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Frequency control of the islanded 
microgrid including energy storage 
using soft computing
Masoud Dashtdar 1, Aymen Flah 2, Seyed Mohammad Sadegh Hosseinimoghadam 3 & 
Attia El‑Fergany 4*

Today, with the increasing penetration of microgrids, the degree of complexity and non‑linearity of 
power systems has increased, causing conventional and inflexible controllers not to perform well in a 
wide range of operating points. In this paper, a self‑tuning proportional‑integral (PI)‑controller based 
on a soft computation of a combination of genetic algorithm (GA) and artificial neural network (ANN). 
The GA‑ANN is used to control the frequency of a microgrid in an island mode to automatically adjust 
and optimize the coefficients of a PI‑controller. The proposed PI‑controller is located in the frequency 
control secondary loop of an island microgrid. Since the ANN is a local search algorithm and can be 
located in local minimum points and on the other hand improving its performance requires a lot of 
training data. The ANN parameters are optimized using the GA algorithm’s proposed controller. Train 
ANN online to adapt to the system and change the PI‑control coefficients without a lot of training 
data, in addition to avoiding being in the local minimum points.The microgrid tested included 
various distributed generation units including battery energy storage that tried to create a more 
realistic frequency response for the microgrid by considering nonlinear factors on the model of these 
resources. Finally, the simulation results with different perturbations indicate the proper performance 
of the proposed controller.

Distributed generation (DG) is a source for producing electrical power with a capacity of less than 10 MW. It 
is frequently connected to distribution-side power systems and aids in power supply. For the purpose of power 
systems, the principal energy in these sources is clean and renewable energy from sources like wind, solar, and 
geothermal energy, which is utilized in the construction of wind turbines, solar cells, gas microturbines, fuel 
cells, etc.1,2. With the advent of DG, several problems appeared, including the maintenance and protection of 
resources. The issue relates to how these resources can help manage the grid’s fundamental elements, such as 
frequency and voltage, and how electricity is transferred between the grid and DGs. The idea of microgrids was 
established in contemporary power systems to address these issues and take these resources and local demands 
into account in an integrated manner. This introduction defines microgrids as compact power grids made up of 
a number of DG sources and local loads. The microgrids are normally connected to the grid, but in case of an 
emergency brought on by the occurrence of severe disruptions, they are cut off and can provide the local loads 
on their own. When connected to the grid, the microgrid’s frequency and power are functions of the main grid 
and only need to be controlled for the power of the units, but on islands, the microgrid’s frequency and voltage 
fluctuate need an independent  control3,4.

Frequency control for microgirs in the litterature. Increasing the number of microgrids in power 
systems has changed the fundamental rules in these systems and caused the generation of resources to be distrib-
uted throughout the system. This causes the complexity and non-linearity of power networks to increase, and as 
a result, we do not see the proper response of conventional controllers as before. PI-controllers are most widely 
used in power systems because they have a simple structure and are cost-effective, and in power systems, these 
controllers are trusted more than any other controller. But the problem with these controllers is that the control 
coefficients based on the linear conditions and the operating point of the system are adjusted by the technicians 
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based on their knowledge and experience, and are placed in the system at once. If the nominal operating condi-
tions change or the linear conditions of the system change due to disturbances, the values intended for these 
controllers will no longer be optimal   and will not have the same proper response as before. The possible solution, 
both to use these conventional and reliable controllers and to somehow solve their problem, is to update and 
optimize the control coefficients depending on the changes in the  system5–7.

Numerous references have reviewed and presented various methods for frequency control of microgrids 
based on the optimization of controller coefficients with meta-heuristic algorithms.  In8,9, controllers based on PI 
control and proportional-integral-derivative controller (PID) have been used.  In10 the particle swarm optimiza-
tion (PSO) algorithm and  in9 the spider social behavior (SSO) algorithm is used to optimize the PID control 
parameters in the microgrid.  In11, the harmonic search (HS) algorithm is used to control the load–frequency in 
the microgrid.  In12 uses a fuzzy controller whose coefficients are optimized using the PSO algorithm.  In13,14 the 
model predictive control (MPC) is used to control the load–frequency of the microgrid.  In15, a fuzzy control-
ler is used to control the frequency of a multi-microgrid.  In16 two-level MPC  control17, multiple MPC control, 
 and18 MPC control-based method for coordinated control of wind turbine blades and electric hybrid vehicles to 
reduce power fluctuations and microgrid frequency are presented.  In19 the Ziegler-Nichols-based PID method 
(ZN-PID),  in20 the fractional-order-based PID method (FOPID),  in21 the fuzzy control based fractional order 
PID (Fuzzy FOPID),  In22 the kriging based surrogate fractional order PID method has been used.

The methods proposed for the adaptive PI-controller are generally limited to linear processes. In other words, 
a controller with a linear model operates in a linear range, but due to the capabilities of ANN in solving problems 
with high mathematical complexity and the high power of these networks in estimating functions, designers 
are encouraged to use these networks in the design of self-tuning controllers to control nonlinear  processes23. 
 In24–27, a PI-controller with a hybrid ANN form is used as a direct adaptive controller to control the microgrid 
frequency, in which PSO and fuzzy algorithms are used to optimize ANN coefficients and their rapid training.

Paper contribution. According to several studies done on the subject’s state of the art, the typical PI-con-
troller has not performed well due to the nonlinearity of the whole system. This is why, this paper presents 
an approach of a PI-controller self tuning. It is evident that a number of methods, including PSO and others, 
were suggested to aid in the automatic adjustment of the PI values. However, each of these approaches have 
their weakness and limitation, in relation the number of parameters that must be fixed at the beginning of the 
algorithm start. Therefore, this paper have merge two algorithms for making this automatic tuning touch and 
for compensate the weaknesses on the neural network offline learn. These two algorithms, compensate their 
limitations and present together a usuful solution for this Multi-input system. These two algorithms, which use 
the genetic algorithm approach (GA) and the neural network (NN) concept, respectively, have the advantages 
of training from the current state and optimal calculation specification, and this can be done online while the 
system is running, which makes it an advantage specification.This combination of the PI, NN and GA have given 
a best performances for this complex system stability in relation to the RMS (Δf) and max (|Δf|) of microgrid 
frequency changes..

Paper structure. The following is the sections of the article. In “General microgrid structure and conven-
tional control strategy” section, the microgrid structure with the conventional PI-controller is presented. “A 
proposed control strategy based on ANN-GA” section announces the proposed control strategy based on the 
combination of ANN and GA algorithms. In “Simulation results” section, the simulation results of the proposed 
method are exposed and discussed and finally, a conclusion will be presented in “Conclusions” section.

General microgrid structure and conventional control strategy
Microgrids are a set of mainly renewable generators that are jointly formed to feed loads. The nature of micro-
grids is a wide-ranging distributed generation that itself has distributed generation resources. In a microgrid, 
we mainly deal with distributed generation sources such as solar cells, wind turbines (microturbines), fuel cells, 
batteries (energy storage systems), hybrid generators such as CHP, as well as synchronous generators. As it is 
known, the power output of these sources, except for synchronous and CHP generators, is DC. For this reason, 
we encounter two AC and DC links in a microgrid. This concept is called a hybrid microgrid. In addition to 
these sources, to benefit from the output power of each, control systems are needed, which are used to control 
the microgrid. The control strategies in microgrids should be such that they provide the basic purpose of these 
networks to continue to operate in both connection and disconnection from the main grid. For this purpose, 
two general control structures have been considered depending on the operating conditions of the microgrid. 
In case the microgrid is connected to the main grid, the stability of the basic parameters of the network such 
as voltage and frequency is provided by the main grid and the microgrid is considered an auxiliary element in 
providing common loads. This mode of operation is called PQ, which means that the microgrid is controlled 
for the delivery of fixed active and reactive power. In the event of a disconnection, the basic parameters of the 
system are set by the microgrid and it must otherwise supply its loads or at least critical loads. This mode of 
operation is called VSI. Therefore, to apply these control methods, a series of controllers are needed on each of 
the microgrid sources.

Types of microgrid control. In a general sense, microgrid resources are divided into two parts: probabil-
istic and controllable generation. probability DG sources based on probabilistic (uncontrollable) inputs produce 
the desired output. These sources include solar cells, wind turbines, and even some fuel cells. These sources use 
sunlight, wind speed, and hydrogen, respectively, to generate power. Given that these inputs have probabilistic 
properties, these sources are also probability DG. Specifically, in controlling probability DG sources, we are 
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faced with the problem of current control. In these sources, the output current (output power) of the system 
is controlled as CCS (controlled current source). But the important issue is the need for microgrid control 
over controllable resources. These sources can be such as the battery, CHP, or synchronous generator. What 
is required is the presence of at least one of these resources in a microgrid (in terms of microgrid stability and 
reliability). Controllable microgrid resources play an essential role in controlling microgrids and thus achieving 
microgrid stability in terms of voltage/frequency. In general, and in a specific definition, an unstable microgrid 
is a microgrid in which voltage/frequency collapse occurs. Voltage/frequency collapse in a microgrid means 
continuous increase or continuous decrease of the desired variable. On the other hand, in the microgrid, we also 
face the phenomenon of drop. At the opposite point of drop, there is also drop control. In the drop phenomenon, 
we encounter a voltage/frequency error (steady-state error).

The basis of stability in the microgrid was based on controllable resources. In these sources, the more accu-
rate, robust, and practical the control process used, the more it improves the stability of the microgrid. For this 
purpose, different control levels are used sequentially in a microgrid. Each of these control levels is responsible 
for part of the microgrid stability tasks. In a microgrid, these levels are divided into three parts:

• Primary control level: In this control, the initial stability of frequency/frequency angle is considered. This 
type of control is responsible for preventing voltage/frequency collapse. One of the most common methods 
for this purpose is frequency drop control.

• Microgrid secondary control level: In this frequency/voltage drop control, the goal is stability. In the sense 
that events such as islanding or load change and even the occurrence of an error can cause a steady-state 
error in the underlying microgrid variables. This type of control is used for this purpose.

Figure 1 shows a view of the primary and secondary controls in the microgrid. In this control, the goal is to 
establish stability for voltage and frequency. In the presence of secondary control, this will also be the case when it 
becomes an island from the upstream network. This means that the frequency and voltage drop are compensated. 
But in addition to these two levels of control, optional controllers are also used. These controllers are responsible 
for improving the control process as much as possible. These controllers can be operated in parallel at any of the 
control levels. These types of controllers include fuzzy logic controllers, nonlinear, robust, adaptive controllers, 
etc. Each of these controllers according to their characteristics improve the microgrid status in terms of reliability, 
improving time characteristics (such as microgrid fluctuations), robustness to microgrid uncertainty, adaptation 
to variable parameters, etc. used.

If there is a disturbance in the power system and it disturbs the balance between generation and consumption, 
the frequency will fluctuate. For example, if the load increases suddenly, the frequency will drop from the nominal 
value, which if not controlled and limited, will see frequency instability. Here, the primary control loop is the first 
control loop to limit the frequency drop after disturbance. Based on the frequency-active power characteristic 
of a generator, this control loop operates according to Eq. (1) and this loop is installed on the generator itself.

where f0 and  P0 are the rated frequency and power of the network, respectively. The status of the frequency change 
in the presence and absence of the primary controller is shown in Fig. 2.

(1)f − f0 = −kp(P − P0)
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Figure 1.  Primary and secondary control in the microgrid.
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The primary control loop limits the dropped frequency but is unable to return the frequency to the nominal 
value hence the secondary control loop is used. In this control loop, conventional PI-controllers are often used 
to return the frequency to the initial value. Adjusting these controllers will be more based on classic methods 
and trial and error. The problems of these methods were mentioned in the introduction, and based on these 
reasons, in this article, while using these controllers, we have tried to solve their problems by using an intelligent 
method based on ANN.

Structure of proportional‑integral‑derivative (PID) controllers. The PID-controller is a control 
system based on feedback, the main purpose of which is to bring the final result of the process closer to the 
desired value. The goal of a PID-controller is to steer the system toward a level, position, or whatever value 
we specify. According to the structure presented in Fig. 3, the two definitions "error" and "SetPoint" is of great 
importance in the PID-controller. Setpoint here means the target point (level, position, quantity, or whatever 
we want to reach in the control system) and on the other hand, the error is the amount of deviation (difference) 
between the target point and the final output value. Needless to say, the lower the error, the better, which means 
that we have been able to match the final value of the system exactly to our intended value. To reach this target 
point (error = zero, system output value = SetPoint), the PID control system uses three operators: Proportional, 
Integral, and Derivative. These three basic coefficients are variable in each PID-controller for specific applica-
tions to achieve the optimal response.

The three operators of the PID-controller, each of which receives the error signal as input and performs an 
operation on it, and finally their output is aggregated. The output of this set according to Eq. (2) is the same as 
the output of the PID-controller.

By combining three proportional-integral-derivative operators differently, we will have a different response to 
the error. The amount of response produced by each control mode can be optimized by changing its coefficient 
(k) and finally by combining these three main control modes to achieve an optimal PID system. Figure 4 com-
pares the results of combining these three control modes (proportional-integral-derivative). P mode is usually 
used when the presence of offset in the system is not important and tolerable or when the process is naturally 
integral. PI mode is used when offset is not tolerable and there should be no steady-state error. PID is our choice 
when it is important to compensate for some natural inertia throughout the system and the process signals are 
relative without noise. According to the mentioned features, since the absence of steady-state error is important 
in controlling the microgrid frequency and the system is noisy, a PI-controller is usually used instead of a PID. 
Because the derivative mode of the PID-controller increases the effect of system noise and the performance of 
the controller will be different from the desired answer.

In a microgrid, the total generation power of units  (PGEN) must be carefully controlled based on the load 
requirements so that a balance of generation power and consumption is established. The difference between the 
generated power and the load consumption can be expressed as Eq. (3).
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Figure 2.  System frequency, (a) without a primary controller, (b) with a primary controller.

Figure 3.  PID controller structure.
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By controlling ΔP and Δf, the system can deliver good-quality power to the load. The frequency changes Δf 
can be calculated from the net power changes ΔP and are expressed in ideal conditions of Eq. (4):

where  Ksys is the constant frequency characteristic of the system. In real and practical terms, there is a time delay 
 (Tsys) in the frequency characteristic. Therefore, the function of converting system frequency changes to power 
changes (p.u.) is expressed as Eq. (5):

Here M and D are equivalent to the inertia and damping constants of the system, respectively. Frequency devia-
tion is detected using the 1/D + Ms, which is characteristic of the system.

According to Fig. 1, the block diagram of the frequency control method using the PI-controller can be shown 
in Fig. 5. Where proportional to the frequency deviation, each unit must change its output power so that the 
frequency deviation Δf has its lowest value. Determining the reference power of each unit is the responsibility 
of the integral controller, the output of which is determined based on the frequency deviation input.

Dynamic modeling of microgrids under study. In this paper, a microgrid separate from the main grid 
is considered as the system under study, which is shown in Fig. 6. The microgrid consists of units including a 
diesel energy generator (DEG), a photovoltaic (PV), a wind turbine generator (WTG), a fuel cell (FC), an aqua 
electrolyzer (AE), a battery energy storage system (BESS), and a flywheel energy storage system (FESS). Given 
the focus of this paper on system frequency stability, a simplified model of the system frequency response is 
provided in Fig. 7 for a simpler analysis of how it behaves in the encounter of various disturbances. The values of 
the parameters used are presented in Table 1.

As you can see in Fig. 7, a PI-controller is designed to maintain microgrid stability, which is initially con-
figured by the Ziegler-Nichols method, which is one of the strongest classical methods for adjusting control 
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Figure 7.  Microgrid frequency response model.

Table 1.  The values of the parameters used in the microgrid frequency model.

Parameter Value Parameter Value

D (pu/HZ) 0.012 TWTG  (s) 1.5

2H (pu.s) 0.1667 TAE (s) 0.5

TFESS (s) 0.1 KWTG 1

TBESS (s) 0.1 R (HZ/pu) 3

TFC (s) 4 Ka 0.6

KFC 1/100 KDEG 1/300

KAE 1/500 KFESS −1/100

KBESS −1/300 KPV 1

TDEG (s) 2 TPV 1.8
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coefficients, and then optimized and configured online by the proposed method based on ANN. According to 
Fig. 7, the characteristic function of production units is expressed through Eq. (6) to Eq. (13). 29.

A proposed control strategy based on ANN‑GA
ANN is one of the most powerful tools in optimization processes because these networks have a wide ability 
to process and learn in parallel. Based on the structure of these networks and how the processing elements are 
combined, several important and basic applications such as mind modeling, financial modeling, time series 
prediction, control systems, and optimization for them are envisaged. To use ANN networks in the mentioned 
processes, it is necessary to consider a mathematical model of them. A simple mathematical model for analyzing 
their behavior is shown in Fig. 8. The vectors x, w, θ, and f(net) are input and weight vectors, bias values, and 
functions (linear or nonlinear) for neurons, respectively. The output of this model will be by Eq. (14).

Figure 9 shows the control framework for the online tuning of a PI-controller used in the microgrid frequency 
secondary control process. To obtain the best performance of the PI-controller and determine the relevant coef-
ficients, there are various practice methods. In this article, we have used the combined ANN-GA method to 
optimize PI coefficients. The structure for ANN to tune the PI-controller online is shown in Fig. 10. The consid-
ered network is a multilayer network in which 20 neurons are considered as the input layer (power changes and 
frequency deviations of units, etc.) and 2 neurons are considered as the output layer (according to the number 
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Figure 8.  A simple mathematical model of neurons in ANN.
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of control coefficients to be adjusted). In Fig. 10 x,  w1 and  w2 are the input vectors and the weight vectors of 
the first and second layers, respectively. The functions considered in Fig. 10 will be linear for the first layer and 
nonlinear for the second and output layers. ANN first learns from training data how to change the coefficients 
to keep the system frequency constant, and then updates these coefficients optimally with the GA algorithm so 
that the controller is always set to the best values.

Weight update based on error Back‑Propagation algorithm. This section introduces the usual 
method for updating weights in ANN. The Back-Propagation method tries to have the minimum value of the 
performance function given in Eq. (15) in each weight update. y is the reference signal and  yd refers to the output 
of the output layers.

In this method, according to Fig. 10, the weights are updated to achieve the optimal values of the control 
coefficients  (ki,  kp) through Eq. (16). 28

where Δw1 and Δw2 according to Eq. (17) and Eq. (18) are the vector of changes given in the initial values of the 
weights of the first and second layers so that the function is given in Eq. (15) to the smallest value, during the 
multi update. This operation tries to change the control coefficients so that the system frequency returns to its 
final value with the least fluctuation. All the parameters used in the calculation of Δw1 and Δw2, such as σj, δk, 
and  Hj,  netj can be seen in Fig. 10, and η = [0 1] was the learning rate.
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Weight update based on GA algorithm. One of the most important issues when implementing ANN 
is choosing the right training algorithm. The most common ANN training algorithm is the error back-propa-
gation algorithm. The problem with this algorithm is slow convergence and stopping at optimal local points. 
One approach to ANN training is to use metaheuristic algorithms such as GA. In each cycle of this training, the 
weighting of the parameters is done by the GA algorithm. In the training method in this section, the GA algo-
rithm first calculates the value of the cost function for the system response by selecting a random population as 
the ANN weights and changes the ANN weights accordingly to improve the ANN performance and minimize 
the value of the cost function. Here the process of this training method is called the self-modifying method. 
In this method, ANN weights are quantified as separate sections, each weight changes the ANN performance 
change, and the effect of each weight on ANN performance is determined, by using the intelligent GA algorithm, 
these changes are directed towards optimizing the ANN performance. Finally, the ANN weight coefficients are 
adjusted by optimizing the system efficiency. Therefore, in this method, there is no need to produce a lot of 
training data for ANN training, and by saving computational resources, higher accuracy can be achieved with 
less repetition.

The mathematical logic of the GA algorithm tries to optimize the output of the control system by minimiz-
ing an objective function. The aim here is to minimize Eq. (15) and considering that in this paper the goal is 
to improve the PI coefficients to control the microgrid frequency, two factors can be defined as the maximum 
overshoot (OS) rate and settling time (ST) of the frequency signal as Eq. (19)30.

By adding Eq. (19) to Eq. (15), a new objective function can be defined by Eq. (20) to improve the performance 
of the PI-controller in OS and ST control of microgrid frequency with better accuracy.

In this study, the purpose of the GA algorithm is to determine the optimal biases and weights of ANN so 
that Eq. (20) is minimized. In evolutionary algorithms such as GA, the interface between the algorithm and 
the problem is how the chromosomes (solutions) are encoded and displayed. In the proposed GA algorithm, 
each chromosome represents the values of the weights and bias of the ANN network, so that the  w1 to  wm genes 
represent the weights of the first layer and the  w2 to  wn genes represent the weights of the second layer of ANN, 
and the genes  b1 to  bm and  b2 to  bn represent the bias values of first and second layer neurons. Each gene can 
produce a real value in the range of -1 to 1. Figure 11 shows the structure of a chromosome proposed for ANN 
training. Finally, Fig. 12 shows the whole design process of the PI-controller from the combination of ANN and 
GA algorithms as a flowchart.

Simulation results
As you know, various factors such as load changes, uncertainty, units power, nonlinear elements, noise, etc. have 
a direct impact on the microgrid frequency. In this section, to evaluate the performance of the proposed control 
method, several different disturbances are applied to the studied microgrid through MATLAB software and the 
performance results of the proposed method are compared with the conventional PI-controller. To improve the 
model and get closer to the actual microgrid response, a series of nonlinear elements, limiters, and time delays 
are added to the original frequency model, which is shown in Fig. 13. One of the most important physical limita-
tions is related to the diesel generator, which due to mechanical and thermal limitations, is not able to respond to 
disturbances at the same time and there is always a delay between the occurrence of disturbances and the response 
to it. Also, due to the existence of different filters and telecommunication channels, there is a delay in transferring 
the measured parameters to the control systems. Therefore, due to the mentioned reasons, delay blocks have been 
added to the system model. For delayed cases, a time delay of one cycle (20 ms) is provided. Control signals can 
also be increased or decreased to a certain extent, and the production sources have a dead band that will not be 
activated until the control input signal to these sources reaches a certain level. The rate of increase or decrease in 
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Figure 11.  Structure of a chromosome for the proposed ANN training.
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generator output is also limited. Therefore, according to these cases, the model intended for the diesel generator 
has been made more accurate by adding a non-linear block, according to what is shown in Fig. 13.

In Scenario 1, a step overload of 0.1 pu is applied to the microgrid. Simulation for normal states and worst-
case uncertainty in parameters, ie uncertainty ± 30% of the nominal value, are considered and compared with 
the performance of conventional PID and PI-controllers and the proposed intelligent controller, the results of 
which are shown in Fig. 14. The presence of nonlinear factors in the model of some microgrid components 
causes the microgrid structure to become more complex and the PID-controller to control frequency fluctuations 
does not perform as well as the PI-controller. However, the proposed controller, due to the nonlinear behavior 
of the microgrid at any time, applies the appropriate correction coefficients to the PI-controller and causes 
the PI coefficients to be adjusted adaptively and to control the fluctuations of the microgrid frequency well. In 
the simulation results of this scenario, it is observed that the proposed controller has significantly reduced the 
maximum overshoot and settling time of the microgrid frequency, especially when the system has uncertainty.

In Scenario 2, a perturbation according to Fig. 15 is applied to the wind speed and solar irradiation, which also 
shows the power changes of the respective units. The perturbation of the solar irradiation is such that at t = 10 s 
the solar irradiation decreases from the initial value of 0.15 pu to 0.1 pu and increases at t = 50 s to the value of 0.2 
pu. The perturbation at the wind speed is such that at t = 90 s, the wind speed decreases from 7.5 m/s to 4.5 m/s 
and increases to 10 m/s at t = 130 s. The microgrid frequency response by applying these perturbations is shown 
in Fig. 16. In this scenario, the superiority of the proposed controller performance over PID and PI-controllers 
in damping microgrid frequency fluctuations is well observed.
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Figure 12.  Flowchart of the proposed controller design.
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Figure 13.  Microgrid frequency model considering physical constraints.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20409  | https://doi.org/10.1038/s41598-022-24758-6

www.nature.com/scientificreports/

In Scenario 3, to model instantaneous load changes, the load perturbation is applied to the microgrid in the 
form of an irregular pulse train shown in Fig. 17. The performance of the proposed controller and how to track 
the load is shown in Fig. 18. Load changes are always noticed by the microgrids and the microgrid controller 
must be able to quickly dampen the frequency fluctuations caused by the imbalance of production and power 
consumption in the shortest possible time and with the least fluctuations. In this scenario, the superiority of the 
ANN controller over conventional PID and PI can be seen. Using the proposed controller, after each load change, 
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the system frequency changes return to normal with the least fluctuation and in the shortest settling time, while 
with other controllers, the frequency has more fluctuations and returns to normal later.

In Scenario 4, the perturbations of the first and second scenarios are applied simultaneously. Also, to test the 
robustness of the controller in the worst case, perturbations are applied under + 30% uncertainty. The perturba-
tions according to Fig. 19 are applied to the wind speed and solar irradiation as well as the load of the step. As 
shown in Fig. 20, the microgrid frequency response under these conditions is very favorable and has a relative 
advantage over other controllers.
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Figure 16.  Scenario 2- The microgrid frequency response to changes in wind speed and solar irradiation.
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In scenario 5, to finally test the stability of the system with the proposed controller and show its better per-
formance, white noise according to Fig. 21 is applied to this model and the microgrid frequency status in both 
modes of use of the proposed controller and the conventional PI-controller is shown in Fig. 22. As can be seen 
in this case, the designed intelligent controller has a much better performance.
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Figure 19.  Scenario 4- Disturbances applied to solar irradiation, wind speed, and grid load.
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In this section, the performance of the ANN-GA controller was evaluated in different scenarios and the 
results showed its superiority over conventional controllers in controlling the microgrid frequency under vari-
ous disturbances. So far, most of the results shown were related to the performance of the proposed controller, 
the following results will be related to the performance of the artificial neural network itself will be presented. 
As you can see, most of the disturbances in the microgrid will involve the same five scenarios presented in this 
paper with some changes in production power, load changes, etc. Therefore, to evaluate the accuracy of the ANN 
proposed in this paper, the total data considered for evaluation was 205 cases, which were considered separately 
for each scenario according to Table 2.

According to the data generated in Table 2, the ANN network is trained by the GA algorithm. Figure 23 shows 
the performance of the GA algorithm in optimizing ANN weights and biases. In MATLAB, there are various 
diagrams to examine and show the performance of ANN networks. Figure 24 shows the ANN performance 
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Figure 22.  Scenario 5- Microgrid frequency response to white noise.

Table 2.  Total data generated.

Scenarios Number of data

Scenario 1 (load range(pu) × uncertainty) 10 × 4 = 40

Scenario 2 (power range(pu) + time of disturbances) 24 + 24 = 48

Scenario 3 (Load range(pu) × time of disturbances) 10 × 5 = 50

Scenario 4 10 + 48 = 58

Scenario 5 (Noise on output power) 9

Total 205
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Figure 23.  ANN training process by GA algorithm.
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diagram. This diagram shows the number of iterations on the one hand and the mean square error (mse) of the 
ANN on the other hand, which in this design has reached 1.364e-05 in 190 iterations.

Figure 25 shows the error histogram diagram for the ANN network. In this diagram, the degree of belonging 
of each data category for different errors is examined.

Figure 26 shows the ROC diagram of the ANN network. In this diagram, the closer the points are to the top 
and left, the more appropriate it is, and the closer the forecast model is to its ideal state. The coordinates of the 
point (0,1) are ideal states. This point indicates that what the forecast model offers is fully consistent with the 
actual model. The opposite point has coordinates (1,0), which means that whatever prediction model is presented 
is the opposite of the actual model.

Figure 27 shows the confusion matrix of the ANN network. In this matrix, diagonal cells are related to cor-
rectly classified observations and non-diagonal cells are related to incorrectly classified observations with a 
percentage of performance. Here, the overall accuracy of the ANN network is 96.6%.

Finally, in scenarios, to implement the proposed controller adjusted with ANN-GA, the system is first set in 
the desired zero states, and then by introducing disturbances to the system, ANN-GA adjusts the parameters of 
the proposed controller so that it can move the system towards the optimal response. The optimal coefficients 
for this system obtained by ANN-GA are presented in Table 3. By comparing the coefficients obtained with the 
ANN-GA method and the coefficients of the Ziegler-Nichols method, it can be seen that the ANN-GA has been 
able to accurately perform this operation without the need for any predetermined data, and by choosing the 
correct control coefficients, the response of the system is towards the output to deliver the desired.
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A quantitative comparison of the performance of the proposed control method has been made with two 
indicators: RMS (Δf) (root mean square of frequency changes) and max (|Δf|) (maximum overshoot and under-
shoot). The improvement percentage of these two indicators in scenario 5 for a conventional PI-controller, con-
ventional PID-controller, and ANN-GA method are shown in Table 4. As it can be seen, the proposed method 
has performed better.
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Figure 26.  ROC diagram of the ANN.
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Table 3.  Optimal coefficients of the PI-controller.

Methods

PI-controller 
coefficients

Kp Ki

Ziegler–nichols 5 22

ANN-GA 4.09 20.42
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Conclusions
The balance between the production and consumption of active power is the main factor in ensuring the fre-
quency stability of the microgrid. In this paper, an ANN-based PI-controller is proposed to control the microgrid 
frequency in the island mode. The proposed PI-controller structure is such that its coefficients are adjusted by 
ANN at any time according to system frequency changes. Since ANN design for frequency control required a 
lot of training data on ANN training, in this study, the GA algorithm was used to set and train ANN. The per-
formance of the proposed controller was such that it could perform well for various types of disturbances under 
different scenarios and could be easily implemented due to the nonlinear and complex structure of microgrids. 
Also, to increase the efficiency of the controller in different operating points, the controller was designed by 
considering uncertainties in some microgrid parameters so that the proposed controller is robust to changes in 
the working points. Finally, the performance of the proposed controller was compared with conventional PI- 
and PID-controllers for different scenarios, which showed the appropriate accuracy of the proposed controller.

Even the good obtained results, this approach have some weaknesses and limitations. Basiacly, each con-
trol approach which is based on a neural network algorithm, will need a large database for having an optimal 
comoprtment. This is can be of the weaknesses of this part; it is hard for a standard calculator to manage a mega 
information. So, this is will force using a high resolution processor, which can be defficult in some positions and 
which increase the cost of the global control loop. In this same way, the integration of a two complex optimization 
algorithm, will make decision calculation hard and maybe can cause some delays on the system. Actually, this 
risk is low, but it can be happen in such cases. This caused delay, can make a risk to not detect a micro variation 
and not having the optimal decision on time.

From the other side, this work, have a potential ti be extended and ameliorated by testing more optimiza-
tion solution, for testing the global comportment. Sliding mode control loop can be designed for controlling 
the frequency perturation and verify if it is more easy and rapid to have a stable performances after the coming 
perturbation on the grid side or from the different sources types. Also, testing this approch on a practical case, 
can be interesting to have a real result on this proposed approach. Maybe, it is better to test the execution rapidity 
of this control loop on this complex system and see if it is able to apply it really or not.

Human and animal rights. This article does not contain any studies with animals performed by any of 
the authors.
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