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Abstract
Background: Acute kidney injury is a common clinical problem with no sensitive and spe-
cific	diagnostic	biomarkers	and	definitive	treatments.	The	underlying	molecular	mecha-
nisms	of	acute	kidney	injury	are	unclear.	Therefore,	it	is	pivotal	to	explore	the	underlying	
mechanisms	and	screen	for	novel	diagnostic	biomarkers,	and	therapeutic	targets.
Methods: The	present	study	 identified	15	hub	genes	by	WGCNA	analysis.	LASSO-	
based	 logistic	 regression	 analysis	was	 used	 to	 select	 key	 features	 and	 construct	 a	
diagnostic	model	of	AKI.	In	addition,	GO	and	KEGG	analyses	were	performed	and	TF-	
mRNA	and	miRNA-	mRNA	network	analysis	and	 immune	infiltration	analysis	of	hub	
genes	were	performed	to	reveal	the	underlying	mechanisms	of	AKI.
Results: A	diagnostic	model	was	constructed	by	LASSO-	based	logistic	regression	analysis	
and	was	validated	by	RT-	qPCR	based	on	15	hub	genes.	GO	and	KEGG	analyses	revealed	
DEGs	were	enriched	in	oxidation–	reduction	process,	cell	adhesion,	proliferation,	migra-
tion,	and	metabolic	process.	The	enriched	TFs	were	BRD2,	EP300,	ETS1,	MYC,	SPI1,	
and	ZNF263.	The	enriched	miRNAs	were	miR-	181c-	5p,	miR-	218-	5p,	miR-	485-	5p,	miR-	
532-	5p	and	miR-	6884-	5p.	The	immune	infiltration	analysis	showed	that	Macrophages	
M2	was	decreasing	significantly	revealing	a	protective	factor	for	further	AKI	treatment.
Conclusions: The	 present	 study	 identified	 15	 hub	 genes	 based	 on	 WGCNA.	
Development	and	validation	of	a	potentially	diagnostic	model	based	on	15	hub	genes.	
In	 addition,	 exploring	 the	 interaction	 between	 transcriptional	 factors	 and	 15	 hub	
genes,	and	miRNA-	mRNA	relationship	pairs.	Furthermore,	immune	infiltration	analy-
sis	was	performed	by	analyzing	gene	expression	profiles	of	AKI.	Our	study	provides	
some	basis	for	further	experimental	studies.
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1  |  INTRODUC TION

Acute	kidney	injury	is	a	common	clinical	syndrome	of	acute	deteri-
oration	or	even	loss	of	kidney	function	due	to	different	causes	such	
as	sepsis,	cardiac	surgery,	trauma,	contrast	medium,	and	nephrotoxic	
drug. It is a vital complication in patients admitted to hospital where 
the	morbidity	 is	 almost	10%–	15%	of	all	hospitalizations	and	 in	pa-
tients in the ICU where the prevalence can sometimes be more than 
50%.1,2	AKI	can	progress	to	chronic	kidney	disease	easily	and	rap-
idly	without	effective	clinical	treatment.	AKI	has	the	characteristics	
of	high	morbidity	and	mortality	and	there	is	no	effective	treatment	
strategy.3	 AKI	will	 bring	 high	medical	 expenses	 if	 renal	 dialysis	 or	
renal	transplant	is	performed.	These	issues	have	contributed	AKI	to	
a major public health problem worldwide.4	Thus,	the	early,	sensitive,	
and	rapid	diagnosis	of	AKI	is	an	important	part	of	the	overall	manage-
ment	of	patients	with	the	various	syndromes,	which	cause	or	are	as-
sociated	with	AKI.	However,	serum	creatinine	and	urinary	output	are	
the	cornerstone	of	our	current	diagnostic	approach,	which	is	neither	
sensitive	nor	specific	for	AKI.	Therefore,	it	is	urgent	and	imperative	
to	develop	novel	and	valid	biomarkers	for	diagnosing	AKI	early.5,6

Thanks	 to	 the	 development	 of	 technologies	 in	microarray	 and	
high-	throughput	 sequencing,	 an	 increasing	 number	 of	 biomarkers	
and therapeutic targets have been discovered and applied in clini-
cal practice. Zhang et al.7 reported a novel plasma biomarker- based 
model	for	predicting	acute	kidney	injury	after	cardiac	surgery	by	bio-
informatics	 analysis;	 however,	 the	predictive	performance	needed	
to be improved. Tang et al.8 reported seven genes were associated 
with	 involvement	 in	 the	 occurrence	 and	 development	 of	 sepsis-	
related	AKI	by	bioinformatics	analysis.	Sreenivasulu	et	al.9	identified	
a	 novel	 therapeutic	 target	Adra1b	 for	 contrast-	induced	 acute	 kid-
ney	injury	through	bioinformatics	methods	and	animal	experiments.	
However,	 reports	 about	 AKI	 in	 critically	 ill	 patients	 were	 rare,	 it	
was	very	vital	to	explore	novel	and	useful	diagnostic	biomarkers	in	
transcriptome	level.	Therefore,	we	planned	to	mine	key	biomarkers	
by	 bioinformatics	 methods	 in	 tissue	 samples	 from	 GEO	 database	
and	validate	 in	 clinical	 samples	 from	critically	 ill	 patients,	 in	order	
to	provide	significantly	diagnostic	biomarkers	for	AKI	in	critically	ill	
patients.	Bioinformatics	methods	are	very	important	and	useful	ap-
proaches	to	explore	the	novel	biomarkers	and	therapeutic	targets	of	
AKI	and	would	provide	a	new	horizon	for	understanding	diseases.	In	
this	study,	we	hope	to	explore	crucial	indicators	for	early	diagnosing	
AKI	and	useful	therapeutic	targets,	which	could	provide	some	basis	
for	further	experimental	studies.

2  |  MATERIAL S AND METHODS

2.1  |  Preparation of gene expression profile data

The	workflow	of	this	present	study	is	shown	in	Figure	S1. The gene 
expression	 profile	 data	 were	 obtained	 from	 the	 GEO	 database	
(https://www.ncbi.nlm.nih.gov/geo/).	 GSE139061	 (https://www.
ncbi.nlm.nih.gov/geo/query/ acc.cgi?acc=GSE13	9061) was gene 
expression	 profile	 dataset	 based	 on	 the	 platform	 of	 GPL20301	

(Illumina	 HiSeq	 4000),	 which	 contained	 39	 native	 human	 renal	
biopsy	 samples	 and	 nine	 reference	 nephrectomies.	 GSE30718	
(https://www.ncbi.nlm. nih.gov/geo/query/ acc.cgi?acc=GSE30718) 
was	 gene	 expression	 profile	 dataset	 based	 on	 the	 platform	 of	
GPL570	 (Affymetrix	Human	Genome	U133	plus	2.0	Array),	which	
contained	28	native	human	renal	biopsy	samples	and	11	reference	
nephrectomies.	 The	 two	 gene	 expression	 datasets	 were	 down-
loaded	from	the	database,	which	was	calculated	as	fragments	per	ki-
lobase	of	transcript	per	million	mapped	reads.	Data	standardization	
was	performed	by	using	the	multi-	array	average	algorithm	in	the	affy	
package	in	Bioconductor	(https://www.bioco nduct or.org) in R 3.6.2 
(https://cran.rstud io.com/).	GSE139061	was	regarded	as	training	set	
and	GSE30718	was	regarded	as	validating	set	for	further	analysis.

2.2  |  Identification of differentially expressed 
genes (DEGs)

Limma	R	package	(Version:	3.42.2)	was	used	to	screen	the	differentially	
expressed	genes	between	AKI	cohort	and	non-	AKI	cohort	with	R	3.6.2	
(https://cran.rstud io.com/).	 Log(2)	 (|FoldChange|)	 higher	 than	 1	 and	
adjusted p	value < 0.05	were	regarded	as	screening	criteria	of	DEGs.	A	
hierarchical cluster heatmap based on Euclidean distance was gener-
ated	using	the	pheatmap	R	package	(Version:	1.0.12)	and	represented	
the	gene	expression	intensity	and	direction	of	differentially	expressed	
genes.	A	volcano	plot	displayed	the	distribution	of	DEGs,	which	log(2)	
(|FoldChange|)	was	calculated	and	shown	in	the	horizontal	axis,	−log(10)	
(p-	value)	was	calculated	and	shown	in	the	longitudinal	axis.

2.3  |  Construction of Weighted Gene 
Co- expression Network Analysis (WGCNA)

WGCNA	is	a	systems	biology	method	for	constructing	scale-	free	
networks	using	gene	expression	profile	data.	Total	analyses	were	
performed	using	the	R	package	WGCNA	(Version:	1.68)	in	R	3.6.2	
(https://cran.rstud io.com/).	Firstly,	the	similarity	matrix	of	expres-
sion	profile	was	constructed	by	calculating	the	Pearson's	correla-
tion	coefficient	between	two	different	genes.	Then,	the	similarity	
matrix	of	gene	expression	was	converted	into	the	adjacency	matrix	
and	scale-	free	network	was	assigned	that	the	optimal	soft	thresh-
old was β =	 4.	The	crucial	 function	of	 this	 step	was	 strengthen-
ing strong correlation and weakening weak correlation at the gene 
expression	 level.	 Next,	 the	 adjacency	 matrix	 was	 transformed	
into	the	topological	matrix	(TOM).	TOM	was	used	to	evaluate	the	
degree	 of	 association	 between	 genes	 and	 (1-	TOM)	was	 used	 for	
hierarchical	 clustering	 of	 genes.	 The	 dynamic	 tree	 cut	 algorithm	
was	used	to	recognize	and	classify	different	modules	and	find	the	
most	representative	gene	in	each	module,	which	was	called	mod-
ule	eigengene	 (ME).	The	ME	represented	 the	 first	principal	com-
ponent	of	each	module,	which	also	meant	the	overall	level	of	gene	
expression	 in	 this	module.	 The	minimum	 number	 of	 genes	were	
20	 in	 each	 module,	 the	 correlation	 threshold	 of	 hub	 genes	 was	
0.90	and	the	unsigned	network	edge	threshold	was	0.05.	Clinically	
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significant	modules	were	 identified	by	calculating	the	correlation	
between	ME	and	clinical	trait,	and	the	degree	of	connection	was	
measured.	Gene	significance	(GS)	was	used	to	evaluate	this	degree	
and	a	higher	GS	indicated	the	increased	significance	of	genes.10–	12

2.4  |  Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways enrichment analysis

GO	and	KEGG	pathway	enrichment	analyses	were	performed	using	
an	online	database	by	DAVID	6.8	(https://david.ncifc	rf.gov/).	GO	and	
KEGG	pathway	enrichment	analysis	was	used	to	 identify	potential	
biological	mechanism	of	genes.	GO	is	 involved	in	three	categories:	
biological	process	(BP),	cellular	component	(CC),	and	molecular	func-
tion	(MF).	The	potential	biological	features	and	pathways	of	differ-
entially	expressed	genes	were	further	explored	and	the	significance	
threshold was p-	value < 0.05.	The	critical	module,	which	was	mostly	
associated	with	the	development	of	AKI	was	selected	as	the	most	
representative	module	and	the	genes	in	this	module	were	visualized	
with	Cytoscape	3.5.1	(https://cytos cape.org/).

2.5  |  Construction of Protein– Protein Interaction 
(PPI) network

The	 STRING	 11.5	 (https://strin g- db.org/) was used to construct 
protein–	protein	interaction	network.	This	online	database	provides	
a	 system-	wide	 understanding	 of	 cellular	 function	 requires	 knowl-
edge	 of	 all	 function	 interactions	 between	 the	 expressed	 proteins.	
The associations among genes in target module were obtained by 
STRING	database	and	were	visualized	with	Cytoscape	3.5.1	(https://
cytos cape.org/).	 The	CytoHubba	 package	 provides	 a	 user-	friendly	
interface	to	explore	hub	nodes	in	biological	networks	and	revealed	
the	association	degree	among	genes	by	transforming	color	from	dark	
to light in target module.

2.6  |  Identification and validation of hub genes

The	 correlation	 of	 genes	 was	 calculated	 using	 absolute	 Pearson's	
correlation values by the Cor R package in R 3.6.2 (https://cran.
rstud io.com/).	Genes	that	had	high	correlation	with	a	module,	which	
meant	the	absolute	of	Pearson's	correlation	values	was	more	than	
0.9	was	regarded	as	hub	genes.	In	addition,	the	GSE30718	dataset	
downloaded	 from	 GEO	 database	 (https://www.ncbi.nlm.nih.gov/
geo/) was used to validate the hub genes.

2.7  |  AKI diagnostic model by LASSO- based 
logistic regression

The	critical	module,	which	was	the	most	related	to	the	development	
of	 AKI	 was	 selected	 as	 the	 most	 representative	 module	 and	 hub	

genes	were	 selected	 in	 this	module	 by	 bioinformatics	methods	of	
WGCNA.	LASSO-	based	 logistic	 regression	analysis	was	applied	 to	
select	the	key	features	based	on	hub	genes	and	construct	an	optimal	
diagnostic	model	for	AKI.	The	risk	score	of	each	sample	was	calcu-
lated	using	this	formula:	Risk	Score	= Σ	exp	(genei*βi).

2.8  |  Sample collection and detection by Real- Time 
Quantitative PCR (RT- qPCR)

Venous	blood	samples	were	uniformly	collected	from	all	participants	
into EDTA (Ethylene Diamine Tetraacetic Acid) anticoagulation tubes 
when	patients	were	first	diagnosed	AKI	in	ICU.	AKI	was	defined	ac-
cording	 to	 KDIGO	 guidelines	 as	 renal	 function	 was	 suddenly	 de-
creased	within	48 h	and	serum	creatinine	increased	at	least	0.3	mg/dl,	
or	serum	creatinine	increased	more	than	1.5	times	higher	than	base-
line	within	7 days,	or	urine	volume < 0.5	ml/Kg/h	for	6	h.	The	density	
gradient	centrifugation	by	Ficoll–	Hypaque	(Sigma	Chemical	Co)	was	
applied	for	peripheral	blood	mononuclear	cells	(PBMCs)	separation	
from	the	blood	of	AKI	and	control	patients.	RNA	was	isolated	from	
PBMCs	obtained	from	the	patients	using	Trizol	(Invitrogen,	Carlsbad)	
and	 reverse	 transcribed	 using	 the	 RevertAid	 First	 Strand	 cDNA	
Synthesis	Kit	(Thermo	Fisher	Scientific).	The	RT-	qPCR	analysis	was	
performed	using	AceQ	Universal	SYBR	qPCR	Master	Mix	(Vazyme),	
Primers,	and	the	C1000	Touch™	thermal	cycler	(Bio-	Rad,	Hercules).	
The	 data	 were	 normalized	 to	 GAPDH	 levels	 within	 each	 sample	
and	analyzed	using	 the	Ct method. Primer sequences are listed as 
follows:	 RANGAP1:	 forward	 5′-	GAGTGTAGTGGAACGATCAC-	3′,	
reverse	 5′-	CGGGAAGATCACTTTAGACC-	3′;	 UBTF:	 forward	
5′-	GGCCATTGGTCCAACAAAGAC-	3′,	 reverse	 5′-	AGTCCATGTG	
TGACTGAGTTGA-	3′;	 SYNE1:	 forward	 5′-	ACCTCCAATGGT	 GGTG	
GAC-	3′,	 reverse	 5′-	CGTGCCAATG	 TTAGCCACA-	3′;	 BAZ1A:	 for-
ward	 5′-	CTGCTAC	 ACCGAAAGCCGTT-	3′,	 reverse	 5′-	GCACAGAA	
TGGTTCGTT	CAAAAA-	3′;	COL1A1:	forward	5′-	GAGGGCCAAGAC	
GAAGACATC-	3′,	reverse	5′-	CAGATCACGTCA	TCG	CACA	AC-	3′.

2.9  |  TF- mRNA and miRNA- mRNA 
network analysis

Transcription	 factors	 (TFs)	 as	 crucial	 regulators	 can	modulate	 the	
expression	of	target	genes	by	binding	to	specific	DNA	sequences	of	
their promoters or enhancers.13	hTFtarget	(https://bioin	fo.life.hust.
edu.cn/hTFta	rget#!/)	 online	 database	 provides	 an	 opportunity	 for	
understanding	 comprehensively	 TF-	target	 regulations	 from	 large-	
scale	ChIP-	seq	data	of	human	TFs.	The	 identification	of	TF-	target	
relationship	 was	 a	 basis	 for	 making	 out	 the	 molecular	 regulatory	
mechanisms underlying biological processes containing the devel-
opment	and	pathogenesis.	TargetScan	7.1	(https://www.targe tscan.
org/vert_71/)	and	ENCORI	 (https://www.starb ase.sysu.edu.cn) are 
online	databases	integrate	biological	targets	of	miRNAs	by	searching	
for	the	presence	of	conserved	sites,	which	matches	the	seed	region	
of	each	miRNA.	The	associations	between	miRNAs	and	mRNAs	were	
demonstrated to be related to the molecular regulatory mechanisms 
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and	pathogenesis	and	exploring	this	regulation	would	be	beneficial	
for	mining	novel	therapeutic	targets	of	AKI.

2.10  |  Immune infiltration analysis of hub genes

In	 order	 to	 explore	 the	 differences	 in	 immune	 cell	 subtypes,	
CIBERSORT	 R	 package	 (Version:	 1.04)	 was	 used	 to	 evaluate	 the	
proportions	of	22	immune	cell	subtypes	based	on	gene	expression	
profile.	The	analysis	results	were	used	for	further	analysis.	In	addi-
tion,	we	compared	differences	in	immune	cell	subtypes	between	AKI	
cohort	and	non-	AKI	cohort	by	the	Mann–	Whitney	U-	test.

2.11  |  Statistical analysis

All	statistical	analyzes	were	carried	out	by	R	3.6.2	(https://cran.rstud 
io.com/)and	corresponding	packages.	Statistical	significance	was	set	
at	a	probability	value	of	p < 0.05.	Significant	differences	were	calcu-
lated	by	one-	way	ANOVA	with	Dunnett's	or	Newman–	keuls	test,	or	
by	two-	tailed	Student's	t	test	or	Mann–	Whitney	U	test.

3  |  RESULTS

3.1  |  Identification of DEGs in AKI

The	 DEGs	 in	 39	 AKI	 samples	 compared	 with	 nine	 non-	AKI	 sam-
ples	were	analyzed	by	limma	R	package	(Version:3.42.2)	 in	R	3.6.2	
(https://cran.rstud io.com/).	There	were	20,139	genes	were	analyzed	
and	2202	DEGs	were	obtained,	of	which	572	DEGs	were	upregu-
lated	significantly	and	1630	DEGs	were	downregulated	significantly.	
The	screening	criteria	 for	DEGs	were	 log(2)	 (|FoldChange|) > 1	and	
the adjusted p	value < 0.05.	Hierarchical	clustering	was	used	to	clus-
ter	samples	and	genes	according	to	different	gene	expression	values	
of	genes	in	various	samples	and	the	expression	profile	of	DEGs	was	
visualized	using	a	heat	map	 (Figure	S2A). A volcano plot displayed 
the	distribution	of	DEGs,	which	log(2)	(|FoldChange|)	was	calculated	
and	shown	 in	the	horizontal	axis,	−log(10)	 (p- value) was calculated 
and	shown	in	the	longitudinal	axis	(Figure	S2B).	The	most	significant	
upregulated	10	genes	were	visualized	in	Table	S1 and the most sig-
nificant	downregulated	10	genes	were	shown	in	Table	S2.

3.2  |  Construction of WGCNA and identification of 
clinical crucial module

Cluster	analysis	was	carried	out	on	the	samples	of	GSE139061	using	
average	 linkage	 and	 Pearson's	 correlation,	 and	 the	 co-	expression	
network	 was	 constructed	 by	 co-	expression	 analysis.	 The	 soft	
threshold β =	 4	was	 identified	 to	 ensure	 a	 scale-	free	network	 for	
further	 analysis	 (Figure 1A).	 A	 total	 of	 7	modules	were	 identified	
by	the	average	linkage	hierarchical	clustering,	calculating	with	MEs	
and combing adjacent modules with the same module and set the 

height	as	0.25	(Figure 1B).	Pearson's	correlation	coefficients	among	
modules were calculated and the associations between modules 
and inner genes were evaluated (Figure 1C). The brown module 
(R =	0.75,	p =	0.00009)	was	selected	as	the	target	module	for	the	
optimal	association	with	the	development	of	AKI	from	the	correla-
tion	with	clinical	trait	and	the	suitable	number	of	genes	(Figure 1D).

3.3  |  GO and KEGG pathway enrichment analysis

The	genes	 in	 the	crucial	 clinically	 significant	module	were	catego-
rized	into	three	function	groups,	including	BP,	CC,	and	MF.	BP	anal-
ysis revealed that genes in brown module were mainly involved in 
oxidation–	reduction	 process,	 positive	 regulation	 of	 GTPase	 activ-
ity,	 cell	 adhesion,	 transport,	 response	 to	 drug,	multiple	metabolic	
processes,	and	positive	regulation	of	cell	migration	(Figure 2A). CC 
analysis showed that genes in brown module were mainly involved 
in	integral	component	of	membrane,	plasma	membrane,	extracellu-
lar	exosome,	and	mitochondrion	(Figure 2B).	MF	analysis	displayed	
that	genes	in	brown	module	were	mainly	involved	in	zinc	ion	binding,	
protein	homodimerization	activity,	ligase	activity,	GTPase	activator	
activity,	catalytic	activity,	and	hydrolase	activity	(Figure 2C).	KEGG	
pathway enrichment analysis uncovered that genes in brown module 
were	mainly	involved	in	metabolic	pathways,	biosynthesis	of	antibi-
otics,	Rap1	signaling	pathway,	carbon	metabolism,	protein	digestion	
and	absorption,	drug	metabolism,	chemical	carcinogenesis,	and	reti-
nol metabolism (Figure 2D).

3.4  |  PPI network analysis of the key module

The	 PPI	 network	 of	 the	 genes	 in	 brown	module	was	 constructed	
by	 STRING	 database	 version	 11.5	 (https://cytos cape.org/) and 
visualized	 by	 Cytoscape	 3.5.1	 (https://cytos cape.org/) (Figure 3). 
There	were	203	genes	 in	brown	module	and	15	genes	were	 iden-
tified	 as	 hub	 genes	 including	 KMT2B,	 NOC2L,	 COL1A1,	 BAZ1A,	
PABPN1,	HNRNPD,	H6PD,	SYNE1,	DST,	RANGAP1,	DEK,	MACF1,	
CHD3,	CXXC1,	and	UBTF.	The	high	degree	genes	calculated	by	the	
CytoHubba	plugin	were	located	in	the	center	of	the	circle	network	
and	 the	dark	color	 represented	 the	high	degree	of	genes.	The	ex-
pression	 levels	of	15	hub	genes	between	AKI	and	non-	AKI	cohort	
were	shown	in	Figure	S3.

3.5  |  Validation of hub genes and construction of 
AKI diagnostic model

The	expression	of	15	hub	genes	was	validated	by	GSE30718	in	GEO	
database.	 RNA-	sequencing	 expression	 levels	 of	 KMT2B,	 NOC2L,	
COL1A1,	 BAZ1A,	 PABPN1,	 HNRNPD,	 H6PD,	 RANGAP1,	 DEK,	
CHD3,	 CXXC1,	 and	UBTF	were	 significantly	 increased	 in	 AKI	 co-
hort	 compared	with	 non-	AKI	 cohort.	 RNA-	sequencing	 expression	
levels	of	DST,	MACF1,	and	SYNE1	were	significantly	decreased	 in	
AKI	cohort	compared	with	non-	AKI	cohort	(Figure	S4). The validated 

https://cran.rstudio.com/
https://cran.rstudio.com/
https://cran.rstudio.com/
https://cytoscape.org/
https://cytoscape.org/


    |  5 of 12SUN et al.

results	were	consistent	with	the	training	dataset	of	GSE139061.	To	
construct	 AKI	 related	 gene	 diagnostic	 model,	 LASSO	 regression	
was	used	to	select	crucial	genes	based	on	15	hub	genes.	Then,	five	
crucial	 genes	 were	 selected	 to	 perform	 binary	 logistic	 regression	
analysis (Figure 4A,B).	 Finally,	 a	 diagnostic	 model	 containing	 five	
genes	 (RANGAP1,	 UBTF,	 SYNE1,	 BAZ1A,	 and	 COL1A1)	 was	 es-
tablished	to	assess	the	diagnostic	efficiency	of	each	patients	as	fol-
lows:	Risk	Score	=	0.0391*	RANGAP1 +	0.5509*	UBTF + (−0.4938)*	
SYNE1 +	 0.5081*	 BAZ1A +	 0.0363*	 COL1A1.	 In	 addition,	 ROC	
curve	 analysis	 was	 performed	 to	 assess	 the	 diagnostic	 power	 of	
single	gene	and	this	model,	which	was	consisted	of	five	genes.	The	
area	under	the	ROC	curve	of	RANGAP1	was	0.90,	95%	confidence	
interval	was	0.80–	0.99,	p < 0.05.	The	area	under	the	ROC	curve	of	
UBTF	was	0.91,	95%	confidence	 interval	was	0.83–	0.99,	p < 0.05.	
The	area	under	the	ROC	curve	of	SYNE1	was	0.87,	95%	confidence	
interval	was	0.76–	0.98,	p < 0.05.	The	area	under	the	ROC	curve	of	
BAZ1A	was	0.85,	95%	confidence	interval	was	0.75–	0.96,	p < 0.05.	
The	 area	 under	 the	 ROC	 curve	 of	 COL1A1	was	 0.77,	 95%	 confi-
dence	 interval	was	 0.58–	0.96,	 p < 0.05.	 The	 area	 under	 the	 ROC	
curve	of	combination	model	was	0.99,	95%	confidence	interval	was	

0.98–	1.01,	p < 0.05	(Figure 4C).	The	combined	model	of	AKI	exhib-
ited	 excellently	 diagnostic	 efficiency,	which	 had	broad	 clinical	 ap-
plication prospect.

3.6  |  Validation of the five biomarkers- based 
diagnostic model of AKI by RT- qPCR

We	 further	 validated	 these	 five	 biomarkers	 (UBTF,	 SYNE1,	
RANGAP1,	BAZ1A,	 and	COL1A1)	 in	plasma	 samples	by	RT-	qPCR.	
There	were	35	patients	in	ICU	were	enrolled	and	15	patients	were	
diagnosed	AKI	as	AKI	cohort	and	20	patients	were	not	diagnosed	
with	AKI	as	control	cohort.	As	shown	in	Figure 5,	the	levels	of	five	
biomarkers	 in	AKI	and	non-	AKI	cohort	were	consistent	with	other	
two	dataset	 (GSE139061	and	GSE30718).	The	ROC	curve	analysis	
was	performed	to	validate	the	diagnostic	performance	for	AKI.	The	
results	 revealed	 that	 these	 five	biomarkers	 exhibited	 excellent	 di-
agnostic	performance	for	AKI,	respectively.	Furthermore,	the	com-
bined	model	exhibited	optimal	potential	for	diagnosing	AKI	and	the	
AUC	of	the	model	was	0.97	(95%CI:	0.88–	1.06).

F I G U R E  1 WGCNA	analysis	of	differentially	expressed	genes.	(A)	Cluster	dendrogram	of	48	kidney	tissue	samples,	which	contain	39	
AKI	samples	and	nine	non-	AKI	samples,	and	determination	of	the	soft	threshold	(β =	4)	of	weighted	co-	expression	network;	(B)	Cluster	
dendrogram	of	differentially	expressed	genes	to	identify	the	clinically	significant	modules	associated	with	the	development	of	AKI;	(C)	
Heatmap	of	the	correlations	among	different	modules;	(D)	Heatmap	of	the	correlations	between	module	eigengenes	and	clinical	traits	of	AKI
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3.7  |  TF- mRNA and miRNA- mRNA 
network analysis

Using	hTFtarget	database,	we	explored	the	TF-	mRNA	interaction	in	
AKI.	As	presented	in	Table	S3,	the	15	hub	genes	were	used	to	screen	
corresponding	 transcription	 factors,	 and	 each	 hub	 gene	 may	 be	
transcriptionally	 regulated	by	multiple	 transcription	 factors,	which	
were	combined	with	transcription	factor	binding	sites	 in	upstream	
promoter regions. The interaction network was constructed be-
tween	15	hub	genes	and	target	TFs	by	Cytoscape	3.5.1	(Figure 6A). 

Bromodomain-	containing	 protein	 2	 (BRD2),	 Histone	 acetyltrans-
ferase	p300	 (EP300),	Protein	C-	ets	1	 (ETS1),	Myc	proto-	oncogene	
protein	(MYC),	Transcription	factor	PU.1	(SPI1)	and	Zinc	finger	pro-
tein	263	(ZNF263)	were	significantly	enriched	transcription	factors	
for	the	15	hub	genes.	Furthermore,	we	explored	the	miRNA-	mRNA	
interaction	in	AKI	using	TargetScan	7.1	and	ENCORI	databases.	As	
presented in Table S4,	the	predicted	target	miRNAs	were	analyzed	
and	each	miRNA	was	combined	with	3'	UTRs	of	target	mRNA.	Each	
mRNA	is	corresponding	to	multiple	target	miRNAs.	The	interaction	
network	was	established	between	15	hub	genes	and	target	miRNAs	

F I G U R E  2 GO	and	KEGG	pathway	enrichment	analysis	of	DEGs	in	DAVID	6.8	database.	(A)	Biological	Process;	(B)	Cellular	Component;	
(C)	Molecular	Function;	(D)	Kyoto	Encyclopedia	of	Genes	and	Genome	pathways
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by	Cytoscape	3.5.1	(Figure 6B).	It	was	identified	that	miR-	181c-	5p,	
miR-	218-	5p,	miR-	485-	5p,	miR-	532-	5p,	 and	miR-	6884-	5p	were	 sig-
nificantly	enriched	target	miRNAs	for	the	15	hub	genes.

3.8  |  Immune cell subtypes analysis between 
AKI and non- AKI cohort

The	22	 immune	cell	proportions	of	AKI	were	shown	 in	Figure 7A. 
T-	cell	 CD4	 naïve,	 T-	cell	 CD4	 memory	 resting,	 NK	 cell	 resting,	
Monocytes	 accounted	 for	 a	 large	 proportions	 of	AKI	 immune	 cell	

infiltration.	 AKI	 and	 non-	AKI	 cohort	 displayed	 different	 immune	
cells	 expression.	 The	 expression	 of	Monocytes	 and	Macrophages	
M0	in	AKI	cohort	was	 increasing	significantly	compared	with	non-	
AKI	cohort.	The	expression	of	Macrophages	M2	in	AKI	cohort	was	
decreasing	significantly	compared	with	non-	AKI	cohort	(Figure 7B).

4  |  DISCUSSION

Acute	kidney	injury	is	a	frequent	complication	in	critically	ill	patients,	
increasing	significantly	both	hospital	mortality	and	morbidity.14 The 

F I G U R E  3 PPI	network	analysis	of	DEGs	to	identify	15	hub	genes	(KMT2B,	NOC2L,	COL1A1,	BAZ1A,	PABPN1,	HNRNPD,	H6PD,	SYNE1,	
DST,	RANGAP1,	DEK,	MACF1,	CHD3,	CXXC1,	and	UBTF)	of	brown	module.	The	high-	degree	genes	calculated	by	the	CytoHubba	plugin	in	
Cytosacpe	3.5.1	were	located	in	the	center	of	the	circle	network	and	the	dark	color	represented	the	high	degree	of	genes.
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pathophysiology	of	AKI	 shares	 common	pathogenic	 denominators	
including	cell	death,	cell	injury,	inflammation,	and	fibrosis,	regardless	
of	the	initiating	insults.15	At	present,	owing	to	the	lack	of	sensitive	
and	 specific	means	 of	AKI	 prevention	 and	 therapy,	 it	 is	 crucial	 to	
explore	 the	 diagnostic	 biomarkers,	 novel	 therapeutic	 targets,	 and	
potential	pathophysiological	mechanism	in	AKI.

With	 adjusted	 p	 value < 0.05	 and	 log(2)	 (|Foldchange|) > 1	 as	
the	cutoff,	2202	DEGs	 (572	upregulated	and	1630	downregulated	
genes)	were	identified,	which	had	potential	to	be	novel	drivers	and	
may play a role in the pathophysiological mechanism underlying 
AKI	 development.	 Fifteen	 hub	 genes	 (KMT2B,	 NOC2L,	 COL1A1,	
BAZ1A,	PABPN1,	HNRNPD,	H6PD,	SYNE1,	DST,	RANGAP1,	DEK,	
MACF1,	CHD3,	CXXC1,	and	UBTF)	of	brown	module	were	selected	
using	comprehensive	analytical	method	of	WGCNA,	which	were	fur-
ther	successfully	validated	using	another	dataset	of	GEO	database.	
To	 further	 understand	 the	 molecular	 mechanism,	 GO	 and	 KEGG	
pathways	enrichment	analyses	of	the	DEGs	was	performed.	As	for	
GO	analysis,	it	was	identified	that	DEGs	were	enriched	in	oxidation–	
reduction	process,	cell	adhesion,	proliferation,	migration,	metabolic	
process,	 mitochondria,	 iron	 ion	 binding,	 heparin-	binding,	 oxygen	
binding,	 and	 so	on.	As	 for	KEGG	pathways	enrichment	analysis,	 it	
was	identified	that	DEGs	were	enriched	in	metabolic	pathways,	bio-
synthesis	 of	 antibiotics,	Rap1	 signaling	pathways,	 carbon	metabo-
lism,	 drug	metabolism,	 and	 so	 on.	 Recent	 studies	 had	 shown	 that	
the	primary	 site	of	damage	during	AKI,	proximal	 tubular	epithelial	
cells,	were	highly	metabolically	active,	relying	on	fatty	acids	to	meet	
energy	demands,	which	were	rich	in	mitochondria	and	peroxisomes.	
The	 two	organelles	mediated	 fatty	 acid	 oxidation.16	Mitochondria	
are cytoplasmic organelles with a double phospholipid membrane 
that	generate	energy	via	oxidative	phosphorylation.17	Mitochondria	
are	also	associated	with	calcium	homeostasis,	intracellular	reactive	
oxygen	 species	 (ROS)	 generation,	 and	 cell	 signaling	 functions.18,19 
Mitochondrial	fatty	acid	β-	oxidation	serves	as	the	preferred	source	
of	ATP	in	the	kidney	and	its	dysfunction	results	in	ATP	depletion	and	
lipotoxicity	to	elicit	tubular	injury	and	inflammation	and	subsequent	
fibrosis	progression.20 The kidney is a highly metabolic organ with 

high	 levels	 of	 oxidation	 within	 cellular	 mitochondria.21	 Metabolic	
process	 includes	 glucose	 metabolism,	 lipid	 metabolism,	 drug	 me-
tabolism,	and	so	on	which	have	been	discovered	in	the	enrichment	
analysis	of	genes	 in	brown	module.	Lipid	metabolism	plays	a	basic	
role	in	renal	physiology,	especially	 in	tubules.22	Some	studies	have	
revealed the emerging association between increased metabolites 
and	AKI	pathogenesis	and	progression	from	different	perspectives,	
which were consistent with our study.23,24

The	present	study	identified	that	15	genes	were	significantly	as-
sociated	with	AKI	development	as	hub	genes	of	brown	module.	The	
Mixed	Lineage	Leukemia	2	 (MLL2)	protein,	also	known	as	KMT2B,	
belongs	 to	 the	 family	 of	 mammalian	 histone	 H3	 lysine	 4	 (H3K4)	
methyltransferases.25	Moreover,	KMT2B	plays	a	key	role	 in	devel-
opment,	and	germline	deletions	of	MLL2	have	been	associated	with	
early	 growth	 retardation,	 neural	 tube	 defects,	 and	 apoptosis	 that	
leads	 to	embryonic	death.	The	 research	has	 revealed	 that	KMT2B	
acts	 as	 a	 chromatin	 modifier	 gene	 harbors	 mutations	 in	 Renal	
cell	 carcinomas	 through	 high-	throughput	 sequencing	 efforts.26 
However,	to	our	knowledge,	no	experimental	studies	of	KMT2B	in	
acute	kidney	injury	have	been	reported	to	date,	which	is	worthy	of	
further	 study.	NOC2L,	 acts	 as	 an	 inhibitor	 of	 histone	 acetyltrans-
ferase	 activity,	 prevents	 acetylation	 of	 all	 core	 histones	 by	 the	
EP300/p300	histone	acetyltransferase	at	p53/TP53-	regulated	tar-
get promoters in a histone deacetylases- independent manner with 
chronic kidney disease.27	COL1A1,	acts	as	type	I	collagen,	is	a	mem-
ber	of	group	 I	 collagen	 (fibrillary	 forming	collagen).	The	mutations	
of	COL1A1	can	cause	Osteogenesis	 imperfecta	has	been	reported	
extensively.	Recent	 research	have	 revealed	 that	COL1A1	 is	highly	
associated	with	chronic	kidney	disease,	cardiovascular	diseases	and	
bone metabolism disorders.28	Moreover,	the	experimental	and	the-
ory	studies	of	COL1A1	in	acute	kidney	 injury	are	required	for	fur-
ther	study.	Heterogeneous	nuclear	ribonucleoprotein	D	(HNRNPD),	
has	been	shown	to	regulate	gene	expression	at	the	translational	and	
even the transcriptional level and regulate AU- rich elements (ARE)- 
mRNA	turnover,	primarily	functioning	to	promote	rapid	ARE-	mRNA	
degradation	 and	 various	 kidney	 cells	 express	multiple	 isoforms	 of	

F I G U R E  4 Construction	of	AKI	diagnostic	model	by	LASSO-	based	logistic	regression	analysis.	(A,	B)	Screening	and	constructing	a	
diagnostic	model	based	on	15	hub	genes	by	LASSO-	based	logistic	regression;	(C),	ROC	curve	analysis	for	evaluating	the	diagnostic	efficiency	
of	single	gene	and	the	combined	model
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HNRNPD.29	H6PD	is	a	steroid	conversion	and	receptor	gene,	which	
plays a crucial role in steroid conversion and response in kidney 
transplantation.30	The	research	on	SYNE1	revealed	that	the	essen-
tial	roles	in	mediating	sunitinib	cytotoxicity	and	the	loss	of	function	
rendered renal cell carcinoma cell resistant to sunitinib in vitro and in 
vivo.31	The	rest	of	the	hub	genes	were	demanded	to	move	one	step	
further	uncovering	the	pathophysiologic	mechanisms	and	biological	

principles	of	AKI.	These	hub	genes	will	be	potential	biomarkers	and	
therapeutic	targets	of	acute	kidney	injury	in	the	future.

The	 present	 study	 identified	 that	 BRD2,	 EP300,	 ETS1,	 MYC,	
SPI1,	 ZNF263	 were	 significantly	 enriched	 transcriptional	 factors	
for	15	hub	genes.	BRD2	can	 specially	 bind	 acetylated	histone	H4	
and	mediate	transcription,	which	belongs	to	the	bromodomain	and	
extraterminal	 domain	 (BET)	 family	 regulating	 the	 expression	 of	

F I G U R E  5 Boxplots	showing	the	plasma	level	of	five	biomarkers	in	AKI	diagnostic	model	using	RT-	qPCR.	The	levels	of	UBTF,	RANGAP1,	
BAZ1A,	and	COL1A1	were	significantly	increased	in	AKI	cohort	compared	with	non-	AKI	cohort.	The	level	of	SYNE1	was	significantly	
decreased	in	AKI	cohort	compared	with	non-	AKI	cohort	(A)	UBTF;	(B)	SYNE1;	(C)	RANGAP1;	(D)	BAZ1A;	(E)	COL1A1;	(B)	ROC	curve	analysis	
of	five	biomarkers	in	AKI	model	for	diagnosing	AKI;	(F)	UBTF;	(G)	SYNE1;	(H)	RANGAP1;	(I)	BAZ1A;	(J)	COL1A1;	(K)	the	combined	model	of	
five	biomarkers	by	logistic	regression	analysis
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many immunity- associated genes and pathways.32	EP300,	a	protein	
with	 an	 essential	 role	 in	 controlling	 cell	 growth,	 cell	 division	 and	
prompting	 cells	 to	 differentiate	 to	 take	 on	 specialized	 functions,	
can	mediate	 epigenetic	 variation	 of	 kidney	 disease	 as	 a	 transcrip-
tional	 factor.33,34	 ETS1	 is	 a	 member	 of	 the	 ETS	 family	 and	 regu-
lates	the	expression	of	a	variety	of	genes	including	growth	factors,	
chemokines,	and	adhesion	molecules	and	plays	a	crucial	role	in	the	

cell	 cycle	progression	of	 renal	 tubules	 in	acute	 renal	 failure	 (ARF).	
The	ETS1	pathway	may	regulate	the	transcription	of	cyclin	D1	and	
control	 the	 regeneration	of	 renal	 tubules	 in	ARF.35	MYC	acts	 as	a	
transcriptional	factor	becomes	activated	in	resident	kidney	stromal	
cells	early	after	kidney	injury	and	can	regulate	metabolic	switch	in	
fibrosis	 initiation	 and	 progression.36	 Another	 study	 revealed	MYC	
acts	as	a	transcriptional	factor	participating	in	the	positive	feedback	

F I G U R E  6 Interaction	network	between	15	hub	genes	and	target	transcriptional	factors.	(A)	the	red	nodes	represent	15	hub	genes	and	
the	blue	nodes	represent	target	transcriptional	factors;	(B)	the	interaction	network	between	15	hub	genes	and	target	miRNAs.	The	red	
nodes	represent	15	hub	genes	and	the	blue	nodes	represent	target	miRNAs.

F I G U R E  7 Immune	infiltration	analysis	between	AKI	cohort	and	non-	AKI	cohort.	(A)	The	proportion	of	22	immune	cells	in	AKI.	T-	cell	CD4	
naïve,	T-	cell	CD4	memory	resting,	NK	cell	resting,	Monocytes	accounted	for	a	large	proportions	of	AKI	immune	cell	infiltration;	(B)	AKI	and	
non-	AKI	cohort	displayed	different	immune	cells	expression.	The	blue	color	represents	AKI	cohort	and	the	green	color	represents	non-	AKI	
cohort.	Different	immune	cell	type	expression	was	observed	between	AKI	and	non-	AKI	cohort.
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loop	 of	 MEG3/miR-	145-	5p/RTKN/Wnt/β-	catenin/c-	MYC	 to	 pro-
mote	renal	ischemia-	reperfusion	injury	by	activating	mitophagy	and	
inducing apoptosis.37	SPI1	can	activate	H19	which	overexpression	
confers	protection	against	renal	injury	by	stimulating	proangiogenic	
signaling	in	endothelial	cells	and	tubular	epithelial	cells	of	ischemic	
kidney tissue.38	ZNF263	acts	as	a	transcriptional	factor	that	can	reg-
ulate	a	crucial	enzyme	 involved	 in	 imparting	anticoagulant	activity	
to	heparin	and	also	can	 influence	the	gene	expression	of	ZRANB2	
in human kidney cells.39	Our	study	demonstrated	that	miR-	181c-	5p,	
miR-	218-	5p,	miR-	485-	5p,	miR-	532-	5p,	 and	miR-	6884-	5p	were	 sig-
nificantly	enriched	target	miRNAs	for	15	hub	genes.	miR-	181c-	5p	is	
a	member	of	miR-	181c	family	and	plays	a	crucial	role	in	regulating	ex-
tracellular	matrix	proteins	during	AKI	occurrence	and	progression.40 
miR-	218-	5p	 participates	 in	 regulating	 sepsis-	induced	 acute	 kidney	
injury	by	miR-	218-	5p/hemeoxygenase-	1	signaling	pathway.41	Wang	
et al.42	reported	that	miR-	218-	5p	expressed	in	endothelial	progen-
itor	 cells	 contributes	 to	 the	development	and	 repair	of	 the	kidney	
microvasculature.	 CirC_0008529/miR-	485-	5p/WNT2B	was	 a	 vital	
signaling	axis	to	regulate	high	glucose-	induced	renal	cell	apoptosis	
and	 inflammatory	 injury.43	The	 research	of	miR-	532-	5p	uncovered	
that	LINC00052	ameliorates	acute	kidney	 injury	by	sponging	miR-	
532-	5p	 and	 activating	 the	Wnt	 signaling	 pathway.44	miR-	6884-	5p	
regulates	 the	 functions	 of	 proliferation,	 invasion,	 epithelial–	
mesenchymal	 transformation	 in	 tumors;	 however,	 there	 are	 rarely	
research	to	reveal	the	function	and	mechanism	of	kidney	diseases.45 
Our	study	results	revealed	that	the	expression	of	Macrophages	M2	
in	AKI	cohort	was	decreasing	significantly	compared	with	non-	AKI	
cohort,	which	meant	M2	macrophages	were	a	protective	factor	for	
AKI	development.	The	research	showed	that	M2	macrophages	can	
effectively	alleviate	acute	kidney	injury	by	decreasing	inflammatory	
response	 and	 promoting	 primary	 proximal	 tubular	 epithelial	 cells	
proliferation,	which	was	consistent	with	our	findings.46

In	conclusion,	our	study	has	several	strengths.	The	present	study	
identified	15	hub	genes	 in	 acute	kidney	 injury	using	WGCNA	and	
constructed	 a	 diagnostic	 model	 by	 LASSO-	based	 logistic	 regres-
sion	and	validated	by	RT-	qPCR	in	blood	samples	of	AKI	in	critically	
ill	 patients.	 Furthermore,	 crucial	 pathways,	 Transcription	 factors,	
miRNAs,	and	22	immune	cell	subtypes,	which	were	associated	with	
AKI	were	analyzed	and	provided	some	basis	for	future	experimen-
tal	studies.	However,	the	study	has	also	limitations.	The	pathogenic	
mechanism	of	AKI	remains	uncertain	in	our	study,	and	it	 is	vital	to	
explore	 inner	mechanism	of	AKI	 based	on	15	hub	 genes	 and	 find	
out	the	optimal	diagnostic	and	therapeutic	targets,	and	that	 is	the	
research	direction	for	our	study.
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