Table 1.
Performance of various machine learning classifiers on benchmark dataset.
| Classifier | Sensitivity | Specificity | Accuracy | AUROC | MCC |
|---|---|---|---|---|---|
| DT | 74.49 | 87.14 | 82.77 | 0.808 | 0.62 |
| RF | 92.04 | 91.57 | 91.73 | 0.977 | 0.82 |
| XGB | 91.90 | 92.14 | 92.06 | 0.980 | 0.83 |
| KNN | 90.15 | 91.79 | 91.22 | 0.958 | 0.81 |
| GNB | 88.66 | 88.71 | 88.70 | 0.955 | 0.76 |
| SVM | 97.44 | 97.36 | 97.38 | 0.996 | 0.94 |
The values in the tables are in bold to represent the best performing classifier or method.