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Abstract
The viral epidemics and pandemics have stimulated the development of known and the discovery of novel antiviral agents. 
About a hundred mono- and combination antiviral drugs have been already approved, whereas thousands are in development. 
Here, we briefly reviewed 7 classes of antiviral agents: neutralizing antibodies, neutralizing recombinant soluble human 
receptors, antiviral CRISPR/Cas systems, interferons, antiviral peptides, antiviral nucleic acid polymers, and antiviral small 
molecules. Interferons and some small molecules alone or in combinations possess broad-spectrum antiviral activity, which 
could be beneficial for treatment of emerging and re-emerging viral infections.
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Background

The COVID-19 pandemic associated with the severe acute 
respiratory syndrome coronavirus 2 virus (SARS-CoV-2) 
has stimulated the development of known and the discovery 
of new antiviral measures. According to CDC and WHO, 
protective clothing, face masks, washing hands, cleaning 
surfaces with detergents, social distancing, travel restric-
tions, and isolating the infected people have all helped to 
limit the spread of the respiratory virus. Vaccination has 
improved population protection from severe SARS-CoV-2 
infection [1]. Antiviral agents have also provided prophy-
lactic and therapeutic protection against the infection [2]. 
Here, we review antiviral agents and specifically focus on 
broad-spectrum antivirals and their combinations with other 
agents, because these options could help us to better pre-
pare for the next viral epidemics and pandemics and reduce 

morbidity and mortality from viral diseases, increase healthy 
life expectancy, and improve quality of our lives.

Antiviral agents and therapies

Targeting virus replication

Most viruses are recognized as hormones, cytokines or nutri-
ent sources by one or more receptors on host cell surface. 
This mimicry strategy allows viruses to attach to specific 
cells, cross the plasma membrane barrier, enter the cell, and 
access essential cellular machineries [3]. Inside the cells, 
host or viral polymerases amplify viral genomes through 
RNA or DNA intermediates. Host or viral RNA polymerases 
also transcribe viral genes into mRNAs, which are translated 
on host ribosomes into viral proteins. Some viruses require 
host cell membranes for replication and/or assembly of new 
viral particles.

In addition, many viruses require other host factors for 
their efficient replication. Analysis of virus–host interactions 
revealed the critical nodes of the molecular networks and 
factors (such as underlying diseases, their interventions with 
commonly prescribed drugs, diets, etc.) that can affect the 
interactions [4]. Some nodes are unique, while others are 
similar/common for different viruses.

In a recent year, researchers identified many antiviral 
agents that target the common and unique nodes and prevent 
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viruses from interacting with the host. Figure 1 depicts dif-
ferent antivirals that target virus or host factors, or their 
interactions.

Antiviral agents

Antivirals can be divided based on the targets which can be 
either host or viral factors. Virus-directed agents bind viral 
proteins or nucleic acids involved in viral entry, transcrip-
tion, replication of the viral genome, assembly, and release 
of infectious viral particles. Host-directed antivirals modu-
late the activity of host factors and pathways involved in the 
synthesis, processing, and transport of viral building blocks, 
as well as in the development of antiviral and inflammatory 
responses. It should be noted that host-directed agents may 
simultaneously target multiple steps of viral replication. To 
date, there is no database summarizing all existing antivi-
rals. However, some approved, investigational, experimental, 
and abandoned antivirals can be found in various databases, 
e.g., DrugVirus.Info [5], FluDB, DrugBank, and AVPdb. 
Antiviral agents are presented in numerous molecular forms, 
including small molecules, peptides, neutralizing antibodies, 

interferons (IFNs), CRISPR-Cas systems, si/shRNA, and 
other nucleic acid polymers (NAPs), which are described in 
corresponding subsections below.

Virus‑neutralizing antibodies

Virus-neutralizing antibodies (nAbs) stick to the viral sur-
face proteins and stop virus from getting inside our cells 
(Fig. 1a). nAbs also signal to immune cells to come and help 
destroy the virus. There are different sources for production 
of nAbs:

Human-derived nAbs. Human convalescent plasma can be 
collected from vaccinated individuals or patients who have 
recently recovered from the relevant viral disease [6]. Only 
some plasma samples contain high titers of nAbs [7]. The 
plasma can be used to transfer passive antibody immunity 
to those who have recently been infected or have yet to be 
exposed to the virus. However, the benefits of convalescent 
plasma for the treatment of viral infections are uncertain 
[8]. Peripheral blood mononuclear cells (PBMCs) can be 
also collected from recently recovered or vaccinated indi-
viduals. After identification of the serological responses to 

Fig. 1  Antivirals, their potential sources, and stages of virus rep-
lication they affect (where appropriate). a Neutralizing antibodies. 
b Neutralizing recombinant soluble human receptors. c Antiviral 

CRISPR/Cas systems. d Interferons. e Antiviral peptides. f Antiviral 
nucleic acid polymers, including small interfering (si)/small hairpin 
(sh)RNAs. g Antiviral small molecules
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viral antigens, antibody genes of B-cells can be cloned, and 
nAbs can be identified and purified in large quantities [9, 
10]. Such antibodies could have prophylactic or therapeutic 
benefits [11]. However, in some cases Abs can enhance virus 
infection and contribute the pathogenesis of viral diseases 
[12, 13].

nAbs derived from small laboratory mammals. When it is 
difficult to obtain blood samples from infected or vaccinated 
people, or when a virus of interest is highly pathogenic/viru-
lent, small laboratory mammals could serve as a source for 
production of nAbs under appropriate safety conditions. For 
example, rabbits can be infected or immunized with a virus 
or its components, respectively. In case of vaccination, the 
production of antibodies can be boosted with second dose 
of antigene. Binding assays, or ELISA-based human recep-
tor blocking assay, can be performed to screen and select 
nAb clones. The antibodies are then humanized, i.e., rabbit 
antibody constant regions are replaced with human antibody 
constant regions. And the amino acids in Complementarity-
determining regions (CDR) and framework regions of the 
variable domains of rabbit Abs are substituted with amino 
acids of closest germlines and known human antibody 
sequences. The resulting humanized nAbs can be used as a 
therapeutic agent in humans [14].

Colostrum-derived nAbs. Pregnant large farm mammals 
produce antibodies upon immunization, and the antibodies 
move into the colostrum immediately before delivery of 
offspring. Such polyclonal nAbs showed potential to serve 
as prophylactic agents against influenza and SARS-CoV-2 
infection in vivo [15, 16].

Chicken egg yolk-derived nAbs. Chicken egg yolk poly-
clonal immunoglobulins (IgYs) are attractive targets for 
pre-clinical and clinical development for the rapid manage-
ment of outbreaks of emerging and re-emerging viruses. 
They can be readily generated in large quantities using 
egg-laying hens. It was shown that IgYs neutralized SARS-
CoV, SARS-CoV-2, influenza virus, Ebola virus, Zika virus, 
Dengue virus, and human norovirus in vitro and in animal 
models, and had favorable safety profiles in man. Similarly 
to mammalian IgGs, IgYs are fast-acting. By contrast to 
human IgGs, they can neither bind to receptors nor activate 
complement components in humans; therefore, the exacerba-
tion of viral diseases through antibody-dependent enhance-
ment could be potentially avoided [17, 18]. In addition, other 
animals could be used as production of broadly neutralizing 
polyclonal antibodies [19].

Recombinant human receptors as antivirals

While viruses may mutate and escape recognition by mAbs, 
they must maintain the capacity to bind their host recep-
tors (hRs). It was shown that recombinant soluble human 
angiotensin-converting enzyme 2 (ACE2) receptor can block 

SARS-CoV-2 infection. Moreover, the rhACE2 was resist-
ant to viral escape [20]. Thus, neutralizing biologics based 
on recombinant soluble hRs could represent an interesting 
avenue in antiviral drug development (Fig. 1b) [21].

CRISPR/Cas‑based antiviral therapy

In bacteria, CRISPR/Cas systems are the adaptive immune 
systems that protect against invading bacteriophages and 
foreign nucleic acids [22]. The Cas9-, Cas12- (both cut 
dsDNA), and Cas13- (cuts ssRNA) based systems have 
been adapted for treatment of viral infections in vitro and 
in vivo in mammals (Fig. 1c) [23]. For example, EBT-101 
was a first-in-human one-time gene therapy against HIV 
with adeno-associated virus used to deliver the CRISPR/
Cas9 system [24]. CRISPR/Cas9 system can be also targeted 
to dsDNA virus genomes and impair their replication [25]. 
IAV, LSMV, VSV, SARS-CoV2, and other ssRNA virus 
infections can be detected and inhibited using CRISPR/
Cas13 [26, 27]. However, such systems should be exploited 
more for chronic and latent viral infections.

Antiviral interferons

Interferons (IFNs) are a group of signaling proteins made 
and released by human cells in response to infection with 
several viruses causing degradation of viral nucleic acids in 
infected cells and triggering antiviral responses in nearby 
non-infected cells (Fig. 1d). IFNs are classified according to 
the cellular receptor to which they bind. Type I IFNs (IFN-
alpha, IFN-beta, IFN-epsilon, IFN-kappa, and IFN-omega) 
bind to the IFNAR1/2, type II IFNs (IFN-gamma) bind to 
the IFNGR1/2, whereas type III IFNs (IFN-lambda-1-4) 
together with interleukin 10 receptor 2 activate the IFNL 
receptor. Recombinant human IFNs (rhIFNs) have been 
approved for treatment of hepatitis C virus (HCV) and hepa-
titis B virus (HBV) infections. Although rhIFNs are effective 
against a variety of other viruses, including coronoviruses, 
they possessed limited efficacy and can cause adverse effects 
in vivo [28–31].

Antiviral peptides

Antiviral peptides (AVP) are polymers that have been experi-
mentally verified to interfere with virus replication (Fig. 1e). 
They can be divided into different categories according to 
their mechanisms of action, including binding/attachment 
inhibitors, fusion and entry inhibitors, viral enzyme inhibi-
tors, virus assembly inhibitors, and peptides with indirect 
effects on the viruses. Such AVPs can be designed com-
putationally based on the available structural information 
of virus proteins and chemically synthesized. Alternatively, 
they can be obtained from natural sources [32]. Some AVP 
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sequences and their modes of action (MOAs) could be found 
in http:// crdd. osdd. net/ serve rs/ avpdb/ server, which is manu-
ally curated open-source archive with experimentally veri-
fied 2683 AVPs, including 624 modified AVPs that target 
60 medically relevant viruses [33]. Altogether, 144 anti-
viral peptides can be found in the “Antimicrobial Peptide 
Database (APD2)” [http:// aps. unmc. edu/ AP/ main. php]. The 
AVPs can also serve as delivery vehicles for other antivirals.

Antiviral nucleic acid polymers, including si/shRNAs

Antiviral nucleic acid polymers (NAPs) can directly inhibit 
viral entry or replication by binding to the virus particle, 
its building blocks, or RNA/DNA replication intermediates 
(Fig. 1f). Several NAPs are under development for treat-
ment of hepatitis C, influenza virus, norovirus, HSV, and 
HIV infections [34]. In particular, si/shRNAs can guide 
specific virus clearance via RNAi in mammalian cells [35, 
36]. NAPs can be designed computationally, based on the 
available structural information of a virus, and chemically 

Fig. 2  A circular heatmap depicting investigational/approved broad-spectrum antiviral agents (BSAs) and targeted viruses grouped into families

http://crdd.osdd.net/servers/avpdb/
http://aps.unmc.edu/AP/main.php
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synthesized. Alternatively, they can be produced in situ or 
in vitro [37]. NAPs can also serve as delivery vehicles for 
other molecular forms of antivirals.

Small‑molecule antivirals

Small-molecule or small molecular-weight antivirals attenu-
ate viral replication (Fig. 1g). Some small molecules are 

derived from natural sources, whereas others are chemically 
synthesized [38, 39]. Some small molecules affect critical 
functions of viral factors, whereas others interfere with host 
factors and pathways necessary for virus replication. In addi-
tion, some small molecules modulate the development of 
antiviral and inflammatory responses [2, 40]. An interest-
ing subclass of host-directed small molecules is pro-apop-
totic agents that promote the death of infected cells without 

Fig. 3  Chord diagram showing the relationship between investigational/approved BSAs and the viruses grouped into families. The wider the 
lines connecting viral families, the greater the amount of BSAs
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Fig. 4  Experimental, investigational, and approved BSA-containing 
drug combinations (BCCs). a A graph shows experimental (gray), 
investigational (light blue) and approved (blue) BCCs which target 
viruses of different families. b An arc diagram showing examples of 

BCCs targeting 2 or more viruses. The diagram is ordered according 
to number of drug combinations that include a particular antiviral 
compound
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affecting uninfected cells [41–43]. By comparison to virus-
directed antivirals, host-directed small molecules often have 
more side effects [44].

Broad‑spectrum antivirals

Antivirals can target one or more viruses. Agents that inhibit 
the replication of many viruses are called broad-spectrum 
antivirals (BSAs). BSAs that inhibit the replication of 
viruses from the same or different viral families are called 
intra- or inter-family antivirals, respectively (Supplementary 
data, Fig. 2). For example, IFN-alpha, IFN-beta, ribavirin, 
remdesivir, and favipiravir are inter-family, whereas mino-
cycline (inhibiting Flaviviridae) and brivudine (inhibiting 
Herpesviridae) are intra-family BSAs. The DrugVirus.
Info web server summarized more than 250 BSAs. It also 
allowed tracking of the progress of BSA development [5, 
45]. Such information can be utilized for rapid identifica-
tion of potential BSAs to combat emerging or re-emerging 
viral infections.

Figure 2 shows a chord diagram depicting the relation 
between BSAs and virus targets grouped into viral families. 
The wider connection between viral families the larger the 
number of BSAs. Interestingly, many BSAs targeting viruses 
belonging to Coronaviridae family also inhibit viruses of 
Flaviviridae family. The figure also indicates that the cov-
erage of viral families by BSAs is far from equal or ideal.

Combinations of antiviral agents

To target multiple viruses and mitigate the development of 
antiviral drug resistance, several antivirals can be admin-
istrated simultaneously (Supplementary data) [10, 46, 47]. 
Synergistic antiviral cocktails contain lower concentrations 
of agents. Such cocktails may reduce the side effects associ-
ated with high doses of monotherapies. The AntiviralCombi.
Info web server summarized information on available anti-
viral drug combinations [10], while DrugVirus.Info server 
highlighted BSA-containing drug combinations (BCCs; 
Fig. 3) [5]. DrugVirus.Info database allows tracking the 
development of antiviral combinations and can be used to 
identify potential combinations for the treatment of emerg-
ing viruses (Fig. 4).

Antivirals against SARS‑CoV‑2 infection

Immediately after the SARS-CoV-2 was isolated the virus 
interactions with host cells were analyzed using systems 
biology approaches [48]. Researchers identified the critical 
nodes of the molecular networks (interactomes). Transcrip-
tomics/RNA-sequencing was a key method to accurately 
detect changes in virus-host interactomes during virus 
evolution [49]. Several agents (mainly BSAs and Abs) that 

target the evolutionary conserved nodes and prevent viruses 
from amplifying within the host have been developed [50]. 
However, SARS-CoV-2 continue to mutate, reducing the 
effectiveness of the monotherapies over time. Therefore, 
synergistic drug cocktails (mainly BCCs) have been tested 
and shown to mitigate the development of antiviral resist-
ance of virus variants [51, 52]. For example, combinations 
of IFN-alpha with cycloheximide, camostat, EIDD-2801, 
remdesivir, or nafamostat were synergistic against SARS-
CoV-2 infection in vitro or in vivo [53, 54]. Importantly, 
these combinations contained lower concentrations of 
agents than monotherapy and therefore may reduce drug 
side effects. More recently, antivirals belonging to other 
classes have been added to the list of anti-SARS-CoV-2 
agents. However, many biologics (large molecules) have 
been shown to induce production of autoantibodies and alter 
immune response to infection [19, 55–58]. Further research 
is needed to identify the most efficient and safe anti-SARS-
CoV-2 therapeutic option.

Conclusions

Viruses still infect millions and kill hundreds of thousands 
of people. To date, about a hundred mono- and combination 
antiviral therapies have been approved, while thousands are 
in pre- or clinical development [59, 60]. Here, we reviewed 
7 classes of antiviral agents. The information about these 
agents is scattered across various sources. A single database 
or resource is needed to accumulate all the information. Such 
resource containing modes of action can be used to expand 
the spectrum of activities of available antivirals as well as 
to develop more effective therapeutics. Also, new methods 
must be developed to effectively and safely combine anti-
viral agents to target rapidly evolving viruses. Altogether, 
these efforts may improve the treatment of viral diseases, 
leading to a reduction in morbidity and mortality of infected 
patients. In addition, these efforts are important in preparing 
for new viral pandemics and epidemics.
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