Skip to main content
. 2022 Nov 14;13:1042127. doi: 10.3389/fmicb.2022.1042127

Table 1.

Performance of various machine learning classifiers on benchmark dataset.

Classifier Sensitivity Specificity Accuracy AUROC MCC
DT 74.49 87.14 82.77 0.808 0.62
RF 92.04 91.57 91.73 0.977 0.82
XGB 91.90 92.14 92.06 0.980 0.83
KNN 90.15 91.79 91.22 0.958 0.81
GNB 88.66 88.71 88.70 0.955 0.76
SVM 97.44 97.36 97.38 0.996 0.94

The values in the tables are in bold to represent the best performing classifier or method.