do not change frequently, would not provide meaningful results for our time series analysis. 

3.3. Data Description and Processing 

Google Community Mobility Reports reported the daily percent deviations of the activities (found in the orange box in Fig. 1) from 
their baseline values (Google, 2022). The baseline was equated to 0% and was determined using the median value of each activity from 
January 3rd to February 6th, 2020. 

Apple Mobility Trends Reports granted access to daily percent deviations in the number of navigation requests for car trips, transit 
rides, and walking (Apple, 2022). The baselines were the car, transit, and walking requests made on January 13, 2020. Apple mobility 
Reports data used 100% as the baseline. 

The New York State Health Department website provided access to daily COVID-19 Vaccination numbers as well as the number of 
COVID-19 tests, positive tests, hospitalizations, and deaths, at the county level (New York State Health Department, 2022). For 
clarification, the number of tests refers to the total number of COVID-19 tests performed irrespective of the result (positive, negative, or 
inconclusive) while, the number of positive tests strictly refers to the number of tests that’s results were positive. The first dose variable 
refers to the number of individuals with one dose of an mRNA vaccine while series complete refers to the number fully vaccinated 
either by one dose of the J&J vaccine or two doses of the mRNA vaccine. The first dose and series-complete variables were cumulative 
and converted to daily totals by subtracting the following day’s cumulative number from the current day’s cumulative number. 

Google Trends provided access to searches made on Google’s search engine (Google, 2022). It did not give the total number of 
searches, rather a relative ranking from 0 to 100 based on the popularity of a word or topic over a period. This data was on a weekly 
level, so the same weekly value was applied for each day in a week (to get data at the daily level). 

Citi Bike is a bike-sharing platform located in the NYC area and provided open access to all bike-sharing trips since 2014 (Citi Bike, 
2022). The coordinates of each trip were reverse geo-coded in order to determine if they were in Manhattan or Brooklyn, then 
aggregated at the daily level. 

NOAA provided weather data including wind, precipitation, snowfall, and temperature (NOAA, 2022). 
The policy score variable was calculated based on the OxCGRT (Hale et al., 2021). The OxCGRT has a list of categories for 

COVID-19 related policies (indicators) and maximum scores assigned to each policy (index composition and values). The New York 
Times released a timeline of when various COVID-19 policies were put in place and lifted, from March 2020 to March 2022 (New York 
Times, 2022). Using the OxCGRT, scores were assigned to each policy from the New York Times. The policy score variable is a daily 
sum of all policies currently implemented on each given day. The score started at 0 when there were no COVID-19 policies effective. 
Each time a policy was implemented the corresponding OxCGRT score was added to the daily Policy Score value (likewise, if a policy 
was removed, the corresponding score was removed). 

Min-max normalization was used to scale the data between 0 and 1 using the following equation: 

Fig. 1. List of predictor variables and their data sources for the time series analysis (left). Dependent variables from Apple Mobility Trends Re
ports (right). 
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ynorm =
y − ymin

ymax − ymin  

Where ynorm is the normalized value for the predictor variable used in the model, y is the set of values for the predictors, ymin and ymax 
are the minimum and maximum values if the set of values in for the given predictor variable. 

The covariance matrix and Variance Inflation Factor (VIF) of the variables used in each of the modeling scenarios can be found in 
Appendix A (Fig. 3, Fig. 4, Fig. 5, and Fig. 6). Variables with a correlation of 0.7 were considered unacceptable due to a high risk of 
multicollinearity and were removed (Kumari, 2012; Salih, 2019). Therefore, all the variables shown in Fig. 1 were not included in 
every model. Only the combination of variables that did not threaten multicollinearity were included. There were four modeling 
scenarios because models were run for Brooklyn and Manhattan and in both cities, there were pre-vaccine (2/15/20-12/13/2020) and 
post-vaccine (12/2020-1/27/2022) models. The 4 modeling scenarios are shown in Fig. 2: 1. Manhattan Pre-Vaccine 2. Manhattan 
Post-Vaccine, 3. Brooklyn Pre-Vaccine, 4. Brooklyn Post-Vaccine. For each modeling scenario, there were three modes of trans
portation: driving, walking and transit, rendering a total of 12 models (4 modeling scenarios * 3 transportation modes = 12 models). 

4. Results 

Tables 1–4 display the model results for each mode of transportation, pre-and post-vaccine in both Manhattan and Brooklyn. The 
superscript numbers 1-12 correspond to the “Model # 1–12” in Fig. 2. Insignificant variables were removed from the model denoted by 
the “-” symbol. The significant level in this study was 0.05 with a sample size of n = 303 (degrees of freedom = 302) for the pre-vaccine 
models and n = 410 (degrees of freedom = 409) for the post-vaccine models. Therefore, the critical values were 1.967 and 1.966, 
respectively. Coefficients (β) were standardized, allowing for comparison of the predictor variables. Autoregressive terms are denoted 
by “AR” and moving average terms are denoted by “MA” in the tables. 

4.1. Manhattan pre- and post-vaccine 

In Manhattan, before the vaccine out roll (Table 1), increases in the number of COVID-19 Positive Tests/cases (β = − 0.241, T =
− 2.253) negatively influenced driving demand. For transit and walking, the number of COVID-19 Positive Tests were not statistically 
significant, but the number of COVID-19 Tests were (β = − 0.237, T = − 3.432 and β = − 0.322, T = − 3.137, respectively). The COVID- 
19 Tests variable refers to the number of tests taken regardless of the result (positive, or negative) while the COVID-19 Positive Tests 
variable only refers to the number of confirmed positive cases. This could indicate that fears from the increasing numbers of individuals 
taking COVID-19 tests were strong enough to dissuade the public from using transit or from walking. On the other hand, the choice to 
drive was only influenced when the test was confirmed to be positive. This could suggest an increased risk perception of COVID-19 for 
modes like transit and walking regardless of the number of confirmed cases. This would align with previous research suggesting that 
there was a lower risk perception of COVID-19 for drivers than individuals using modes where they could potentially be exposed to 
other infected individuals (Beck and Hensher, 2021; Khaddar and Fatmi, 2021; Paydar and Kamani Fard, 2021). Increases in searches 
for COVID-19 on google led to decreases in driving, transit, and walking trips. Finally, the strongest predictor (highest standardized β) 
for all three modes was the policy score: Driving (β = − 0.694, T = − 14.852), Transit (β = − 0.631, T = 12.094), Walking (β = − 0.400, 
T = − 4.656). This indicates that stricter COVID-19 related policies were the primary influencer of decreases in travel in Manhattan 
before the vaccine out roll. 

After the vaccine rollout (Table 2) first dose and complete set of vaccinations had almost no impact on driving, transit, or walking. 
The only statistically significant effect was first-dose vaccination on walking which was negative (β = − 0.140, T = − 2.575). This 

Fig. 2. Breakdown of the modeling scenarios for Manhattan and Brooklyn.  

J. Drummond and M.S. Hasnine                                                                                                                                                                                    



Journal of Transport & Health 28 (2023) 101539

5

means increases in the number of individuals with first-dose vaccination led to decreases in walking. This may seem counter-intuitive, 
but it is justifiable. As individuals were stuck at home during the pandemic, they began developing a “fatigue” (Ding and Zhang, 2021). 
Many resorted to walking to exercise and as a replacement for typical leisurely travel, which was canceled due to the restrictions 
(Hunter et al., 2021). As the pandemic progressed lockdown restrictions and the overall fear of COVID-19 began diminishing causing 
individuals to shift back towards more “normal” behavior (Jia et al., 2022). Therefore, it would make sense that people were less 
engaged in walking for exercise and leisurely travel, after vaccination. Grocery and pharmacy shopping was a significant influencer for 
both driving (β = 0.329, T = 13.028) and transit (β = 0.247, T = 11.335). Increases in searches for the delta variant on google led to 
increases in all three modes driving (β = 0.194, T = 7.872), transit (β = 0.136, T = 5.121), walking (β = 0.187, T = 4.222). This is likely 
because in the latter half of the post-vaccine period delta cases were decreasing significantly. After seeing the decline in delta-related 
cases after searching, individuals likely started gaining confidence to travel again. Searches for the booster shots led to increases in 
driving (β = 0.230, T = 5.742) and walking (β = 0.249, T = 2.951). It is likely that as individuals were seeing increases in the number of 

Table 1 
Pre-vaccine model results in Manhattan.   

Driving Pre-Vaccine - ARIMA (3,0,0)a Transit Pre-Vaccine - ARIMA (3,0,2)b Walking Pre-Vaccine - ARIMA (3,0,1)c 

Coefficient (β) T-statistic Coefficient (β) T-statistic Coefficient (β) T-statistic 

AR1 0.768 13.526 − 0.067 − 0.138 1.694 28.096 
AR2 − 0.339 − 6.025 0.487 4.927 − 1.025 − 10.545 
AR3 – – − 0.132 − 0.528 0.324 5.534 
MA1 – – 0.898 1.803 − 0.912 − 25.464 
MA2 – – − 0.062 − 0.13 – – 
Intercept − 64.998 − 5.156 − 33.233 − 3.847 − 70.973 − 4.469 
COVID-19 Tests 0.026 0.342 ¡0.237* − 3.432 ¡0.322* − 3.137 
COVID-19 Positive Tests ¡0.241* − 2.253 − 0.063 − 0.689 − 0.192 − 1.389 
COVID-19 Deaths 0.121 0.836 − 0.001 − 0.01 0.049 0.316 
Search: COVID-19 ¡0.380* − 8.89 ¡0.354* − 8.675 ¡0.289* − 3.98 
Bike Trips 0.178* 7.398 0.111* 6.548 0.176* 7.637 
Temperature – – ¡0.099* − 3.217 – – 
Policy Score ¡0.694* − 14.852 ¡0.631* − 12.094 ¡0.400* − 4.656 

*Significant predictors at the 95% confidence level. 
a Sigma squared = 61.73, AIC = 2120.58, BIC = 1933.07. 
b Sigma squared = 27.6, AIC = 1881.08, BIC = 2157.71. 
c Sigma squared = 71.91, AIC = 2169.7, BIC = 2214.27. 

Table 2 
Post-vaccine model results in Manhattan.   

Driving Post-Vaccine - ARIMA (3,0,0)a Transit Post-Vaccine - ARIMA (3,0,2)b Walking Post-Vaccine - ARIMA (3,0,1)c 

Coefficient (β) T-statistic Coefficient β T-statistic Coefficient (β) T-statistic 

AR1 0.953 12.924 0.676 13.855 0.363 0.531 
AR2 − 0.547 − 10.455 − 1.246 − 26.73 – – 
AR3 – – 0.718 15.146 – – 
AR4 – – − 0.748 − 14.064 – – 
MA1 − 0.318 − 3.798 0.166 2.457 0.386 0.566 
MA2 – – 1.25 26.756 − 0.017 − 0.033 
MA3 – – 0.102 1.517 − 0.129 − 0.678 
MA4 – – 0.589 12.346 − 0.001 − 0.01 
Intercept 144.715 4.141 162.962 4.429 199.647 2.528 
COVID-19 Vaccine First-dose − 0.011 − 0.301 0.016 0.588 ¡0.140* − 2.575 
COVID-19 Vaccine Complete-set 0.001 0.016 − 0.04 − 1.224 0.009 0.156 
COVID-19 Tests ¡0.080* − 2.17 ¡0.065* − 2.371 − 0.02 − 0.491 
COVID-19 Positive Tests 0.153 0.809 0.467* 2.773 0.047 0.146 
COVID-19 Deaths − 0.151 − 0.894 ¡0.296* − 1.884 − 0.056 − 0.198 
Search: COVID-19 ¡0.205* − 3.795 ¡0.288* − 5.496 − 0.14 − 1.699 
Search: Delta 0.194* 7.872 0.136* 5.121 0.187* 4.222 
Search: Booster 0.230* 5.742 – – 0.249* 2.951 
Grocery & Pharmacy (%) 0.329* 13.028 0.247* 11.335 – – 
Working (%) – – ¡0.076* − 2.056 0.142* 5.343 
Precipitation – – – – ¡0.079* − 4.475 
Snow – – 0.028* 2.758 – – 
Policy Score ¡0.245* − 5.352 ¡0.511* − 12.997 ¡0.412* − 5.195 

*Significant predictors at the 95% confidence level. 
a Sigma squared = 150.6, AIC = 3236.03, BIC = 3111.33. 
b Sigma squared = 88.38, AIC = 3026.99, BIC = 3111.33. 
c Sigma squared = 391, AIC = 3629.98, BIC = 3702.27. 
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people receiving boosters, they felt more comfortable traveling (Jia et al., 2022). COVID-19 related searches still had a negative impact 
on driving (β = − 0.205, T = − 3.795) and transit (β = − 0.288, T = − 5.496) indicating there was still an overall fear of the pandemic, 
despite vaccination. Overall, policy was the strongest influencer for transit (β = − 0.245, T = − 5.352) and walking (β = − 0.511, T =
− 12.997) and the second strongest influencer for driving (β = − 0.412, T = − 5.195) behind grocery shopping. Just like pre-vaccine, 
stricter COVID-19 related policies were the primary influencer for decreases in all modes of travel. 

4.2. Brooklyn pre- and post-vaccine 

In Brooklyn, before the vaccination (Table 3), COVID-19 cases, deaths, and hospitalizations had almost no influence on travel. Only 
walking was negatively affected by positive case counts (β = − 0.220, T = − 3.638). Similar to Manhattan, increases in searches for 
COVID-19 on google and stronger COVID-19 policies led to decreases in travel for all three modes. One notable difference is that 
searches for COVID-19 were stronger influencers than policies in Brooklyn, whereas, in Manhattan, policies were the strongest 
influencer. Grocery/pharmaceutical shopping and travel to parks were also positive influencers for all three modes. 

Post-vaccine (Table 4) first-dose vaccination was a significant influencer, leading to increases in car and transit trips (β = 0.133, T 
= 4.019, β = 0.121, T = 3.654). Complete vaccination was a significant influencer leading to increases in the number of walking trips 
(β = 0.123, T = 3.265). Similar to Manhattan (after vaccination), COVID-19 searches on google, and policies led to decreases in travel 
for all three modes. After vaccination, COVID-19 policies were stronger influencers than COVID-19 searches in Brooklyn. Grocery/ 
pharmaceutical shopping and travel to parks were also influencers for all three modes just like in the pre-pandemic setting. 

5. Discussion 

5.1. Was vaccination the main contributor to increases in transportation? 

The results of this study suggest that vaccination did not have as strong of an effect on transportation as expected. Vaccination did 
not statistically contribute to an increase in any mode of transportation in Manhattan. In Brooklyn, only first-dose vaccination led to 
increases in car and transit trips and only complete vaccination led to increases in walking. Rather, the policy variable was the 
strongest predictor (highest standardized β) for nearly every mode both pre-and post-vaccine. This indicates that stronger COVID-19 
policies led to a greater reduction in travel and thus, the lifting of these policies also contributed to increases in travel. This seems to 

Table 3 
Pre-vaccine model results in Brooklyn.   

Driving Pre-Vaccine - ARIMA (5,1,2)a Transit Pre-Vaccine - ARIMA (2,1,3)b Walking Pre-Vaccine - ARIMA (0,0,1)c 

Coefficient (β) T-statistic Coefficient β T-statistic Coefficient (β) T-statistic 

AR1 0.238 1.794 − 0.436 − 24.472 0.104 1.665 
AR2 − 0.743 − 11.275 − 0.977 − 56.462 − 0.81 − 17.301 
AR3 − 0.203 − 2.346 – – − 0.248 − 3.425 
AR4 − 0.346 − 6.625 – – − 0.375 − 8.606 
AR5 − 0.433 − 5.315 – – − 0.613 − 11.162 
MA1 − 0.71 − 4.673 0.206 3.271 − 0.721 − 9.405 
MA2 0.516 4.916 0.918 15.281 0.784 13.228 
MA3 – – − 0.42 − 5.276 − 0.215 − 3.307 
MA4 – – 0.041 0.62 – – 
MA5 – – − 0.329 − 6.344 – – 
Intercept – – – – – – 
a) COVID-19 Positive Tests – – – – ¡0.220* − 3.638 
b) COVID-19 Hospitalizations − 1.282 − 1.659 0.081 0.18 – – 
c) COVID-19 Deaths 1.223 1.588 − 0.101 − 0.227 – – 
Search: COVID-19 ¡0.285* − 3.986 ¡0.516* − 7.702 ¡0.270* − 4.556 
Search: Delta – – – – – – 
Search: Booster – – – – – – 
Search: Vaccine – – – – – – 
Grocery & Pharmacy (%) 0.155* 5.278 0.076* 4.654 0.153* 7.978 
Parks (%) 0.080* 2.852 0.126* 7.965 0.298* 17.028 
Wind – – – – – – 
Precipitation – – – – – – 
Temperature – – ¡0.068* − 2.128 – – 
Policy Score ¡0.230* − 3.101 ¡0.208* − 2.767 ¡0.213* − 4.027 

*Significant predictors at the 95% confidence level. 
a), b), c) The COVID-19 Positive Tests variable is only included in the walking model because the Hospitalization and Death variables were not sta
tistically significant. When Deaths and Hospitalizations were removed, Positive Tests no longer posed a threat to multicollinear which is why it was 
only included in the walking model. 

a Sigma squared = 80.41, AIC = 1847.58, BIC = 1901.56. 
b Sigma squared = 24.84, AIC = 1847.58, BIC = 1901.56. 
c Sigma squared = 42.58, AIC = 2012.42, BIC = 1901.56. 
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agree with a regression study conducted on attitudes in Japan which also standardized its parameters, stating that “policymaking 
capacity is most influential in inducing changes in behaviors” (Ding and Zhang, 2021). The finding was that attitudes towards the 
policy variable had the strongest influence on risk perception of the virus (β = − 0.517). Another study conducted in New York and 
Seattle using Break Point (BP) Detection Regression found significant changes in road traffic, public transportation, and biking after the 
implementation and removal of COVID-19 policies (Bian et al., 2021). The second strongest influencing variable all around in this 
study was the Search: COVID-19 variable. This means an increasing number of searches involving COVID-19 led to reductions in travel 
for all modes. This also agrees with existing literature suggesting that individuals’ behaviors were strongly influenced by information 
from governmental authorities and the spreading of news concerning COVID-19-related events (Chang and Meyerhoefer, 2021; Ding 
and Zhang, 2021). It appears that social awareness of the virus and policy influence travel decisions more than the actual COVID-19 
case counts, hospitalization deaths, and vaccination numbers. As previously mentioned, Zhong et al. (2021), found that transit 
ridership increased by 0.439% for every percent increase in first-dose vaccination and 0.676% for every percent increase in complete 
vaccination rates in the United States. These findings suggest two things, 1) that vaccination did increase travel (at least for transit), 
and 2) complete vaccination was a stronger influence on travel than first dose vaccination. Our study did not find a positive influence of 
first dose vaccination on transit in Manhattan or Brooklyn but did confirm a positive influence of complete vaccination on transit in 
Brooklyn. This difference likely occurred because the study from Zhong et al. (2021) was reflective of net changes across the country. 
While our study specifically looked at two sub-sections of NYC. This suggests that the net influence of vaccination on transportation is 
not reflective of smaller-scale impacts in specific regions, states, and cities. The influence of vaccination on transportation should be 
studied at in each city. 

5.2. Comparison and contrast of results in Manhattan and Brooklyn 

Transportation in Manhattan appeared to be more influenced by COVID-19 count variables (tests, positive tests, hospitalizations, or 
deaths) than transportation in Brooklyn. All six models for Manhattan (all modes pre- and post-vaccine) showed a statistically sig
nificant response to COVID-19 count variables whereas only two of the six models (walking pre- and post-vaccine) showed a response 
for Brooklyn. This could confirm the idea conveyed in previous literature that the effects of the pandemic were perceived as less 
dangerous in more suburban environments like Brooklyn than in urban environments like Manhattan (Chauhan et al., 2021). Though 
Brooklyn has a larger population Manhattan has nearly twice the population density (United States Census Bureau, 2021). Being 
surrounded by a larger density of individuals likely heightened perceptions of the virus (Paydar and Kamani Fard, 2021). On the other 
hand, vaccination affected all three of the post-vaccine models in Brooklyn but only one of the post-vaccine models in Manhattan 
(walking model). This seems to indicate was Brooklyn was less responsive to COVID-19 counts but more responsive to vaccination. Due 
to the risk of multicollinearity, most of the Google Community Trends Report variables were not able to be used, so it was difficult to 

Table 4 
Post-vaccine model results in Brooklyn.   

Driving Post-Vaccine - ARIMA (0,0,1)a Transit Post-Vaccine - ARIMA (2,1,3)b Walking Post-Vaccine - ARIMA (0,0,1)c 

Coefficient (β) T-statistic Coefficient (β) T-statistic Coefficient (β) T-statistic 

AR1 – – 0.448 21.936 – – 
AR2 – – 0.94 34.185 – – 
MA1 0.395 8.747 0.236 5.423 0.429 9.612 
MA2 – – 0.42 8.094 – – 
MA3 – – 0.76 19.388 – – 
Intercept 57.584 3.317 – – 46.409 1.903 
COVID-19 Vaccine First-dose 0.133* 4.019 0.121* 3.654 – – 
d COVID-19 Vaccine Complete-Set – – – – 0.123* 3.265 
COVID-19 Positive Tests 0.14 1.951 0.14 1.59 0.206* 2.69 
COVID-19 Hospitalizations 0.053 0.179 − 0.068 − 0.334 − 0.039 − 0.141 
COVID-19 Deaths 0.086 0.292 − 0.073 − 0.37 − 0.143 − 0.513 
Search: COVID-19 ¡0.282* − 3.755 ¡0.213 − 3.613 ¡0.226* − 3.122 
Search: Delta 0.148* 4.139 – – ¡0.098* 2.372 
Search: Vaccine – – – – – – 
Grocery & Pharmacy (%) 0.254* 9.429 0.080* 3.997 0.130* 4.832 
Working (%) 0.113* 4.105 0.162* 7.869 0.202* 7.58 
Wind – – – – – – 
Precipitation – – ¡0.057* − 3.523 ¡0.087* − 3.639 
Snow – – – – – – 
Temperature – – – – 0.196* 3.312 
Policy Score ¡0.376* − 6.362 ¡0.217* − 2.333 ¡0.294* − 4.502 

*Significant predictors at the 95% confidence level. 
a Sigma squared = 188.4, AIC = 3142.6, BIC = 3372.61. 
b Sigma squared = 304.9, AIC = 3142.6, BIC = 3205.43. 
c Sigma squared = 304.9, AIC = 3524.71.7, BIC = 3579.87. 
d The COVID-19 Vaccine Complete set variable was removed from the set of post-vaccine variables in Brooklyn due to high correlation with First- 

dose vaccination numbers. It is included in the table because it was modeled separately and was statistically significant (for walking only). 
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compare differences in trip purpose between the two boroughs (Manhattan and Brooklyn). The only similarity observed was that 
grocery/pharmaceutical shopping was an influencer for nearly every mode of transportation both pre-and post-vaccine in both bor
oughs, which makes sense because travel for groceries/pharmaceuticals is essential. 

5.3. Interpretation of the “COVID-19 tests” variable 

An increase in COVID-19 tests may be an indicator of heightened fears of COVID-19 due to potential exposure. The problem is that 
the impact of this variable on transportation is also dependent upon the result of that test. For instance, if a large number of individuals 
are being tested and the results are generally negative, then those individuals would be more likely to travel because there would be no 
risk of them transmitting the virus. On the other hand, if a large number of individuals are tested and the results are generally positive 
then those individuals would be less likely to travel. Therefore, in future work, it may be worthy of using another variable such as the 
“% Positive of COVID-19 tests”. This variable would be equal to the number of COVID-19 Positive Tests divided by the total number of 
COVID-19 tests helping to clarify the results of the variable “COVID-19 tests”. This variable was not included in our study because it 
threatened high multicollinearity (refer to Section 3.3 Data Description and Processing). 

6. Conclusion 

The objective of this study was to investigate the influence of the COVID-19 vaccine on transportation in NYC. An ARIMAX time 
series analysis was performed on driving, transit, and walking data from Apple Mobility Trends Reports. The predictor variables were 
aggregated from Apple Mobility Reports, the New York State Health Department (Vaccination and COVID-19 numbers), Google 
Community Mobility, Google Trends, Citi Bike, NOAA and OxCGRT. The result of the time series analysis showed that vaccination led 
to increases in driving, transit, and walking, but was not the main influencer of travel demand. The COVID-19 policy variable was the 
strongest influencer of any other variable used in the study. The presence of more COVID-19 lockdown policies led to decreases in 
demand for all modes of transportation and thus the lifting of the policies led to increases. The second strongest influencer was the 
number of COVID-19 related searches on google. These findings suggest that the NYC public is more responsive to policy and social 
awareness of the virus than actual COVID-19 case counts, hospitalizations, deaths, and vaccination rates. Therefore, in the event of 
another public health crisis, NYC policymakers should be aware the implementation and lifting of health policies will likely influence 
the public’s decision more than statistics and their safety/risk perception of the health crisis. This study is only reflective of the in
fluence of vaccination on transportation in NYC, thus the results may vary in different locations. 

There are several limitations in this study: 1) Driving, transit, and walking data from Apple Mobility Reports came from the number 
of navigation requests made on Apple Maps (Hu et al., 2021; Zhang et al., 2022). Apple phone users make up only about 47% of the U.S. 
population and of that group, only about 50% request navigation for travel. Therefore, the travel demand data may not accurately 
represent the NYC population. 2) Driving and transit are general categories, which do not allow for a distinguishment between 
ride-hailing, car-sharing, or private car, and train or bus. Using a more robust data set is recommended for future work to better 
understand how vaccination and policy affected more specific modes. 3) The policy score variable does not distinguish which specific 
policies had the strongest influence on travel. Future work could divide the policy information into separate policy categories, to 
identify which policies were the most effective in discouraging travel 4) Google trends did not provide data at the county (borough) 
level unlike COVID-19 so data from all of NYC was used which may not have been representative of searches specific to Manhattan and 
Brooklyn. 
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Fig. 3. Covariance matrix (upper) and VIF (lower) for variables used in Manhattan model Pre-Vaccine Models. a) COVID-19 Tests, b) COVID-19 
Positive Tests, c) COVID-19 Deaths, d) Search: COVID-19, e) Search: Delta, f) Search: Booster, g) Search: Vaccine, h) Bike Trips, i) Wind, j) Pre
cipitation, k) Temperature, l) Policy Score 
Note: All the variables shown in the above figure were not included in every model. Only the combinations of variables that did not threaten 
multicollinearity were included.  

Fig. 4. Covariance matrix (upper) and VIF (lower) for variables used in Manhattan model Post-Vaccine Models a) COVID-19 Vaccine First-dose, b) 
COVID-19 Vaccine Complete-set, c) COVID-19 Tests, d) COVID-19 Positive Tests, e) COVID-19 Deaths, f) Search: COVID-19, g) Search: Delta, h) 
Search: Booster, i) Grocery & Pharmacy (%), j) Working (%), k) Wind, l) Precipitation, m) Snow, n) Policy Score 
Note: All the variables shown in the above figure were not included in every model. Only the combinations of variables that did not threaten 
multicollinearity were included.  

Fig. 5. Covariance matrix (upper) and VIF (lower) for variables used in Brooklyn model Pre-Vaccine Models a) COVID-19 Hospitalizations, b) 
COVID-19 Deaths, c) Search: COVID-19, d) Search: Delta, e) Search: Booster f) Search: Vaccine, g) Grocery & Pharmacy (%), h) Parks (%), i) Wind, j) 
Precipitation, k) Temperature, l) Policy Score 
Note: All the variables shown in the above figure were not included in every model. Only the combinations of variables that did not threaten 
multicollinearity were included.   
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Fig. 6. Covariance matrix (upper) and VIF (lower) for used in Brooklyn model Post-Vaccine Models a) COVID-19 Vaccine First-dose, b) COVID-19 
Vaccine Complete-set, c) COVID-19 Positive Tests, d) COVID-19 Hospitalizations, e) COVID-19 Deaths, f) Search: COVID-19, g) Search: Delta, h) 
Search: Vaccine, i) Grocery & Pharmacy (%), j) Working (%), k) Wind, l) Precipitation, m) Snow, n) Temperature, o) Policy Score. *The correlation 
between a) and b) exceeded the threshold of 0.70. When modeled one of the two variables was removed to avoid the multicollinearity 
Note: All the variables shown in the above figure were not included in every model. Only the combinations of variables that did not threaten 
multicollinearity were included. 
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