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Abstract
Background: Acute kidney injury is a common clinical problem with no sensitive and spe-
cific diagnostic biomarkers and definitive treatments. The underlying molecular mecha-
nisms of acute kidney injury are unclear. Therefore, it is pivotal to explore the underlying 
mechanisms and screen for novel diagnostic biomarkers, and therapeutic targets.
Methods: The present study identified 15 hub genes by WGCNA analysis. LASSO-
based logistic regression analysis was used to select key features and construct a 
diagnostic model of AKI. In addition, GO and KEGG analyses were performed and TF-
mRNA and miRNA-mRNA network analysis and immune infiltration analysis of hub 
genes were performed to reveal the underlying mechanisms of AKI.
Results: A diagnostic model was constructed by LASSO-based logistic regression analysis 
and was validated by RT-qPCR based on 15 hub genes. GO and KEGG analyses revealed 
DEGs were enriched in oxidation–reduction process, cell adhesion, proliferation, migra-
tion, and metabolic process. The enriched TFs were BRD2, EP300, ETS1, MYC, SPI1, 
and ZNF263. The enriched miRNAs were miR-181c-5p, miR-218-5p, miR-485-5p, miR-
532-5p and miR-6884-5p. The immune infiltration analysis showed that Macrophages 
M2 was decreasing significantly revealing a protective factor for further AKI treatment.
Conclusions: The present study identified 15 hub genes based on WGCNA. 
Development and validation of a potentially diagnostic model based on 15 hub genes. 
In addition, exploring the interaction between transcriptional factors and 15 hub 
genes, and miRNA-mRNA relationship pairs. Furthermore, immune infiltration analy-
sis was performed by analyzing gene expression profiles of AKI. Our study provides 
some basis for further experimental studies.
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1  |  INTRODUC TION

Acute kidney injury is a common clinical syndrome of acute deteri-
oration or even loss of kidney function due to different causes such 
as sepsis, cardiac surgery, trauma, contrast medium, and nephrotoxic 
drug. It is a vital complication in patients admitted to hospital where 
the morbidity is almost 10%–15% of all hospitalizations and in pa-
tients in the ICU where the prevalence can sometimes be more than 
50%.1,2 AKI can progress to chronic kidney disease easily and rap-
idly without effective clinical treatment. AKI has the characteristics 
of high morbidity and mortality and there is no effective treatment 
strategy.3 AKI will bring high medical expenses if renal dialysis or 
renal transplant is performed. These issues have contributed AKI to 
a major public health problem worldwide.4 Thus, the early, sensitive, 
and rapid diagnosis of AKI is an important part of the overall manage-
ment of patients with the various syndromes, which cause or are as-
sociated with AKI. However, serum creatinine and urinary output are 
the cornerstone of our current diagnostic approach, which is neither 
sensitive nor specific for AKI. Therefore, it is urgent and imperative 
to develop novel and valid biomarkers for diagnosing AKI early.5,6

Thanks to the development of technologies in microarray and 
high-throughput sequencing, an increasing number of biomarkers 
and therapeutic targets have been discovered and applied in clini-
cal practice. Zhang et al.7 reported a novel plasma biomarker-based 
model for predicting acute kidney injury after cardiac surgery by bio-
informatics analysis; however, the predictive performance needed 
to be improved. Tang et al.8 reported seven genes were associated 
with involvement in the occurrence and development of sepsis-
related AKI by bioinformatics analysis. Sreenivasulu et al.9 identified 
a novel therapeutic target Adra1b for contrast-induced acute kid-
ney injury through bioinformatics methods and animal experiments. 
However, reports about AKI in critically ill patients were rare, it 
was very vital to explore novel and useful diagnostic biomarkers in 
transcriptome level. Therefore, we planned to mine key biomarkers 
by bioinformatics methods in tissue samples from GEO database 
and validate in clinical samples from critically ill patients, in order 
to provide significantly diagnostic biomarkers for AKI in critically ill 
patients. Bioinformatics methods are very important and useful ap-
proaches to explore the novel biomarkers and therapeutic targets of 
AKI and would provide a new horizon for understanding diseases. In 
this study, we hope to explore crucial indicators for early diagnosing 
AKI and useful therapeutic targets, which could provide some basis 
for further experimental studies.

2  |  MATERIAL S AND METHODS

2.1  |  Preparation of gene expression profile data

The workflow of this present study is shown in Figure S1. The gene 
expression profile data were obtained from the GEO database 
(https://www.ncbi.nlm.nih.gov/geo/). GSE139061 (https://www.
ncbi.nlm.nih.gov/geo/query/​acc.cgi?acc=GSE13​9061) was gene 
expression profile dataset based on the platform of GPL20301 

(Illumina HiSeq 4000), which contained 39 native human renal 
biopsy samples and nine reference nephrectomies. GSE30718 
(https://www.ncbi.nlm. nih.gov/geo/query/​acc.cgi?acc=GSE30718) 
was gene expression profile dataset based on the platform of 
GPL570 (Affymetrix Human Genome U133 plus 2.0 Array), which 
contained 28 native human renal biopsy samples and 11 reference 
nephrectomies. The two gene expression datasets were down-
loaded from the database, which was calculated as fragments per ki-
lobase of transcript per million mapped reads. Data standardization 
was performed by using the multi-array average algorithm in the affy 
package in Bioconductor (https://www.bioco​nduct​or.org) in R 3.6.2 
(https://cran.rstud​io.com/). GSE139061 was regarded as training set 
and GSE30718 was regarded as validating set for further analysis.

2.2  |  Identification of differentially expressed 
genes (DEGs)

Limma R package (Version: 3.42.2) was used to screen the differentially 
expressed genes between AKI cohort and non-AKI cohort with R 3.6.2 
(https://cran.rstud​io.com/). Log(2) (|FoldChange|) higher than 1 and 
adjusted p value < 0.05 were regarded as screening criteria of DEGs. A 
hierarchical cluster heatmap based on Euclidean distance was gener-
ated using the pheatmap R package (Version: 1.0.12) and represented 
the gene expression intensity and direction of differentially expressed 
genes. A volcano plot displayed the distribution of DEGs, which log(2) 
(|FoldChange|) was calculated and shown in the horizontal axis, −log(10) 
(p-value) was calculated and shown in the longitudinal axis.

2.3  |  Construction of Weighted Gene 
Co-expression Network Analysis (WGCNA)

WGCNA is a systems biology method for constructing scale-free 
networks using gene expression profile data. Total analyses were 
performed using the R package WGCNA (Version: 1.68) in R 3.6.2 
(https://cran.rstud​io.com/). Firstly, the similarity matrix of expres-
sion profile was constructed by calculating the Pearson's correla-
tion coefficient between two different genes. Then, the similarity 
matrix of gene expression was converted into the adjacency matrix 
and scale-free network was assigned that the optimal soft thresh-
old was β  =  4. The crucial function of this step was strengthen-
ing strong correlation and weakening weak correlation at the gene 
expression level. Next, the adjacency matrix was transformed 
into the topological matrix (TOM). TOM was used to evaluate the 
degree of association between genes and (1-TOM) was used for 
hierarchical clustering of genes. The dynamic tree cut algorithm 
was used to recognize and classify different modules and find the 
most representative gene in each module, which was called mod-
ule eigengene (ME). The ME represented the first principal com-
ponent of each module, which also meant the overall level of gene 
expression in this module. The minimum number of genes were 
20 in each module, the correlation threshold of hub genes was 
0.90 and the unsigned network edge threshold was 0.05. Clinically 
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significant modules were identified by calculating the correlation 
between ME and clinical trait, and the degree of connection was 
measured. Gene significance (GS) was used to evaluate this degree 
and a higher GS indicated the increased significance of genes.10–12

2.4  |  Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways enrichment analysis

GO and KEGG pathway enrichment analyses were performed using 
an online database by DAVID 6.8 (https://david.ncifc​rf.gov/). GO and 
KEGG pathway enrichment analysis was used to identify potential 
biological mechanism of genes. GO is involved in three categories: 
biological process (BP), cellular component (CC), and molecular func-
tion (MF). The potential biological features and pathways of differ-
entially expressed genes were further explored and the significance 
threshold was p-value < 0.05. The critical module, which was mostly 
associated with the development of AKI was selected as the most 
representative module and the genes in this module were visualized 
with Cytoscape 3.5.1 (https://cytos​cape.org/).

2.5  |  Construction of Protein–Protein Interaction 
(PPI) network

The STRING 11.5 (https://strin​g-db.org/) was used to construct 
protein–protein interaction network. This online database provides 
a system-wide understanding of cellular function requires knowl-
edge of all function interactions between the expressed proteins. 
The associations among genes in target module were obtained by 
STRING database and were visualized with Cytoscape 3.5.1 (https://
cytos​cape.org/). The CytoHubba package provides a user-friendly 
interface to explore hub nodes in biological networks and revealed 
the association degree among genes by transforming color from dark 
to light in target module.

2.6  |  Identification and validation of hub genes

The correlation of genes was calculated using absolute Pearson's 
correlation values by the Cor R package in R 3.6.2 (https://cran.
rstud​io.com/). Genes that had high correlation with a module, which 
meant the absolute of Pearson's correlation values was more than 
0.9 was regarded as hub genes. In addition, the GSE30718 dataset 
downloaded from GEO database (https://www.ncbi.nlm.nih.gov/
geo/) was used to validate the hub genes.

2.7  |  AKI diagnostic model by LASSO-based 
logistic regression

The critical module, which was the most related to the development 
of AKI was selected as the most representative module and hub 

genes were selected in this module by bioinformatics methods of 
WGCNA. LASSO-based logistic regression analysis was applied to 
select the key features based on hub genes and construct an optimal 
diagnostic model for AKI. The risk score of each sample was calcu-
lated using this formula: Risk Score = Σ exp (genei*βi).

2.8  |  Sample collection and detection by Real-Time 
Quantitative PCR (RT-qPCR)

Venous blood samples were uniformly collected from all participants 
into EDTA (Ethylene Diamine Tetraacetic Acid) anticoagulation tubes 
when patients were first diagnosed AKI in ICU. AKI was defined ac-
cording to KDIGO guidelines as renal function was suddenly de-
creased within 48 h and serum creatinine increased at least 0.3 mg/dl, 
or serum creatinine increased more than 1.5 times higher than base-
line within 7 days, or urine volume < 0.5 ml/Kg/h for 6 h. The density 
gradient centrifugation by Ficoll–Hypaque (Sigma Chemical Co) was 
applied for peripheral blood mononuclear cells (PBMCs) separation 
from the blood of AKI and control patients. RNA was isolated from 
PBMCs obtained from the patients using Trizol (Invitrogen, Carlsbad) 
and reverse transcribed using the RevertAid First Strand cDNA 
Synthesis Kit (Thermo Fisher Scientific). The RT-qPCR analysis was 
performed using AceQ Universal SYBR qPCR Master Mix (Vazyme), 
Primers, and the C1000 Touch™ thermal cycler (Bio-Rad, Hercules). 
The data were normalized to GAPDH levels within each sample 
and analyzed using the Ct method. Primer sequences are listed as 
follows: RANGAP1: forward 5′-GAGTGTAGTGGAACGATCAC-3′, 
reverse 5′-CGGGAAGATCACTTTAGACC-3′; UBTF: forward 
5′-GGCCATTGGTCCAACAAAGAC-3′, reverse 5′-AGTCCATGTG 
TGACTGAGTTGA-3′; SYNE1: forward 5′-ACCTCCAATGGT GGTG 
GAC-3′, reverse 5′-CGTGCCAATG TTAGCCACA-3′; BAZ1A: for-
ward 5′-CTGCTAC ACCGAAAGCCGTT-3′, reverse 5′-GCACAGAA 
TGGTTCGTT CAAAAA-3′; COL1A1: forward 5′-GAGGGCCAAGAC 
GAAGACATC-3′, reverse 5′-CAGATCACGTCA TCG CACA AC-3′.

2.9  |  TF-mRNA and miRNA-mRNA 
network analysis

Transcription factors (TFs) as crucial regulators can modulate the 
expression of target genes by binding to specific DNA sequences of 
their promoters or enhancers.13 hTFtarget (https://bioin​fo.life.hust.
edu.cn/hTFta​rget#!/) online database provides an opportunity for 
understanding comprehensively TF-target regulations from large-
scale ChIP-seq data of human TFs. The identification of TF-target 
relationship was a basis for making out the molecular regulatory 
mechanisms underlying biological processes containing the devel-
opment and pathogenesis. TargetScan 7.1 (https://www.targe​tscan.
org/vert_71/) and ENCORI (https://www.starb​ase.sysu.edu.cn) are 
online databases integrate biological targets of miRNAs by searching 
for the presence of conserved sites, which matches the seed region 
of each miRNA. The associations between miRNAs and mRNAs were 
demonstrated to be related to the molecular regulatory mechanisms 
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and pathogenesis and exploring this regulation would be beneficial 
for mining novel therapeutic targets of AKI.

2.10  |  Immune infiltration analysis of hub genes

In order to explore the differences in immune cell subtypes, 
CIBERSORT R package (Version: 1.04) was used to evaluate the 
proportions of 22 immune cell subtypes based on gene expression 
profile. The analysis results were used for further analysis. In addi-
tion, we compared differences in immune cell subtypes between AKI 
cohort and non-AKI cohort by the Mann–Whitney U-test.

2.11  |  Statistical analysis

All statistical analyzes were carried out by R 3.6.2 (https://cran.rstud​
io.com/)and corresponding packages. Statistical significance was set 
at a probability value of p < 0.05. Significant differences were calcu-
lated by one-way ANOVA with Dunnett's or Newman–keuls test, or 
by two-tailed Student's t test or Mann–Whitney U test.

3  |  RESULTS

3.1  |  Identification of DEGs in AKI

The DEGs in 39 AKI samples compared with nine non-AKI sam-
ples were analyzed by limma R package (Version:3.42.2) in R 3.6.2 
(https://cran.rstud​io.com/). There were 20,139 genes were analyzed 
and 2202 DEGs were obtained, of which 572 DEGs were upregu-
lated significantly and 1630 DEGs were downregulated significantly. 
The screening criteria for DEGs were log(2) (|FoldChange|) > 1 and 
the adjusted p value < 0.05. Hierarchical clustering was used to clus-
ter samples and genes according to different gene expression values 
of genes in various samples and the expression profile of DEGs was 
visualized using a heat map (Figure S2A). A volcano plot displayed 
the distribution of DEGs, which log(2) (|FoldChange|) was calculated 
and shown in the horizontal axis, −log(10) (p-value) was calculated 
and shown in the longitudinal axis (Figure S2B). The most significant 
upregulated 10 genes were visualized in Table S1 and the most sig-
nificant downregulated 10 genes were shown in Table S2.

3.2  |  Construction of WGCNA and identification of 
clinical crucial module

Cluster analysis was carried out on the samples of GSE139061 using 
average linkage and Pearson's correlation, and the co-expression 
network was constructed by co-expression analysis. The soft 
threshold β  =  4 was identified to ensure a scale-free network for 
further analysis (Figure  1A). A total of 7 modules were identified 
by the average linkage hierarchical clustering, calculating with MEs 
and combing adjacent modules with the same module and set the 

height as 0.25 (Figure 1B). Pearson's correlation coefficients among 
modules were calculated and the associations between modules 
and inner genes were evaluated (Figure  1C). The brown module 
(R = 0.75, p = 0.00009) was selected as the target module for the 
optimal association with the development of AKI from the correla-
tion with clinical trait and the suitable number of genes (Figure 1D).

3.3  |  GO and KEGG pathway enrichment analysis

The genes in the crucial clinically significant module were catego-
rized into three function groups, including BP, CC, and MF. BP anal-
ysis revealed that genes in brown module were mainly involved in 
oxidation–reduction process, positive regulation of GTPase activ-
ity, cell adhesion, transport, response to drug, multiple metabolic 
processes, and positive regulation of cell migration (Figure 2A). CC 
analysis showed that genes in brown module were mainly involved 
in integral component of membrane, plasma membrane, extracellu-
lar exosome, and mitochondrion (Figure 2B). MF analysis displayed 
that genes in brown module were mainly involved in zinc ion binding, 
protein homodimerization activity, ligase activity, GTPase activator 
activity, catalytic activity, and hydrolase activity (Figure 2C). KEGG 
pathway enrichment analysis uncovered that genes in brown module 
were mainly involved in metabolic pathways, biosynthesis of antibi-
otics, Rap1 signaling pathway, carbon metabolism, protein digestion 
and absorption, drug metabolism, chemical carcinogenesis, and reti-
nol metabolism (Figure 2D).

3.4  |  PPI network analysis of the key module

The PPI network of the genes in brown module was constructed 
by STRING database version 11.5 (https://cytos​cape.org/) and 
visualized by Cytoscape 3.5.1 (https://cytos​cape.org/) (Figure  3). 
There were 203 genes in brown module and 15 genes were iden-
tified as hub genes including KMT2B, NOC2L, COL1A1, BAZ1A, 
PABPN1, HNRNPD, H6PD, SYNE1, DST, RANGAP1, DEK, MACF1, 
CHD3, CXXC1, and UBTF. The high degree genes calculated by the 
CytoHubba plugin were located in the center of the circle network 
and the dark color represented the high degree of genes. The ex-
pression levels of 15 hub genes between AKI and non-AKI cohort 
were shown in Figure S3.

3.5  |  Validation of hub genes and construction of 
AKI diagnostic model

The expression of 15 hub genes was validated by GSE30718 in GEO 
database. RNA-sequencing expression levels of KMT2B, NOC2L, 
COL1A1, BAZ1A, PABPN1, HNRNPD, H6PD, RANGAP1, DEK, 
CHD3, CXXC1, and UBTF were significantly increased in AKI co-
hort compared with non-AKI cohort. RNA-sequencing expression 
levels of DST, MACF1, and SYNE1 were significantly decreased in 
AKI cohort compared with non-AKI cohort (Figure S4). The validated 
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results were consistent with the training dataset of GSE139061. To 
construct AKI related gene diagnostic model, LASSO regression 
was used to select crucial genes based on 15 hub genes. Then, five 
crucial genes were selected to perform binary logistic regression 
analysis (Figure  4A,B). Finally, a diagnostic model containing five 
genes (RANGAP1, UBTF, SYNE1, BAZ1A, and COL1A1) was es-
tablished to assess the diagnostic efficiency of each patients as fol-
lows: Risk Score = 0.0391* RANGAP1 + 0.5509* UBTF + (−0.4938)* 
SYNE1 +  0.5081* BAZ1A +  0.0363* COL1A1. In addition, ROC 
curve analysis was performed to assess the diagnostic power of 
single gene and this model, which was consisted of five genes. The 
area under the ROC curve of RANGAP1 was 0.90, 95% confidence 
interval was 0.80–0.99, p < 0.05. The area under the ROC curve of 
UBTF was 0.91, 95% confidence interval was 0.83–0.99, p < 0.05. 
The area under the ROC curve of SYNE1 was 0.87, 95% confidence 
interval was 0.76–0.98, p < 0.05. The area under the ROC curve of 
BAZ1A was 0.85, 95% confidence interval was 0.75–0.96, p < 0.05. 
The area under the ROC curve of COL1A1 was 0.77, 95% confi-
dence interval was 0.58–0.96, p  < 0.05. The area under the ROC 
curve of combination model was 0.99, 95% confidence interval was 

0.98–1.01, p < 0.05 (Figure 4C). The combined model of AKI exhib-
ited excellently diagnostic efficiency, which had broad clinical ap-
plication prospect.

3.6  |  Validation of the five biomarkers-based 
diagnostic model of AKI by RT-qPCR

We further validated these five biomarkers (UBTF, SYNE1, 
RANGAP1, BAZ1A, and COL1A1) in plasma samples by RT-qPCR. 
There were 35 patients in ICU were enrolled and 15 patients were 
diagnosed AKI as AKI cohort and 20 patients were not diagnosed 
with AKI as control cohort. As shown in Figure 5, the levels of five 
biomarkers in AKI and non-AKI cohort were consistent with other 
two dataset (GSE139061 and GSE30718). The ROC curve analysis 
was performed to validate the diagnostic performance for AKI. The 
results revealed that these five biomarkers exhibited excellent di-
agnostic performance for AKI, respectively. Furthermore, the com-
bined model exhibited optimal potential for diagnosing AKI and the 
AUC of the model was 0.97 (95%CI: 0.88–1.06).

F I G U R E  1 WGCNA analysis of differentially expressed genes. (A) Cluster dendrogram of 48 kidney tissue samples, which contain 39 
AKI samples and nine non-AKI samples, and determination of the soft threshold (β = 4) of weighted co-expression network; (B) Cluster 
dendrogram of differentially expressed genes to identify the clinically significant modules associated with the development of AKI; (C) 
Heatmap of the correlations among different modules; (D) Heatmap of the correlations between module eigengenes and clinical traits of AKI
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3.7  |  TF-mRNA and miRNA-mRNA 
network analysis

Using hTFtarget database, we explored the TF-mRNA interaction in 
AKI. As presented in Table S3, the 15 hub genes were used to screen 
corresponding transcription factors, and each hub gene may be 
transcriptionally regulated by multiple transcription factors, which 
were combined with transcription factor binding sites in upstream 
promoter regions. The interaction network was constructed be-
tween 15 hub genes and target TFs by Cytoscape 3.5.1 (Figure 6A). 

Bromodomain-containing protein 2 (BRD2), Histone acetyltrans-
ferase p300 (EP300), Protein C-ets 1 (ETS1), Myc proto-oncogene 
protein (MYC), Transcription factor PU.1 (SPI1) and Zinc finger pro-
tein 263 (ZNF263) were significantly enriched transcription factors 
for the 15 hub genes. Furthermore, we explored the miRNA-mRNA 
interaction in AKI using TargetScan 7.1 and ENCORI databases. As 
presented in Table S4, the predicted target miRNAs were analyzed 
and each miRNA was combined with 3' UTRs of target mRNA. Each 
mRNA is corresponding to multiple target miRNAs. The interaction 
network was established between 15 hub genes and target miRNAs 

F I G U R E  2 GO and KEGG pathway enrichment analysis of DEGs in DAVID 6.8 database. (A) Biological Process; (B) Cellular Component; 
(C) Molecular Function; (D) Kyoto Encyclopedia of Genes and Genome pathways
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by Cytoscape 3.5.1 (Figure 6B). It was identified that miR-181c-5p, 
miR-218-5p, miR-485-5p, miR-532-5p, and miR-6884-5p were sig-
nificantly enriched target miRNAs for the 15 hub genes.

3.8  |  Immune cell subtypes analysis between 
AKI and non-AKI cohort

The 22 immune cell proportions of AKI were shown in Figure 7A. 
T-cell CD4 naïve, T-cell CD4 memory resting, NK cell resting, 
Monocytes accounted for a large proportions of AKI immune cell 

infiltration. AKI and non-AKI cohort displayed different immune 
cells expression. The expression of Monocytes and Macrophages 
M0 in AKI cohort was increasing significantly compared with non-
AKI cohort. The expression of Macrophages M2 in AKI cohort was 
decreasing significantly compared with non-AKI cohort (Figure 7B).

4  |  DISCUSSION

Acute kidney injury is a frequent complication in critically ill patients, 
increasing significantly both hospital mortality and morbidity.14 The 

F I G U R E  3 PPI network analysis of DEGs to identify 15 hub genes (KMT2B, NOC2L, COL1A1, BAZ1A, PABPN1, HNRNPD, H6PD, SYNE1, 
DST, RANGAP1, DEK, MACF1, CHD3, CXXC1, and UBTF) of brown module. The high-degree genes calculated by the CytoHubba plugin in 
Cytosacpe 3.5.1 were located in the center of the circle network and the dark color represented the high degree of genes.
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pathophysiology of AKI shares common pathogenic denominators 
including cell death, cell injury, inflammation, and fibrosis, regardless 
of the initiating insults.15 At present, owing to the lack of sensitive 
and specific means of AKI prevention and therapy, it is crucial to 
explore the diagnostic biomarkers, novel therapeutic targets, and 
potential pathophysiological mechanism in AKI.

With adjusted p value < 0.05 and log(2) (|Foldchange|) > 1 as 
the cutoff, 2202 DEGs (572 upregulated and 1630 downregulated 
genes) were identified, which had potential to be novel drivers and 
may play a role in the pathophysiological mechanism underlying 
AKI development. Fifteen hub genes (KMT2B, NOC2L, COL1A1, 
BAZ1A, PABPN1, HNRNPD, H6PD, SYNE1, DST, RANGAP1, DEK, 
MACF1, CHD3, CXXC1, and UBTF) of brown module were selected 
using comprehensive analytical method of WGCNA, which were fur-
ther successfully validated using another dataset of GEO database. 
To further understand the molecular mechanism, GO and KEGG 
pathways enrichment analyses of the DEGs was performed. As for 
GO analysis, it was identified that DEGs were enriched in oxidation–
reduction process, cell adhesion, proliferation, migration, metabolic 
process, mitochondria, iron ion binding, heparin-binding, oxygen 
binding, and so on. As for KEGG pathways enrichment analysis, it 
was identified that DEGs were enriched in metabolic pathways, bio-
synthesis of antibiotics, Rap1 signaling pathways, carbon metabo-
lism, drug metabolism, and so on. Recent studies had shown that 
the primary site of damage during AKI, proximal tubular epithelial 
cells, were highly metabolically active, relying on fatty acids to meet 
energy demands, which were rich in mitochondria and peroxisomes. 
The two organelles mediated fatty acid oxidation.16 Mitochondria 
are cytoplasmic organelles with a double phospholipid membrane 
that generate energy via oxidative phosphorylation.17 Mitochondria 
are also associated with calcium homeostasis, intracellular reactive 
oxygen species (ROS) generation, and cell signaling functions.18,19 
Mitochondrial fatty acid β-oxidation serves as the preferred source 
of ATP in the kidney and its dysfunction results in ATP depletion and 
lipotoxicity to elicit tubular injury and inflammation and subsequent 
fibrosis progression.20 The kidney is a highly metabolic organ with 

high levels of oxidation within cellular mitochondria.21 Metabolic 
process includes glucose metabolism, lipid metabolism, drug me-
tabolism, and so on which have been discovered in the enrichment 
analysis of genes in brown module. Lipid metabolism plays a basic 
role in renal physiology, especially in tubules.22 Some studies have 
revealed the emerging association between increased metabolites 
and AKI pathogenesis and progression from different perspectives, 
which were consistent with our study.23,24

The present study identified that 15 genes were significantly as-
sociated with AKI development as hub genes of brown module. The 
Mixed Lineage Leukemia 2 (MLL2) protein, also known as KMT2B, 
belongs to the family of mammalian histone H3 lysine 4 (H3K4) 
methyltransferases.25 Moreover, KMT2B plays a key role in devel-
opment, and germline deletions of MLL2 have been associated with 
early growth retardation, neural tube defects, and apoptosis that 
leads to embryonic death. The research has revealed that KMT2B 
acts as a chromatin modifier gene harbors mutations in Renal 
cell carcinomas through high-throughput sequencing efforts.26 
However, to our knowledge, no experimental studies of KMT2B in 
acute kidney injury have been reported to date, which is worthy of 
further study. NOC2L, acts as an inhibitor of histone acetyltrans-
ferase activity, prevents acetylation of all core histones by the 
EP300/p300 histone acetyltransferase at p53/TP53-regulated tar-
get promoters in a histone deacetylases-independent manner with 
chronic kidney disease.27 COL1A1, acts as type I collagen, is a mem-
ber of group I collagen (fibrillary forming collagen). The mutations 
of COL1A1 can cause Osteogenesis imperfecta has been reported 
extensively. Recent research have revealed that COL1A1 is highly 
associated with chronic kidney disease, cardiovascular diseases and 
bone metabolism disorders.28 Moreover, the experimental and the-
ory studies of COL1A1 in acute kidney injury are required for fur-
ther study. Heterogeneous nuclear ribonucleoprotein D (HNRNPD), 
has been shown to regulate gene expression at the translational and 
even the transcriptional level and regulate AU-rich elements (ARE)-
mRNA turnover, primarily functioning to promote rapid ARE-mRNA 
degradation and various kidney cells express multiple isoforms of 

F I G U R E  4 Construction of AKI diagnostic model by LASSO-based logistic regression analysis. (A, B) Screening and constructing a 
diagnostic model based on 15 hub genes by LASSO-based logistic regression; (C), ROC curve analysis for evaluating the diagnostic efficiency 
of single gene and the combined model
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HNRNPD.29 H6PD is a steroid conversion and receptor gene, which 
plays a crucial role in steroid conversion and response in kidney 
transplantation.30 The research on SYNE1 revealed that the essen-
tial roles in mediating sunitinib cytotoxicity and the loss of function 
rendered renal cell carcinoma cell resistant to sunitinib in vitro and in 
vivo.31 The rest of the hub genes were demanded to move one step 
further uncovering the pathophysiologic mechanisms and biological 

principles of AKI. These hub genes will be potential biomarkers and 
therapeutic targets of acute kidney injury in the future.

The present study identified that BRD2, EP300, ETS1, MYC, 
SPI1, ZNF263 were significantly enriched transcriptional factors 
for 15 hub genes. BRD2 can specially bind acetylated histone H4 
and mediate transcription, which belongs to the bromodomain and 
extraterminal domain (BET) family regulating the expression of 

F I G U R E  5 Boxplots showing the plasma level of five biomarkers in AKI diagnostic model using RT-qPCR. The levels of UBTF, RANGAP1, 
BAZ1A, and COL1A1 were significantly increased in AKI cohort compared with non-AKI cohort. The level of SYNE1 was significantly 
decreased in AKI cohort compared with non-AKI cohort (A) UBTF; (B) SYNE1; (C) RANGAP1; (D) BAZ1A; (E) COL1A1; (B) ROC curve analysis 
of five biomarkers in AKI model for diagnosing AKI; (F) UBTF; (G) SYNE1; (H) RANGAP1; (I) BAZ1A; (J) COL1A1; (K) the combined model of 
five biomarkers by logistic regression analysis
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many immunity-associated genes and pathways.32 EP300, a protein 
with an essential role in controlling cell growth, cell division and 
prompting cells to differentiate to take on specialized functions, 
can mediate epigenetic variation of kidney disease as a transcrip-
tional factor.33,34 ETS1 is a member of the ETS family and regu-
lates the expression of a variety of genes including growth factors, 
chemokines, and adhesion molecules and plays a crucial role in the 

cell cycle progression of renal tubules in acute renal failure (ARF). 
The ETS1 pathway may regulate the transcription of cyclin D1 and 
control the regeneration of renal tubules in ARF.35 MYC acts as a 
transcriptional factor becomes activated in resident kidney stromal 
cells early after kidney injury and can regulate metabolic switch in 
fibrosis initiation and progression.36 Another study revealed MYC 
acts as a transcriptional factor participating in the positive feedback 

F I G U R E  6 Interaction network between 15 hub genes and target transcriptional factors. (A) the red nodes represent 15 hub genes and 
the blue nodes represent target transcriptional factors; (B) the interaction network between 15 hub genes and target miRNAs. The red 
nodes represent 15 hub genes and the blue nodes represent target miRNAs.

F I G U R E  7 Immune infiltration analysis between AKI cohort and non-AKI cohort. (A) The proportion of 22 immune cells in AKI. T-cell CD4 
naïve, T-cell CD4 memory resting, NK cell resting, Monocytes accounted for a large proportions of AKI immune cell infiltration; (B) AKI and 
non-AKI cohort displayed different immune cells expression. The blue color represents AKI cohort and the green color represents non-AKI 
cohort. Different immune cell type expression was observed between AKI and non-AKI cohort.



    |  11 of 12SUN et al.

loop of MEG3/miR-145-5p/RTKN/Wnt/β-catenin/c-MYC to pro-
mote renal ischemia-reperfusion injury by activating mitophagy and 
inducing apoptosis.37 SPI1 can activate H19 which overexpression 
confers protection against renal injury by stimulating proangiogenic 
signaling in endothelial cells and tubular epithelial cells of ischemic 
kidney tissue.38 ZNF263 acts as a transcriptional factor that can reg-
ulate a crucial enzyme involved in imparting anticoagulant activity 
to heparin and also can influence the gene expression of ZRANB2 
in human kidney cells.39 Our study demonstrated that miR-181c-5p, 
miR-218-5p, miR-485-5p, miR-532-5p, and miR-6884-5p were sig-
nificantly enriched target miRNAs for 15 hub genes. miR-181c-5p is 
a member of miR-181c family and plays a crucial role in regulating ex-
tracellular matrix proteins during AKI occurrence and progression.40 
miR-218-5p participates in regulating sepsis-induced acute kidney 
injury by miR-218-5p/hemeoxygenase-1 signaling pathway.41 Wang 
et al.42 reported that miR-218-5p expressed in endothelial progen-
itor cells contributes to the development and repair of the kidney 
microvasculature. CirC_0008529/miR-485-5p/WNT2B was a vital 
signaling axis to regulate high glucose-induced renal cell apoptosis 
and inflammatory injury.43 The research of miR-532-5p uncovered 
that LINC00052 ameliorates acute kidney injury by sponging miR-
532-5p and activating the Wnt signaling pathway.44 miR-6884-5p 
regulates the functions of proliferation, invasion, epithelial–
mesenchymal transformation in tumors; however, there are rarely 
research to reveal the function and mechanism of kidney diseases.45 
Our study results revealed that the expression of Macrophages M2 
in AKI cohort was decreasing significantly compared with non-AKI 
cohort, which meant M2 macrophages were a protective factor for 
AKI development. The research showed that M2 macrophages can 
effectively alleviate acute kidney injury by decreasing inflammatory 
response and promoting primary proximal tubular epithelial cells 
proliferation, which was consistent with our findings.46

In conclusion, our study has several strengths. The present study 
identified 15 hub genes in acute kidney injury using WGCNA and 
constructed a diagnostic model by LASSO-based logistic regres-
sion and validated by RT-qPCR in blood samples of AKI in critically 
ill patients. Furthermore, crucial pathways, Transcription factors, 
miRNAs, and 22 immune cell subtypes, which were associated with 
AKI were analyzed and provided some basis for future experimen-
tal studies. However, the study has also limitations. The pathogenic 
mechanism of AKI remains uncertain in our study, and it is vital to 
explore inner mechanism of AKI based on 15 hub genes and find 
out the optimal diagnostic and therapeutic targets, and that is the 
research direction for our study.
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