Skip to main content
. 2022 Nov 14;13:1042127. doi: 10.3389/fmicb.2022.1042127

Table 3.

The performance of existing methods on independent dataset.

Methods Sensitivity Specificity Accuracy AUROC MCC
Sigma70Pred 91.45 88.56 90.41 0.953 0.794
iPro70-FMWin 84.12 86.67 85.04 0.921 0.693
iProEP 84.50 53.83 69.30 0.541 0.404
MULTiPly* 90.43 76.93 84.91 0.685
iPromoter-2L 86.21 72.81 79.56 0.601
iPromoter-2L2.0 88.72 77.91 83.36 0.674
iPromoter-FSEn 68.76 68.16 68.46 0.751 0.369
iPromoter-BnCNN 80.64 72.70 76.71 0.543
pcPromoter-CNN 81.44 61.07 71.35 0.445
Promoter-LCNN 88.77 70.15 79.54 0.604
*

Reported by the authors in the manuscript. The values in the tables are in bold to represent the best performing classifier or method.