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Lymph node (LN) metastasis affects both the management and prognosis of head and neck
squamous cell carcinoma (HNSCC). Here, we explored the relationship between lymphatic
metastasis and CEA family member 5 (CEACAM5), including its possible regulatory role in
HNSCC. The levels of CEACAM5 in tissues from patients with HNSCC, with and without
LN metastases, were assessed by transcriptome sequencing. The associations between
CEACAM5 and the N stage of LN metastasis in HNSCC were predicted through The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and a pan-cancer
analysis of CEACAM5 expression in 33 common human tumors was conducted. CEACAM5
levels were analyzed in tumor and normal tissue specimens from HNSCC patients and the
correlation between CEACAM5 levels and prognosis was evaluated. The influence of CEA-
CAM5 on cell proliferation, invasion, migration, and apoptosis was investigated in HNSCC
cell lines, as were the downstream regulatory mechanisms. A mouse model of LN metas-
tasis was constructed. CEACAM5 levels were significantly higher in HNSCC tissue without
LN metastasis than in that with LN metastasis. Similar findings were obtained for the clinical
specimens. CEACAM5 levels were associated with better clinical prognosis. CEACAM5 was
found to inhibit the proliferation and migration and promote the apoptosis of HNSCC cells.
A mouse xenograft model showed that CEACAM5 inhibited LN metastasis. In conclusions,
CEACAM5 inhibited epithelial–mesenchymal transition (EMT) in HNSCC by reducing murine
double minute 2 (MDM2) expression and thereby suppressing LN metastasis. CEACAM5 has
potential as both a prognostic marker and a therapeutic target in HNSCC.

Introduction
Head and neck squamous cell carcinoma (HNSCC) originates from mucosal epithelial cells in the mouth,
pharynx, and larynx [1] and affects approximately 600000 people per year worldwide [2,3]. Oral cavity
tumors and laryngeal cancer are often associated with excessive tobacco and alcohol consumption, while
there is growing evidence that pharyngeal cancer is linked to human papillomavirus (HPV) infection,
mainly HPV-16 [4]. Moreover, HPV-negative and HPV-positive HNSCC differ both genetically and in
clinicopathological appearance [5]. More than 50% of patients with HNSCC have locally advanced lesions
at first diagnosis and between 60 and 80% of them exhibit lymph node (LN) metastasis when starting
treatment [6–9]. Despite the availability of a variety of comprehensive therapeutic options, the prognosis of
HNSCC patients remains poor, with a five-year survival of approximately 60% for patients with laryngeal
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cancer and 25% for those with hypopharyngeal cancer [10–12]. Accordingly, novel strategies are needed for the ef-
fective prevention and treatment of LN metastasis.

RNA sequencing is widely used in both cancer diagnosis and research into therapeutic strategies for this disease
[13,14], including the exploration of biomarkers and the characterization of cancer heterogeneity, drug resistance, and
the immune microenvironment [15–17]. Single-cell sequencing has shown that the epithelial–mesenchymal tran-
sition (EMT) signature can independently predict LN metastasis, cancer grade, and adverse pathological features
[18,19]. The CEA family member 5 (CEACAM5) family of proteins includes both membrane junction and secretory
glycoproteins. Membrane junction glycoproteins are either embedded within membranes via glycosylphosphatidyli-
nositol (GPI) anchors or attached to the cell surface through transmembrane domains. GPI-anchored family members
include CEACAM5, CEACAM6, CEACAM7, and CEACAM8 [20]. CEACAM5 is involved in the regulation of cell
differentiation, apoptosis, and cell polarity, and can thus affect tumor development [21]. This protein can also serve
as a biomarker of gastrointestinal cancer [22]. Murine double minute 2 (MDM2) is a RING-domain E3 ubiquitin
ligase that, when phosphorylated, translocates to the nucleus, where it regulates the expression of a variety of genes
in both tumor and normal cells [23]. Interaction between the NH2-terminal domain of MDM2 and the α-helix in
the NH2-terminal domain of p53 induces the degradation of the latter, thereby promoting carcinogenesis [24].

EMT involves the acquisition of mesenchymal features by epithelial cells and is normally active during tissue de-
velopment and repair, as well as stem cell functions [25]. EMT reactivation is associated with tumorigenesis, cancer
cell invasion and metastasis, and drug resistance [26–28]. This transformation in function is largely regulated by the
transcription factors Twist, Slug, Snail, and ZEB1. In addition, EMT can inhibit cell senescence and apoptosis and
increase the tolerance to radiotherapy and chemotherapy [29,30].

In the present study, CEACAM5 expression was observed to be significantly lower in both HNSCC samples and cell
lines. Importantly, we found that CEACAM5 inhibits HNSCC lymphatic metastasis by negatively regulating MDM2
expression and thereby inhibiting EMT both in vivo and in vitro. These findings provide insights into the function
of CEACAM5 in HNSCC.

Methods
Tissues and patient data
Fresh HNSCC and adjacent normal tissue specimens were collected from patients undergoing tumor resection in
the First Affiliated Hospital of Chongqing Medical University between 2014 and 2022. The specimens included 57
paraffin-embedded tumor tissues that were used for histological analysis. Patients who had received preoperative
antitumor therapy such as radiotherapy or chemotherapy were excluded. The study was carried out in accordance with
the Declaration of Helsinki and was authorized by the Ethics Committee of the First Affiliated Hospital of Chongqing
Medical University.

RNA extraction and quantitative reverse transcription-PCR
Total RNA was extracted from fresh frozen samples using an E.Z.N.A. Total RNA Kit I (Omega Bio-Tek, U.S.A.).
The extracted RNA was reverse transcribed into cDNA (37◦C for 15 min, 70◦C for 5 min) using a PrimeScript RT
Reagent Kit (Takara, Dalian, China). Quantitative-PCR (qPCR) was performed with the SYBR PrimeScript RT-PCR
Kit (Takara). GAPDH served as the internal control and relative gene expression levels were calculated using the
2−��Ct method. The sequences of the primers used for qPCR are shown in Additional file 1: Supplementary Table
S1.

Protein extraction and western blotting
Total protein was isolated using a protein extraction kit (KGP250, KeyGen, Jiangsu, China). The lysates were cen-
trifuged and the protein concentration in the supernatants was measured using the BCA method (P0010S, Beyotime,
Shanghai, China). Equal amounts of protein were separated via 10% SDS-PAGE and electroblotted onto polyvinyli-
dene fluoride (PVDF) membranes. After blocking, the membranes were incubated overnight at 4◦C with primary
antibodies targeting CEACAM5 (Abcam, U.S.A.), MDM2 (Cell Signaling Technology, U.S.A.), E-cadherin (Cell Sig-
naling Technology), N-cadherin (Cell Signaling Technology), vimentin (Cell Signaling Technology), LYVE-1 (Ab-
cam), and GAPDH (Abcam). After washing, the membranes were incubated with a secondary antibody for 1 h at
room temperature. An enhanced chemiluminescence (ECL) kit (Thermo, Shanghai, China) was used for visualiza-
tion. Detailed antibody information is provided in Additional file 2: Supplementary Table S2.
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Immunohistochemistry
An immunohistochemistry (IHC) kit (SP-9000, Beijing, Zhongshan Jinqiao, China) was used to stain 4-μm-thick
paraffin-embedded tumor sample sections. Specifically, after dewaxing and rehydration in fresh xylene and a graded
alcohol series, antigen retrieval was performed with citrate buffer at 95◦C for 15 min, followed by incubation with an
endogenous peroxidase blocker for 15 min at 37◦C. The sections were then incubated first with primary antibodies
overnight at 4◦C and then with HRP-conjugated streptavidin (100 μL) for 15 min, followed by counterstaining with
hematoxylin and visualization with diaminobenzidine (DAB). Different fields of view of each section were randomly
imaged under a light microscope at ×200 magnification. Gray levels were estimated in ImageJ and graded as follows:
0, negative; 1–3, weak; 4–5, medium; and 6–7, strong.

Cell culture
FaDu and SCC15 cells were obtained from the Cell Bank of the Chinese Academy of Sciences (Shanghai, China).
Cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM; Gibco, MA, U.S.A.) containing 10% fetal bovine
serum (FBS; Gibco, Australia) and 1% penicillin/streptomycin (Beyotime, Shanghai, China) at 37◦C with 5% CO2.

RNA interference and cell transfection
The siRNA used in the present study was obtained from GenePharma (Shanghai, China). Cells were seeded in 6-well
plates (2.5 × 105 cells per well) and allowed to grow to between 60 and 70% confluence. The cells were then transfected
with siRNA using Lipofectamine iMAX (Invitrogen, U.S.A.) and incubated in serum-free DMEM for 6 h. The medium
was then replaced with DMEM supplemented with 10% FBS and the cells were cultured for a further 48–72 h. RNA
and protein were extracted for the assessment of transfection efficiencies as well as to select the best sequence for use
in subsequent experiments.

Lentiviral vectors and cell transduction
To knock down CEACAM5, short hairpin RNA (shRNA)-targeting human CEACAM5 was cloned
into the hU6-MCS-Ubiquitin-firefly Luciferase-IRES-puromycin lentiviral vector (GV344, Genechem,
Shanghai, China). For CEACAM5 overexpression, full-length CEACAM5 cDNA was cloned into the
Ubi-MCS-firefly Luciferase-IRES-Puromycin lentiviral vector (GV260, Genechem). Specifically, cells were
grown in 6-well plates (1 × 105 cells per well) to between 20 and 30% confluence. Lentivirus was transfected into
the cells at a multiplicity of infection (MOI) of 10 using HiTransG A/P infection-enhancing solution. After 24 h, the
cells were incubated in DMEM with 10% FBS and 2 μg/mL puromycin for 1 week, followed by selection.

Colony formation assay
Colony formation assays were used to assess the tumorigenic ability of the cells. Stably lentivirus-transduced FaDu
and SCC15 cells were seeded in 6-well plates (1000 cells/well and 650 cells/well, respectively) in DMEM with 10%
FBS and grown for approximately 2 weeks. The medium was replaced every 4 days. The cells were subsequently fixed
in 4% paraformaldehyde and stained with 0.1% crystal violet for 20 min, and the number of colonies was counted.

Transwell migration and invasion assays
The migratory and invasive potential of the cells was assessed using 8-μm-pore Transwell inserts (Corning, U.S.A.)
coated or not with Matrigel (BD Biosciences, San Jose, CA, U.S.A.). Specifically, 1 × 105 cells were suspended in
200 μL of serum-free medium and placed in the upper chamber of the inserts. The lower chamber contained 600
μL of DMEM supplemented with 15% FBS. After incubation for 24 h, cells remaining on the upper chamber of the
membrane (unmigrated cells) were wiped off with a cotton swab. Cells that had crossed the membrane (migrated
cells) were fixed in 4% paraformaldehyde and stained with 0.1% crystal violet for 20 min. The number of migrated
cells was counted under a microscope.

Flow cytometry
For the analysis of apoptosis, an Annexin V-FITC/PI Detection Kit (SunGENE BioTEch, Tianjin, China) was used
to label apoptotic cells. Cells were grown in 6-well plates (1 × 105/well) to 90% confluence, harvested, and subjected
to flow cytometry (FCM; BD Biosciences, U.S.A.). For the cell cycle assay, stably transfected cells were fixed in 70%
ice-cold ethanol overnight at 4◦C, incubated with RNase A and propidium iodide, and then analyzed in a flow cy-
tometer.
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EdU proliferation assay
An EdU detection kit (RiBoBio, Guangzhou, China) was used for the cell proliferation assay. Briefly, cells were grown
in 6-well plates to 70–80% confluence and then incubated with EdU (50 μM) at 37◦C for 2 h. The cells were subse-
quently fixed in 4% paraformaldehyde, stained with Apollo for 30 min, and imaged under an inverted microscope.

Plasmid transfection and wound-healing assay
A total of 2.5 × 105 cells were seeded per well of a 6-well plate, allowed to grow to 60–70% confluence, and then
transfected using a liposome transfection kit (NEOFECTTMDNA transfection reagent, Beijing, China). The medium
was replaced after 24 h and the cells were grown to approximately 95% confluence. A 200-μL pipette tip was used to
make four scratches in the cell monolayer. After being allowed to grow for 24 h in serum-free DMEM, the cells were
imaged under an inverted microscope.

Generation of an animal model of inguinal LN metastasis
Experiments involving mice were performed at a specific pathogen-free facility at Chongqing Medical University.
Male BALB/c nude mice aged between 4 and 6 weeks were purchased from HFK Bioscience Limited Company (Bei-
jing, China). SCC15 cells (5 × 106 in 40 μL of PBS) transfected with the empty vector or the CEACAM5 overexpres-
sion plasmid were injected into the foot pads of the mice. After 35 days, the mice received intraperitoneal injections
of 15 mg/mL D-Luciferin (Beyotime). Mice were monitored using in vivo bioluminescence imaging and, following
euthanasia, the foot pad tumors and ipsilateral inguinal LNs were collected for further analysis.

Bioinformatics
Transcriptome sequencing was performed on 11 tumor tissues from HNSCC patients with or without LN metas-
tasis [31]. Differentially expressed genes (DEGs) were identified using a threshold of P<0.05 and volcano plots
were drawn using the Enhanced Volcano package in R. Protein–protein interaction (PPI) networks for genes re-
lated to CEACAM5 were compiled using the STRING database (https://cn.string-db.org/) [32] and visualized in
Cytoscape [33]. GO enrichment analysis of the DEGs was performed through the Network Analyst database (https:
//www.networkanalyst.ca/) [34]. The HNSCC high-throughput sequencing datasets were downloaded from The Can-
cer Genome Atlas (TCGA) (https://portal.gdc.cancer.gov/) and Gene Expression Omnibus (GEO) databases (dataset
GSE2379, platform GPL91).

Statistical analysis
GraphPad Prism version 8.0 (GraphPad Software, U.S.A.) and SPSS 20.0 (IBM Corp, NY, U.S.A.) were used for statis-
tical analysis. T-tests were used for comparisons between two groups. One-way ANOVA was used for univariate com-
parisons among three or more groups. Multivariate between-group analysis was performed using two-way ANOVA.
Pearson χ2 tests were used to assess correlations between CEACAM5 expression and clinicopathological features.
Kaplan–Meier and logarithmic rank analyses were used to evaluate prognostic factors. All data were expressed as
means +− standard deviation (SD). A P-value <0.05 was considered significant.

Results
Low CEACAM5 expression in HNSCC is associated with LN (N) stage
To explore the role of CEACAM5 in human HNSCC, transcriptome sequencing was performed on six HNSCC tissues
with LN metastases and five without. A total of 2294 DEGs between the two tissue types were identified (shown in
the heatmap in Figure 1A and the volcano plot in Figure 1C). Expression profile microarray data for ten HNSCC
cases with and four without LN metastases were obtained from the GEO database (depicted in the heatmap in Figure
1B). Analysis of the data indicated that CEACAM5 expression was lower in cases with LN metastases than in those
without. We then conducted a pan-cancer analysis of CEACAM5 levels in 33 common human cancers together with
an assessment of the disease risk ratio. We found that the levels of CEACAM5 were significantly higher in normal
tissues (n=44) than in HNSCC tissues (n=520) and that the CEACAM5 risk ratio in HNSCC was less than 1 (P<0.05)
(Figure 1D,E). In addition, CEACAM5 expression in HPV-positive HNSCC was higher than that in HPV-negative
HNSCC (Figure 1D). These findings indicated that CEACAM5 may act as a tumor suppressor in HNSCC. The mRNA
levels of CEACAM5 were markedly higher in normal tissues than in tumor tissues and were also higher at the N0
stage than at the N1 and N3 stages based on TCGA data (Figure 1F). Survival analysis based on the same dataset
confirmed that high CEACAM5 levels were associated with better overall survival (OS), disease-free survival, and
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Figure 1. Low CEACAM5 expression in HNSCC is associated with lymph node (N) stage

(A,C) Transcriptome sequencing was performed on HNSCC tissues and the results were visualized in a heatmap and volcano plot.

CEACAM5 was identified as a DEG in HNSCC. L: HNSCC tissue with LN metastasis. NL: HNSCC tissue without LN metastasis.

(B) Gene expression microarray data were downloaded from the GEO database and CEACAM5 was displayed in a heat map. The

columns represent sample numbers and the rows represent genes. (D) CEACAM5 expression in 33 common human tumors and

HPV correlation in HNSCC was analyzed based on data from TCGA database. (E) The risk ratio of CEACAM5 in 33 common human

tumors was analyzed via a forest plot. (F) The CEACAM5 transcript levels were measured in 263 HNSCC and 44 normal tissues

based on data from TCGA. Nχ represents lymph node (N) stage. (G–I) Survival analysis relating to CEACAM5 in HNSCC based

on data from TCGA. Abbreviations: OS, overall survival; PFS, progression-free survival; DSS, disease-specific survival. *P<0.05,

**P<0.01, ***P<0.001.
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Table 1 Correlation between CEACAM5 expression and clinicopathological characteristics of HNSCC patients

Characteristics No. of cases (%) CEACAM5 expression X2 P-value
Low (N=33) High (N=24)

Age (y)

<60 23 (40.4) 13 10 0.030 0.863

≥60 34 (59.6) 20 14

Gender

Male 56 (98.2) 33 23 1.400 0.237

Female 1 (1.8) 0 1

Cigarette

No 9 (15.8) 4 5 0.793 0.373

Yes 48 (84.2) 29 19

Alcohol

No 17 (29.8) 9 8 0.244 0.621

Yes 40 (70.2) 24 16

T classification

T1 3 (5.3) 2 1 3.186 0.364

T2 9 (15.8) 3 6

T3 26 (45.6) 15 11

T4 19 (33.3) 13 6

N classification

N0 17 (29.8) 6 11 12.494 0.006**

N1 8 (14.0) 2 6

N2 27 (47.4) 21 6

N3 5 (8.8) 4 1

Pathologic
differentiation

Poor 14 (24.6) 10 4 1.508 0.470

Moderate 29 (50.9) 15 14

Well 14 (24.6) 8 6

LN metastasis

No 17 (29.8) 6 11 5.076 0.024*

Yes 40 (70.2) 27 13

Extranodal extension

No 46 (80.7) 23 23 6.095 0.014*

Yes 11 (19.3) 10 1

*P<0.05, **P<0.01

disease-specific survival (DSS) (Figure 1G–I). Combined, these findings suggested that CEACAM5 expression is
significantly correlated with the N (LN) stage in HNSCC.

CEACAM5 expression is down-regulated in HNSCC tissue samples and is
correlated with clinical prognosis
The sequencing datasets for 53 normal and 520 HNSCC tissues were downloaded from TCGA. Analysis of the data
showed that CEACAM5 levels were significantly higher in normal tissue than in HNSCC tissue (Figure 2A). Next,
we analyzed CEACAM5 mRNA levels in nine HNSCC specimens without and nine with LN metastases, as well as in
control tissues. The results showed that CEACAM5 levels in the nonmetastasis group were higher than those in the
metastasis group (Figure 2C). The CEACAM5 protein levels were consistent with the results of the mRNA analysis
as determined by western blotting (WB) (Figure 2B,D) and further confirmed by IHC (Figure 2E–G). Subsequent
univariate and multivariate Cox regression analyses indicated that CEACAM5 expression was a prognostic factor
for HNSCC. The clinicopathological data are shown in Tables 1 and 2. Finally, survival analysis demonstrated that
high CEACAM5 levels were linked with improved OS in patients with HNSCC (Figure 2H). Together, these findings
indicated that CEACAM5 expression is down-regulated in HNSCC and that elevated CEACAM5 levels are associated
with better clinical outcome.

1696 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY-NC-ND).



Clinical Science (2022) 136 1691–1710
https://doi.org/10.1042/CS20220581

Figure 2. CEACAM5 expression is down-regulated in HNSCC tissue samples and is correlated with prognosis

(A) CEACAM5 expression was analyzed based on data from TCGA. (B) The protein expression of CEACAM5 in HNSCC tissues

and adjacent normal tissues was analyzed by WB. NAT represents normal adjacent tissue, and T represents tumor tissue. (C)

CEACAM5 expression in 18 HNSCC tissues with or without LN metastasis and adjacent normal tissues was analyzed by quantitative

reverse transcription-PCR (qRT-PCR). LM(+) represents lymphatic metastasis, and LM(−) represents nonlymphatic metastasis.

(D) CEACAM5 protein expression in HNSCC tissues with or without LN metastasis was assessed by WB. (E) The expression of

CEACAM5 in 57 paraffin-embedded HNSCC tissue sections with or without lymphatic metastasis was analyzed via IHC. Scale

bars: 200×, 200 μm; 400×, 100 μm. (F) Positive and negative controls. (G,H) Proportion distribution and survival curve relating to

CEACAM5 expression in 57 HNSCC paraffin-embedded sections are shown. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001.
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Table 2 Univariate and multivariate analyses of various prognostic parameters in patients with HNSCC Cox-regression
analysis

Variables Univariate analysis Multivariate analysis

P Hazard ratio
95% confidence

interval P Hazard ratio
95% confidence

interval

CEACAM5 0.036* 0.306 0.101–0.928 0.142 0.421 0.133–1.334

Age 0.440 0.701 0.284–1.727

Gender 0.654 0.048 0.286–5.275

Cigarette 0.660 1.391 0.320–6.044

Alcohol 0.752 0.856 0.325–2.253

T classification 0.005** 3.052 1.407–6.620 0.012* 2.807 1.250–6.303

N classification 0.026* 1.825 1.073–3.102 0.234 1.443 0.788–2.643

Pathologic
differentiation

0.122 0.597 0.310–1.149

LN metastasis 0.173 2.356 0.686–8.090

Extranodal extension 0.013* 3.203 1.285–7.989 0.832 1.124 0.381–3.317

*P<0.05, **P<0.01

CEACAM5 inhibits the proliferation, migration, and invasion and
promotes the apoptosis of HNSCC cells in vitro
Cell culture experiments were employed to assess the role of CEACAM5 in HNSCC. First, FaDu cells were transfected
with three siRNAs targeting different sites in CEACAM5 (si-CEACAM5#1, si-CEACAM5#2, and si-CEACAM5#3),
and the silencing efficiency of the siRNAs was assessed by qRT-PCR and WB (Figure 3A,B). Si-CEACAM5#1
displayed the best knockdown efficiency and was used for subsequent studies. Next, we established stable CEA-
CAM5 overexpression and knockdown FaDu and SCC15 cell lines using lentiviral infection. Overexpression and
knockdown efficiencies were confirmed at both the mRNA and protein levels (Figure 3C–F). EdU cell prolifera-
tion assays were performed on stably transfected HNSCC cells in the logarithmic growth phase. The results showed
that the proliferative ability of CEACAM5-silenced cells (both the FaDu and SCC15 lines) was higher than that
of the respective controls, whereas the opposite was observed in CEACAM5-overexpressing cells (Figure 3H,I).
In addition, CEACAM5-silenced cells formed more and larger colonies compared with control cells (Figure 4A).
CEACAM5-silenced cells also displayed increased migratory and invasive capacity relative to that of control cells;
however, this trend was reversed in CEACAM5-overexpressing cells (Figure 4B,C). Additionally, compared with the
respective controls, CEACAM5 overexpression increased the cell apoptosis rate, whereas CEACAM5 depletion ex-
erted the opposite effect (Figure 4D). These data indicated that CEACAM5 inhibits the proliferation, survival, and
motility of HNSCC cells.

The overexpression of CEACAM5 inhibits lymphatic metastasis in vivo
To evaluate the role of CEACAM5 in lymphatic metastasis in vivo, we xenografted SCC15 cells transfected with the
empty vector or the CEACAM5 overexpressing plasmid into the foot pads of nude mice. The sizes and weights of the
primary tumors and inguinal metastatic LNs were smaller in the CEACAM5-overexpressing group relative to those
of the empty vector group (Figure 5A–E,G–I). Additionally, CEACAM5 overexpression reduced the LN metastatic
potential of SCC15 cells (Figure 5F). CEACAM5 overexpression in the tumors was confirmed by qRT-PCR and WB
(Figure 5J,K). Lastly, immunohistochemical analysis of the foot pad tumors showed greater staining intensities and
proportion of CEACAM5 in tumors formed of CEACAM5-overexpressing cells, in contrast with reduced staining of
LYVE-1 (Figure 5L). These findings indicated that CEACAM5 inhibits lymphatic metastasis in vivo.

CEACAM5 inhibits EMT in HNSCC cells
Numerous transcription factors have been implicated in tumorigenic processes. Among them, the EMT process
is believed to be involved in tumor invasion and early metastasis. Accordingly, we used Spearman’s correlations
to assess the relationships between CEACAM5 and key EMT-related transcription factors in HNSCC based on
high-throughput data from TCGA. The results showed that CEACAM5 was negatively associated with these tran-
scription factors, especially Snail, Slug, and Twist (Figure 6A). In addition, qRT-PCR analysis of the stably trans-
duced FaDu and SCC15 cells showed that, compared with the controls, the levels of the epithelial marker E-cadherin
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Figure 3. CEACAM5 inhibits the proliferative ability of HNSCC cells

(A,B) The efficiencies of the different siRNAs in silencing CEACAM5 expression in FaDu cells were screened by qRT-PCR and WB.

CEACAM5 knockdown and overexpression efficiencies in stably transduced FaDu and SCC15 cells were detected by qRT-PCR

(C,D) and WB (E,F). (G–I) Changes in the proliferative capacity of HNSCC cells after stable lentivirus-mediated transduction were

investigated using an EdU proliferation assay. Scale bar: 100 μm. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001; Abbreviation: NS,

not significant.
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Figure 4. CEACAM5 inhibits proliferation, migration, and invasion and promotes apoptosis in HNSCC cells in vitro

(A) A colony formation assay was used to assess the tumorigenicity of HNSCC cells. (B) The migratory and invasive abilities of

FaDu and SCC15 cells were assessed by Transwell assay. (C) Flow cytometry was used to measure the rate of apoptosis. The

relevant statistics are displayed in the right panel. Scale bar: 100 μm. *P<0.05, **P<0.01, ***P<0.001.
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Figure 5. CEACAM5 overexpression inhibits lymphatic metastasis in vivo

(A) Procedure and animal grouping in the in vivo experiment. (B) Representative images of inguinal LN metastasis in nude mice.

(C,G) Foot pad tumors and inguinal LNs collected from nude mice. (D,E) Foot pad tumor volumes and weights, respectively.

(H,I) LN volumes and weights, respectively. (F) Representative bioluminescence images of inguinal LN metastasis in nude mice

overexpressing CEACAM5. (J,K) The expression of CEACAM5 in foot pad tumors was analyzed by qRT-PCR and western blot.

(L) The expression of CEACAM5 and the lymphangiogenesis factor LYVE-1 in primary tumor tissues of nude mice were evaluated

by IHC. (M) Images of the negative control. Scale bar: CEACAM5, 200 μm; LYVE-1, 100 μm. *P<0.05, **P<0.01, ***P<0.001,

****P<0.0001.
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Figure 6. CEACAM5 inhibits EMT in HNSCC cells

(A) Spearman’s correlation between the expression of EMT-related transcription factors and that of CEACAM5 was analyzed based

on data from TCGA. (B,C) The mRNA expression levels of EMT-associated transcription factors and markers in stably transfected

HNSCC cells were measured by qRT-PCR. (D,E) The protein expression levels of epithelial and mesenchymal markers in HNSCC

cells after CEACAM5 knockdown or overexpression were detected by western blot. *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001;

Abbreviation: NS, not significant.
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were reduced in CEACAM5-silenced cells, whereas those of key EMT-related transcription factors and the interstitial
markers N-cadherin and vimentin were increased. In contrast, in CEACAM5-overexpressing cells, the mRNA levels
of E-cadherin were up-regulated, while those of Slug, N-cadherin, and vimentin were suppressed, compared with
that seen in cells transfected with the empty vector (Figure 6B,C). These findings were confirmed at the protein level
(Figure 6D,E). These observations implied that CEACAM5 inhibits EMT in HNSCC cells.

CEACAM5 inhibits the expression of MDM2
It has been reported that the phosphorylation of MDM2 allows its entry into the nucleus where it regulates the ex-
pression of numerous genes [35,36]. Here, using the STRING database, we constructed a PPI network based on the
HNSCC transcriptome-sequencing data (Figure 7H). CEACAM5 and MDM2 were seen to share many similarities
in GO term enrichment in the Biological Process category (Figure 7A,B). In addition, we analyzed the expression of
CEACAM5 and MDM2 in HNSCC based on data from TCGA and found that CEACAM5 levels were significantly
higher in normal tissues than in tumor tissues, whereas the MDM2 levels showed the opposite trend (Figure 7C,E).
This suggested that a negative regulatory relationship may exist between CEACAM5 and MDM2 (Figure 7D). To con-
firm this possibility, we next assayed the stably transfected FaDu and SCC15 cell lines for MDM2 expression using
qRT-PCR, with the results showing that MDM2 expression was higher in CEACAM5-knockdown cells than in con-
trol cells. In contrast, MDM2 levels were lower in CEACAM5-overexpressing cells than in cells transfected with the
empty vector (Figure 7F,G). These findings were confirmed by WB (Figure 7J). Furthermore, the MDM2 mRNA lev-
els were lower in CEACAM5-overexpressing mouse xenograft tumors compared with the empty vector group (Figure
7I). These findings confirmed the existence of a negative regulatory relationship between CEACAM5 and MDM2.

MDM2 knockdown reverses the effect of CEACAM5 silencing on EMT
To further verify that a regulatory relationship indeed exists between CEACAM5 and MDM2, we silenced MDM2
in CEACAM5-knockdown cells. After puromycin selection for 1 week, the sh-CEACAM5-NC + sh-MDM2-NC,
sh-CEACAM5-NC + sh-MDM2, sh-CEACAM5 + sh-MDM2-NC, and sh-CEACAM5 + sh-MDM2 SCC15 cell lines
were constructed. We found that the mRNA level of the epithelial marker E-cadherin in sh-CEACAM5-NC +
sh-MDM2 cells was increased in comparison with that in sh-CEACAM5-NC + sh-MDM2-NC cells. Moreover, the
E-cadherin level was reduced in sh-CEACAM5 + sh-MDM2-NC cells compared with that in sh-CEACAM5-NC +
sh-MDM2 cells and was higher in sh-CEACAM5 + sh-MDM2 cells than in sh-CEACAM5 + sh-MDM2-NC cells.
Meanwhile, the mRNA expression levels of the EMT-related transcription factors as well as those of the interstitial
proteins N-cadherin and vimentin displayed the opposite trend to that of E-cadherin (Figure 8A). These results were
confirmed at the protein level (Figure 8B). Thus, the EMT process in cells in which both CEACAM5 and MDM2
were silenced was reversed in comparison with that in cells where only CEACAM5 was silenced.

Cell cycle assays subsequently showed that the proportion of sh-CEACAM5-NC + sh-MDM2 cells in the S phase
was reduced in comparison with that of sh-CEACAM5-NC + sh-MDM2-NC cells. Additionally, the proportion of
sh-CEACAM5 + sh-MDM2-NC cells in the S phase was higher than that for sh-CEACAM5-NC + sh-MDM2 cells and
was lower in sh-CEACAM5 + sh-MDM2 cells than in sh-CEACAM5 + sh-MDM2-NC cells. Finally, wound-healing
assays showed that the migratory ability of sh-CEACAM5-NC + sh-MDM2 cells was reduced compared with that
of sh-CEACAM5-NC + sh-MDM2-NC cells. Meanwhile, the migratory potential of sh-CEACAM5 + sh-MDM2-NC
cells was greater than that of sh-CEACAM5-NC + sh-MDM2 cells and was lower in sh-CEACAM5 + sh-MDM2 cells
than in sh-CEACAM5 + sh-MDM2-NC cells. In conclusion, the depletion of both MDM2 and CEACAM5 counter-
acted the inhibitory effect of CEACAM5 silencing on the EMT, resulting in EMT inhibition in HNSCC cells.

Discussion
Cancer-related morbidity and mortality are increasing rapidly worldwide [37,38]. While excessive smoking is asso-
ciated with an increased incidence of HNSCC in developing countries, HPV infection is increasingly recognized as
an important factor contributing to the increased incidence of oropharyngeal tumors in nonsmokers in developed
countries [39]. The therapeutic modality of HPV-positive and HPV-negative HNSCC is essentially similar, including
traditional surgical and chemoradiotherapy modalities, as well as new surgical techniques such as transoral robotic
surgery and laser microsurgery [40]. The specific treatment plan depends on the site and stage of tumor develop-
ment. OS for patients with HNSCC remains poor despite the advances in its diagnosis and treatment [41], while LN
metastasis and extranodal extension are both important predictors of worse prognosis in HNSCC [42–44]. These ob-
servations underline the urgent need for further exploration of the mechanisms underlying HNSCC occurrence and
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Figure 7. CEACAM5 inhibits the expression of MDM2

(A,B) Gene ontology (GO) terms related to the biological process (BP) category were assigned to genes associated with CEACAM5

and MDM2 based on HNSCC transcriptome-sequencing data. (C,E) The expression of CEACAM5 and MDM2 in normal and HNSCC

tissues was analyzed based on data from TCGA. (D) Correlation analysis between MDM2 and CEACAM5 in HNSCC tissues based

on data from TCGA (n=455). (F,G) The expression of MDM2 in HNSCC cells after stable lentivirus-mediated transduction was

assessed by qRT-PCR. (H) PPI analysis was performed on genes related to the roles of CEACAM5 and MDM2 in HNSCC. (I) The

mRNA expression levels of MDM2 in xenograft-derived tumors in nude mice were measured by qRT-PCR. (J) The protein expression

of MDM2 in HNSCC cells was assessed by WB. The relevant statistics are shown in the right panel. *P<0.05, **P<0.01, ***P<0.001.

1704 © 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons
Attribution License 4.0 (CC BY-NC-ND).



Clinical Science (2022) 136 1691–1710
https://doi.org/10.1042/CS20220581

Figure 8. MDM2 knockdown reversed the effect of CEACAM5 silencing on the EMT

sh-MDM2-NC or sh-MDM2 was transfected into HNSCC cells after stable lentivirus-mediated transduction. (A) The mRNA levels of

EMT-related transcription factors and biomarkers were measured by qRT-PCR. (B) The protein expression levels of MDM2 and EMT

biomarkers were determined by WB. The relevant statistics are shown in the bottom panel. (C) Flow cytometry was used to detect

the cell-cycle distribution of different cell lines. (D) The wound healing capacity of HNSCC cells transfected with sh-MDM2-NC

or sh-MDM2 is shown. (E,F) Diagram showing the mechanism of the hypothesis postulated in the present study (generated by

Figdraw). *P<0.05, **P<0.01, ***P<0.001; Abbreviation: NS, not significant.
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progression, as well as identify novel targets and prognostic markers and develop effective strategies for the diagnosis
and treatment of this cancer.

CEA was originally isolated from the blood of patients with colorectal cancer by Gold and Freedman [45]. The
expression of this protein has since been observed to be up-regulated in many other human tumors, including pan-
creatic, lung, liver, gallbladder, breast, and bladder cancers, among others [46–48]. Accordingly, studies have mostly
focused on its role as an oncogene in promoting cancer progression. In the present study, transcriptome sequencing
in HNSCC tissues from patients with and without LN metastasis and analysis of high-throughput data downloaded
from TCGA and GEO databases indicated that CEACAM5 expression was significantly reduced in HNSCC tumors
compared with that in normal tissues. Generally, HPV-positive cases are more sensitive to chemoradiotherapy and,
thus, have a better prognosis and a higher survival rate compared with HPV-negative cases [49]. However, in the
present study, CEACAM5 expression was found to be higher in HPV-positive HNSCC than in HPV-negative HN-
SCC, and its expression level was also significantly lower in HNSCC tissues than in normal tissues, with a disease risk
ratio of less than 1. This suggests that alterations in CEACAM5 expression are more likely to be a protective manifes-
tation against this disease. Subsequently, survival analysis confirmed that elevated CEACAM5 expression was linked
with improved OS, progression-free survival, DSS, and lower N-stage classification in patients with HNSCC.

p53 has been described as the guardian of the genome and controls multiple cellular processes, including DNA
repair, cell-cycle arrest, apoptosis, autophagy, senescence, and metabolism through numerous mechanisms [50,51].
Ubiquitination is a reversible post-translational modification that modulates protein degradation and signal trans-
duction through the binding of ubiquitin to protein substrates. This process mainly involves the E1-E2-E3 enzyme
cascade and requires the activity of E1 ubiquitin-activating enzymes, E2 ubiquitin-conjugating enzymes, and E3 ubiq-
uitin ligases. In addition, the regulation of NF-κB signaling by ubiquitination may be a potential therapeutic target
for HNSCC [52]. MDM2 is an E3 ubiquitin ligase that can modulate p53 levels by promoting its degradation by the
proteasome [53,54] or by binding to and stabilizing Slug mRNA independently of its ubiquitination activity, thereby
stimulating cell invasion and metastasis [55–57]. Here, by analyzing transcriptome sequencing data to obtain DEGs
and employing the STRING database to construct a PPI network, we found that CEACAM5 and MDM2 may have
a negative regulatory relationship. Through the Network Analyst database, we assigned GO terms to genes associ-
ated with CEACAM5 and MDM2 expression and found similar enrichment patterns. In addition, analysis of TCGA
dataset indicated that CEACAM5 and MDM2 expression exhibited opposing trends in HNSCC. Combined, these
data suggested that CEACAM5 may regulate EMT processes by suppressing the expression of MDM2.

Malignant tumors induce lymphatic dilation (lymphangiogenesis) in the primary tumor and the drainage sentinel
area by releasing lymphatic growth factors such as VEGF-C and LYVE1, thereby promoting LN metastasis [58–61].
Moreover, EMT is known to drive the metastasis of cervical cancer cells to LNs [62]. Here, we investigated the effect of
CEACAM5 on LN metastasis in vivo using bioluminescence imaging and used IHC to assess the expression of LYVE1
in foot pad tumors derived from xenografted SCC15 cells in mice. The obtained results indicated that CEACAM5
overexpression abrogated the lymphatic metastasis of SCC15 cells. Despite our important findings, our study had
several limitations. First, the number of samples used for transcriptomic analysis was small. Second, although our
study indicated that CEACAM5 inhibits MDM2 expression in HNSCC, further investigation is required to clarify
the specific underlying mechanisms.

In conclusion, this is the first study to show that CEACAM5 expression is down-regulated in HNSCC and that
CEACAM5 expression is correlated with survival outcomes in HNSCC patients. CEACAM5 was also found to inhibit
EMT in HNSCC cells by suppressing the expression of MDM2 and, ultimately, also LN metastasis. These findings
contribute to the understanding of the molecular mechanism involved in HNSCC development.

Clinical perspectives
• Background: OS in patients with HNSCC remains poor despite the advances in its diagnosis and

treatment. Additionally, both LN metastasis and extranodal extension are important predictors of the
prognosis of this cancer.

• Results: Using in vivo and in vitro experiments as well as bioinformatics analysis, we found that CEA-
CAM5 suppresses LN metastasis by suppressing EMT via inhibiting the expression of its downstream
target MDM2.
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• Significance: This is the first study to suggest that CEACAM5 may play a role in inhibiting LN metas-
tasis and also provides a potential therapeutic target and prognostic marker for HNSCC.
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