Skip to main content
. 2022 Nov 14;13:1042127. doi: 10.3389/fmicb.2022.1042127

Table 2.

Comparison of performances of our model with existing method on benchmark dataset evaluated using cross-validation technique.

Methods Sensitivity Specificity Accuracy AUROC MCC
Sigma70Pred 97.44 97.36 97.38 0.996 0.943
iPro70-FMWin 83.81 95.07 91.17 0.960 0.803
70ProPred* 92.40 96.90 95.30 0.990 0.897
iPro70-PseZNC* 80.30 86.80 84.50 0.909 0.663
Z-Curve* 74.60 79.50 77.80 0.848 0.527
IPMD* 82.40 90.70 87.90 0.731
iProEP 89.52 64.03 76.88 0.654 0.554
*

Reported by the authors in the manuscript. The values in the tables are in bold to represent the best performing classifier or method.