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Abstract 

Background:  Machine learning (ML) algorithms have been trained to early predict critical in-hospital events from 
COVID-19 using patient data at admission, but little is known on how their performance compares with each other 
and/or with statistical logistic regression (LR). This prospective multicentre cohort study compares the performance of 
a LR and five ML models on the contribution of influencing predictors and predictor-to-event relationships on predic-
tion model´s performance.

Methods:  We used 25 baseline variables of 490 COVID-19 patients admitted to 8 hospitals in Germany (March–
November 2020) to develop and validate (75/25 random-split) 3 linear (L1 and L2 penalty, elastic net [EN]) and 2 
non-linear (support vector machine [SVM] with radial kernel, random forest [RF]) ML approaches for predicting critical 
events defined by intensive care unit transfer, invasive ventilation and/or death (composite end-point: 181 patients). 
Models were compared for performance (area-under-the-receiver-operating characteristic-curve [AUC], Brier score) 
and predictor importance (performance-loss metrics, partial-dependence profiles).

Results:  Models performed close with a small benefit for LR (utilizing restricted cubic splines for non-linearity) and RF 
(AUC means: 0.763–0.731 [RF–L1]); Brier scores: 0.184–0.197 [LR–L1]). Top ranked predictor variables (consistently high-
est importance: C-reactive protein) were largely identical across models, except creatinine, which exhibited marginal 
(L1, L2, EN, SVM) or high/non-linear effects (LR, RF) on events.

Conclusions:  Although the LR and ML models analysed showed no strong differences in performance and the 
most influencing predictors for COVID-19-related event prediction, our results indicate a predictive benefit from 
taking account for non-linear predictor-to-event relationships and effects. Future efforts should focus on leveraging 
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Background
The corona virus disease 2019 (COVID-19) pandemic, 
caused by the severe acute respiratory syndrome coro-
navirus 2 (SARS-CoV-2), puts emergency and inten-
sive care units (ICU) worldwide into crisis [1]. Among 
COVID-19 patients, ~ 10% require hospitalisation and 
can rapidly deteriorate to life-threatening respiratory 
insufficiency, which carries a high mortality risk and 
requires immediate ICU and/or invasive mechanical 
ventilation (IMV) support [2, 3]. Prediction models that 
use clinical data on admission to stratify COVID-19 
patients by risk for need of ICU support, IMV and/or 
in-hospital mortality could have a considerable clinical 
benefit for resource allocation and patient management 
[1, 4, 5]. However, a recent systematic review analysed 
107 currently proposed predictive models to identify 
high-risk COVID-19 patients on hospital admission, 
concluding that all of these models are at high risk of 
bias mainly due to methodical issues, and none has 
been recommended for adoption into clinical practice 
[6].

Models to predict the risk of critical in-hospital events 
from COVID-19 were built from traditional logistic 
regression (LR) models and information-based criteria to 
data-driven machine learning (ML) algorithms, but few 
studies exist comparing the model development tech-
niques [6–8]. However, traditional statistical LR mod-
els are based on probability distributions and focus on 
transparency of relationships between predictors and 
outcome, whereas ML approaches iteratively learn from 
examples and purely focus on prediction [9, 10]. More-
over, ML techniques differ in how they take account for 
non-linearities, interactions and correlations [10]. We 
therefore need more data on whether different models 
obtain different performance and/or predictors when 
applied to predict critical events based on real-world 
clinical data, which are inherently complex, multidimen-
sional, heterogeneous, non-linear and noisy [9–11].

In this prospective observational multicentre cohort 
study, we applied a statistical LR model and five ML pro-
cedures to a similar clinical input dataset from COVID-
19 patients on hospital admission. The aims were to 
compare the performance of the created models for pre-
diction of critical in-hospital events from COVID-19, 
to assess overlaps and differences of the most influenc-
ing predictor variables between models, and to evaluate 

the contribution of predictor-to-event relationships and 
effects on model´s predictive performance.

Methods
Study design
The “CORONA Germany” - Clinical Outcome and Risk 
in hospitalized COVID-19 patients - study (ClinicalTrials.
gov, NCT04659187) is a prospective, multicenter, obser-
vational, epidemiological cohort study. It is conducted in 
45 hospitals across Germany that are all part of the same 
hospital network (Asklepios). Design and prior results of 
the CORONA-Germany-Study have been published pre-
viously [12]. This study analyses a predefined subcohort 
from 8 hospitals in Hamburg and Gauting which pro-
vided a comprehensive data set with detailed information 
on patient´s admission characteristics, in-hospital trajec-
tories and outcome. All data are matched to and validated 
by the network´s quality management data base. An 
endpoint committee, provided by the networks research 
institute, reviewed all study endpoints. The ethics com-
mittees of the General Medical Councils (Aerztekammer) 
for the cities Hamburg and Munich approved the study 
and determined that this work was exempt from human 
subject´s research regulations since all information was 
collected on a fully anonymized basis. Therefore, the eth-
ics committees waived the need for participant consent.

Study cohort
We included 490 consecutive hospitalized patients who 
had laboratory-confirmed COVID-19 infection and were 
admitted to any of 8 hospitals in Hamburg and Gauting, 
Germany, between March 8th and September 15th 2020. 
A confirmed case of COVID-19 was defined by a posi-
tive polymerase chain reaction test of a nasopharyngeal 
swab. Each participant was followed up during hospital 
stay until discharge or death. Patient data were extracted 
anonymously from electronic patient charts of a hospi-
tal information technology network into pre-formatted 
data fields. The de-identified database contained data 
of demographic information, baseline vital parameters, 
baseline laboratory values, prior medication, pre-existing 
comorbidities, treatment processes, and survival data.

Missing data and pre‑selection of variables
After reviewing the existing literature regarding risk fac-
tors on COVID-19 outcome, we selected 44 baseline 

data-driven ML technologies from static towards dynamic modelling solutions that continuously learn and adapt to 
changes in data environments during the evolving pandemic.

Trial registration number: NCT04659187.
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variables on admission as potential predictors of critical 
in-clinic events (thereafter referred to as input, Table 1). 
In the run-up of model building, 14 variables affected by 
informative missing and exhibiting ≥ 30% missing values 
were excluded. 14 variables were completely documented 
and 11 variables exhibit 8–134 missing values. Data were 
imputed using additive regression models and predictive 
mean matching [13]. The processed dataset comprises 25 
variables, 12 continuous/discrete and 13 binary variables.

Outcome definition
We focussed on the prediction of three critical in-hospi-
tal events: ICU admission, IMV support, and/or death. 
Because each event is of similar clinical interest and 
importance to guide decisions in the admission scenario, 
we have combined the three clinical endpoints into a sin-
gle composite outcome measure.

Model approaches
As a classical approach, a LR model on all variables was 
fitted and ridge regression estimators were determined. 
Continuous variables were transformed using restricted 
cubic splines with three knots (10th, 50th and 90th per-
centile) to take possible non-linearities into account. A 
fast backward approach was applied on a linear model 
regressing all variables on the estimated linear predic-
tions of LR. The full model shows R2 = 1. Simplification 
of any degree could be applied by dropping variables. 
The final LR model approximates 91% of the full model, 
exhibits low Akaike information criteria and avoids over-
fitting [13, 14]. Among ML models, three regularized 
approaches were used that shrink parameter values by 
assigning a penalty on the estimates: the least absolute 
shrinkage and selection operator (LASSO) approach 
(L1, limits the sum of the absolute parameter values); 
the ridge regression (L2, restricts the sum of the squared 
parameter values; and the elastic net (EN, restricts the 
squared and absolute values) [15, 16]. In addition to the 
parametric L1, L2 and EN models, which used untrans-
formed continuous variables, we used two ML models 
with the ability to also capture non-linear effects: the 
support vector machine [SVM] with radial function and 
random forest (RF). The SVM classifier projects data 
into a higher dimensional space and separates 2 groups 
by using the radial function and hyperplanes that best 
differentiate between hyperplane-bounded regions with 
the longest margin (distance) [17]. RF repeatedly splits 
datasets by recursive partitioning to maximize data sep-
aration, resulting in a tree-like structure of aggregated 
predictions, where a random sample of the features is 
considered in every tree split. RF model tuning is applied 
to the number of predictors randomly sampled at each 
split and the number of trees [18]. A detailed description 

Table 1  Baseline characteristics of the COVID-19-infected study 
cohort on hospital admission (n = 490 study participants)

Characteristic Non-
missing 
cases

Statistics

Demographics

Age (years)a 481 67 ± 18 72 [55, 81]

Gender (female: male)a 482 42 (203): 58 (279)

BMI (kg/m2) 81 28 ± 8 25 [23, 31]

Symptoms

Cougha 453 58 (264)

Fever (> 38,5 °C)a 448 46 (205)

Dyspneaa 448 57 (256)

Vital parameters

Heart rate (/min)a 451 88 ± 19 86 [76, 100]

Systolic blood pressure 
(mmHg)a

446 133 ± 22 130 [120, 145]

Respiratory rate (/min)a 356 20 ± 6 18 [15, 22]

spO2 (%)a 442 93,3 ± 5,8 95 [91, 97]

Laboratory findings

Lymphocytes (/nl) 294 1.73 ± 3.48 1.00 [0.66, 1.40]

Leukocytes (/nl)a 478 7.9 ± 4.1 6.9 [5.1, 9.6]

Neutrophile granulocytes (/nl) 315 6,5 ± 10,9 4,8 [3.3, 7.3]

Creatinine (mg/dl)a 474 1,37 ± 1,59 1.0 [0.80, 1.40]

C-reactive protein (mg/l)a 474 84 ± 80 64 [23, 118]

Lactate dehydrogenase (U/l)a 358 417 ± 745 322 [252, 448]

aPTT (s)a 370 35 ± 16 32 [29, 36]

Potassium (mmol/l)a 455 4.04 ± 0.60 3.99 [3.66, 4.36]

Procalcitonin (µg/l) 321 1.32 ± 10.37 0.09 [0.05, 0.25]

pH 369 7.43 [7.40, 7.46]

pO2 (mmHg) 361 55 ± 40 50 [28, 68]

pCO2 (mmHg) 367 39 ± 9 37 [33, 43]

sO2 (mmHg) 363 54 ± 35 56 [25, 89]

Comorbidities

Total number of comorbiditiesa 445 –

No comorbidity 27 (122)

1 comorbidity 22 (100)

2 comorbidities 21 (95)

3 comorbidities 15 (67)

4 comorbidities 8.8 (39)

5 comorbidities 3.4 (15)

6 comorbidities 1.6 (7)

Type of comorbidities

Chronic kidney disease 468 18 (86)

Pulmonary disease 462 18 (82)

Diabetes mellitus 471 24 (112)

Dyslipidemia 451 14 (65)

Vascular/coronary artery 
disease

490 27 (131)

Hypertension 461 57 (265)

Cardiomyopathy 461 5.2 (24)

Tumor diseasea 190 19 (93)

Medication
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of the modelling approaches and the algorithmic work-
flow for parameter estimation and model evaluation is 
presented in Additional file 1: Table S1.

Model development
The following procedures were performed 50 times for 
each model approach: The data were randomly split for 
model building (training set: 75%) and model validation 
(test set: 25% of the data). The split was stratified by the 
output variable to obtain constant event rates in the sub-
samples. Bootstrap resampling (B = 10) was applied on 
the training data to determine the best tuning param-
eter (combination) based on the Brier score [19]. Model 
parameters were estimated on the training data condi-
tional on the value(s) of the tuning parameters. Model 
validation is applied on the test dataset. In total numbers, 
368 patients were used for training and 122 for validation.

Performance evaluation
Predictive performance of models was assessed using 
area under the receiver operating characteristic curves 
[20] (AUC, pairs of observations with concordant order-
ing of predictions and true values) and the Brier score 
[19] (mean squared error between predictions and true 
outcome values). Results were summarized as boxplot 
and in tables as medians (inter-quartile ranges). The pre-
dictors most relevant to model predictions were deter-
mined via the loss of variable importance (1-AUC) after 
permutation [21]. Partial dependence profile (PDP) plots 
were used to visualize the relationship between predictor 
variables and the average model prediction [22].

Computation
The entire analysis was carried out in R (R Core Team, 
2021, Vienna, Austria) on a Linux-based system [21]. 
Data were processed using the tidyverse library and the 
Hmisc package in R [23, 24]. Models were constructed 
with the tidymodels package [25]. Predictor variable 
importance was assessed using the DALEX package 
[26]. Results were visualized with the ggplot2 library 
[27]. The detailed code snippets using R are presented 
in Additional file 1: Table S1.

Results
Patient outcomes
Of 490 patients who entered the hospital, 126 (26%) 
required transmission to ICU, 83 (17%) received IMV 
support, and 97 (20%) died during the remainder hospi-
tal stay (Fig. 1). The joint occurrences and combinations 
of these three critical events are shown in Additional 
file  2: Table  S2. Our models use data collected during 
admission to predict whether a patient reached any of 
these three clinical end point outcomes. Overall, 181 
patients (37%) had experienced at least one critical in-
hospital event.

Baseline characteristics
Table 1 shows the baseline features of the study cohort 
(median age: 71  years, 58% male patients) on hospital 
admission. Of 490 patients, 323 (72%) had at least one 
coexisting comorbidity, with the highest prevalence for 
hypertension (57%), vascular/coronary artery disease 
(27%) and diabetes mellitus (24%). Cough (58%), dysp-
noea (57%) and fever (46%) were the most common 
symptoms. Enhanced C - reactive protein (CRP, 91%, 
cut-off 5 mg/dl) and lactate dehydrogenase (LDH, 83%, 
cut-off 240 U/L) were the most frequent pathologic lab-
oratory values (Table 1).

Model performance
In general, models exhibit only small differences in 
performance for critical event prediction (Fig. 2). AUC 
values ranged from 0.731 to 0.763 (highest for the RF 
model) and Brier scores from 0.184 to 0.197 (lowest for 
the LR model) (Table  2, Fig.  3). Despite this, modest 
performance benefit was observed for both LR and RF 
over SVM (all including non-linear effects) as well as 
L1, L2, and EN models (all constructed with only linear 
effects on events) (Figs. 2 and 3, Table 2).

Variable importance
CRP obtained the highest importance across all mod-
els, and the variables age, respiratory rate and the lac-
tate dehydrogenase (LDH) value were consistently 

Continuous data are displayed as mean ± standard deviation/median [first 
quartile, third quartile], Categorical data are displayed as proportion (total 
number)

BMI, body mass index, spO2, saturation of peripheral oxygen, aPTT, activated 
partial thromboplastin time, pO2, partial pressure of oxygen, pCO2, partial 
pressure of carbon dioxide, sO2, saturation of oxygen, RAAS-Inhibitors, renin–
angiotensin–aldosterone system-Inhibitors
a Variables included into the analysis

Table 1  (continued)

Characteristic Non-
missing 
cases

Statistics

Antiplatelet medicationa 490 27(130)

RAAS-Inhibitorsa 490 42 (204)

Antidiabetic medicationa 490 22 (106)

Immunosuppressive 
medicationa

490 18 (87)

Statinsa 459 21 (96)

Oral anticoagulationa 467 14 (67)

Diureticsa 457 24 (110)

Proton pump inhibitorsa 453 30 (135)
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rated among the top 7 predictor variables of the models 
(Figs.  4A–F, Additional file  3: Tables S3A–F). A nota-
ble difference was that oxygen saturation (spO2) was 
among the top 4 predictors in all ML models (Fig. 4B–
F), whereas spO2 was not incorporated in the LR model 
(Fig.  4A). The most striking difference was observed 
regarding the creatinine variable, which did not play 
any role in the L1, L2, EN and SVM model (Fig. 4B–E). 

By contrast, creatinine was the 2nd most important 
variable for predicting critical events in the LR and RF 
model (Fig.  4A/F), which both slightly outperform the 
other models (Figs. 2 and 3, Table 2).

Partial‑dependence profiles for creatinine
Effects of creatinine on the occurrence of critical in-
clinic events were revealed in LR and RF but were only 

Fig. 1  Patient pathways and outcomes. Prediction models use admission data of COVID-19-infected patient´s clinical data on hospital admission for 
predicting at least one of three critical in-hospital events during the remainder hospital stay
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marginal present in L1, L2, EN, and SVM. Ninety per-
cent of the creatinine values ranged in the interval 
from 0.7 und 2.5  mg/dl. Within this interval, estimated 
event probabilities increased 20% in LR and RF models 
and ≤ 5% in all other models (Fig. 5).

Model comparison
Both, LR and RF performed better than the regular-
ized L1, L2 and EN models (Fig.  2, Table  2), likely due 

to existing non-linear effects on outcome (e.g., the cre-
atinine level), which, due to design, are not considered 
in the L1, L2 and EN model (Fig. 4B–D, Additional file 3: 
Table  S3B–D). Also, LR and RF performed also better 
than the SVM model (Fig. 2, Table 2), perhaps the SVM 
application did not sufficiently take into account the most 
influencing variables (e.g., creatinine), while other possi-
bly less important variables are incorporated in the SVM 
model (e.g., statins, anticoagulation, and gender, Fig. 4E, 
Additional file 3: Table S3E). The prediction performance 
of the LR and RF model was almost equal. Both models 
consisted of similar effects and similar functional forms. 
The different predictors (RF has more influential vari-
ables than LR) had little additional predictive capabilities 
(Fig. 4A/F, Additional file 3: Table S3A/F, Fig. 5).

Discussion
In this multicentre cohort study, we compared a classi-
cal statistical LR and five data-driven ML models to pre-
dict critical in-hospital events from COVID-19 using a 
25-variable dataset from 490 admissions with 181 events. 
The models showed AUC means ranging from 0.731 to 
0.763, indicating only small differences within an overall 
fair predictive performance across all models. The best 

Fig. 2  Box plots of the goodness of fit as measured by AUC values and Brier score for 50 repeatedly performed data splits for each model approach 
in model development for predicting critical in-hospital events using COVID-19-infected patient’s data on hospital admission. Box plots show the 
smallest value (low whisker), lower quartile (lower boundary of the box), median (vertical line in the box), upper quartile (upper boundary of the 
box), and maximum value (upper whisker)

Table 2  Performance of models characterized by AUC value and 
Brier score for predicting critical in-hospital events using COVID-
19-infected patient’s data on hospital admission

Data are displayed as median [first quartile/third quartile]

AUC​, Area under the curve

Model approach AUC​ Brier score

Logistic regression 0.758 [0.725/0.790] 0.184 [0.175/0.197]

L1 LASSO 0.731 [0.713/0.754] 0.197 [0.193/0.201]

L2 ridge regression 0.745 [0.713/0.775] 0.197 [0.193/0.203]

Elastic Net 0.737 [0.714/0.767] 0.196 [0.185/0.203]

Support vector machine 0.744 [0.710/0.765] 0.194 [0.188/0.207]

Random forest 0.763 [0.740/0.786] 0.186 [0.179/0.194]
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performance was obtained by the RF (highest AUC value) 
and the LR approach (lowest Brier Score). While most 
top ranked influencing predictor variables were largely 
identical between models, specifically the variables CRP, 
LDH and SpO2 values and age, we also found clinically 
relevant differences. In particular, creatinine considerably 
contributed only to RF and LR.

Clinical use of ML techniques as predictive analyt-
ics is still experimental and interactions between pre-
dictors can hardly be revealed [9]. However, ML-based 
models predicting critical illness of COVID-19 may 
enable timely risk stratification of COVID-19 patients 
on hospital admission to personalize care and prioritize 
resource allocation [5, 6, 9]. While identifying actu-
ally critical ill COVID-19 patients is clinically trivial, 
identification of those at risk to deteriorate in advance 
would help to anticipate the needs for ICU and/or IMV 
support as well as regular beds for isolation, monitor-
ing or best supportive end-of-life care. The rates for 
ICU admission (26%), IMV support (17%) and mor-
tality (20%) in this study are in line with other studies 
on COVID-19 patients on hospital admission [1–4, 

28–32]. For several reasons, we combined these three 
critical events into a single composite outcome meas-
ure. Firstly, each event is of similar clinical interest and 
importance to guide decisions in emergency units to 
early target clinical care, especially under constraint 
resources during peaks [6, 10]. Secondly, it avoids an 
arbitrary choice between critical events that refer to the 
same disease process [33]. Finally, it bypasses issues of 
competing risks, as this observational study cannot dis-
tinguish between effects of disease severity, treatment 
failure, resource limitations, patient wishes and non-
invasive and/or invasive ventilation strategies, COVID-
19 patients hospitalized for other reasons, or similarly 
for morbidity and mortality, whether these were related 
to COVID-19 and/or another underlying medical con-
dition [34, 35].

Most top ranked predictor variables across all models 
examined in this study (CRP, LDH, respiratory rate and 
age) parallel to previously reported risk factors of critical 
illness in COVID-19 infection caused from the virus vari-
ant alpha (strain B.1.1.7) [5–8, 28–31, 36, 37]. Elevated 
CRP and LDH levels indicate inflammatory reaction and 

Fig. 3  Performance comparison of model approaches for prediction of critical in-hospital events using COVID-19-infected patient’s clinical data on 
hospital admission displayed as ROC curves. The dashed line indicates random prediction
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cell damage, and all four clinical parameters reflect that 
older patients with inflammatory COVID-19 disease and 
respiratory symptoms have a poor outcome [1, 6, 28–32]. 
Tachypnoea, rather than dyspnoea, is the first symptom 
of the COVID-19-related Acute Respiratory Distress 
Syndrome (ARDS), which is highly associated with the 
need for ICU and/or IMV support and/or in-hospital 
death [2, 3, 32]. Notably, all ML models outlined oxygen 
saturation as an influencing variable, whereas it was not 
considered in the LR approach. However, COVID-19-re-
lated ARDS is inherently an inflammatory lung disease, 
and the importance of CRP was ranked highest across all 
models. A strong linear CRP effect is confirmed by the 
regularized ML models (L1, L2, and EN).

Notwithstanding that the predictive benefit was small, 
the RF and LR model performed best in our study cohort. 
As the LR and RF model yielded nearly equivalent per-
formance results, their predictive benefit likely accounts 
to the incorporation of non-linear effects. Notably, the 
SVM model performed lower, likely because SVM did 
not sufficiently incorporate the most influencing vari-
ables. Specifically, only the LR and RF model outlined 
a high non-linear effect of the creatinine level, which is 
consistent with studies associating kidney dysfunction 
in COVID-19 with morbidity and mortality [38]. Kid-
ney involvement affects 20–40% of critically ill COVID-
19 patients and can be caused by multiple pathways, 
including direct virologic damage of kidney cells and/
or endothelial structures, hyperinflammation, cytokine 
release and hypercoagulability [39]. Although early rec-
ognition of kidney dysfunction in COVID-19 may limit 
renal failure and reduce morbidity and mortality, renal 
function is rarely (< 10%) reported as predictor for mor-
tality and/or severe COVID-19 [6, 38–40]. However, this 
study supports that the clinical relevance of creatinine 
values at baseline merits further investigation in hospital-
ized COVID-19 patients.

Our findings may have implications for conceptual-
ization of future ML projects. Firstly, despite of a small 
dataset and operations on subsamples through data splits 
(training/test data, tuning samples), certain purely data-
driven ML methods yielded comparable performance 
and predictor variables similarly to a LR model. To lev-
erage the strengths of data-driven ML technologies, 
future efforts should focus on augmenting the database 
from two directions: transversally, by including data from 
new sources, and longitudinally, by integrating regularly 
actual data from the evolving pandemic [41]. Secondly, 
our study outlines non-linear effects on critical events 
and that potentially underrated predictors such as kidney 
function enhance model accuracy. Thus, identifying the 
most influencing predictor-to-event relationships and 
effects is central to optimize modelling of critical event 

prediction, regardless of a LR or ML approach. Thirdly, 
predictor importance metrics, like AUC loss or PDP 
plots, show relative impacts of variables on prediction or 
how model predictions behave as a function of selected 
variables. Although these metrics refer to an individual 
ML algorithm and do not have a causal interpretation, 
they may help detect which predictor variables are wor-
thy of further study [42]. Finally, a hurdle for ML applica-
tion in clinical workflows is the lack of transparency and 
interpretability of ML models. To overcome this issue, 
future research may focus on selecting information from 
black box ML models to build interpretable but still accu-
rate statistical glass box models with exactly determina-
ble effects [43]. Such combinations of ML and statistical 
models, however, require significant knowledge in meth-
odologies of model building and clinical expertise [44].

Limitations
Our study has limitations. Firstly, this is an observational 
study from the earliest phase of the COVID-19 pandemic 
caused from the virus variant alpha (strain B1.1.7). Both, 
the nature of the study design and the limited knowl-
edge available include methodically nonavoidable risks, 
such as bias in variable selection, heterogeneity of study 
variables and population and unstudied confounding fac-
tors. Secondly, data with informative missing and a high 
number of missing values were excluded. This concerned, 
among others, data on body mass index or D-dimers, 
which may offer an important contribution to prediction. 
Thirdly, we do not have outpatient data available. There-
fore, we cannot distinguish between acute and chronic 
comorbidities, particularly with regard to kidney dys-
function. Fourthly, equal direction and strength of effects 
on different endpoints cannot be necessarily assumed. 
However, the composite outcome variable had valid clini-
cal reasons. Fifthly, we compared established ML meth-
ods that are regularly applied in health care research and 
that were considered suitable for our dataset dimension. 
However, recent research extents prediction models to 
risk-stratify COVID-19 patients towards application of 
deep learning (DL) algorithms [45]. Towards a compara-
tive performance analysis of ML and DL methods, fur-
ther studies are called for. However, substantially larger 
datasets are required to such end, as DL methods are 
very data demanding and cumbersome on datasets of 
our dimension. Finally, the enrolled patients represent 
the early onset of the COVID-19 pandemic in Germany. 
This particularly limits generalizability to the actual pan-
demic period under new influences from virus mutants, 
[46] vaccination, [47] improved testing, [48] and evolv-
ing drug treatments, such as anticoagulation [49] or 
dexamethasone [50]. In addition, recent studies outline 
host genetic variants [51] and viral load [52] as relevant 
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Fig. 4  Importance of predictor variables in models predicting critical in-hospital events from COVID-19-infected patient’s clinical data on hospital 
admission (A–F). Permutation based performance loss of all variables for the LR model (A), the regularized regression models L1 (B), L2 (C) and EN 
(D), and the SVM (E) and RF (F) model
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Fig. 4  continued
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Fig. 4  continued
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determinants of critical illness in COVID-19. However, 
as the pandemic and our knowledge evolve, no model 
will fit all regions at all times, and this study adds to the 
understanding of ML-based models as predictive analyt-
ics to risk-stratify COVID-19 patients into different man-
agement groups.

Conclusion
In conclusion, we compared the performance of sta-
tistical LR and five supervised ML models for predic-
tion of critical in-hospital events from COVID-19 using 
patient data at admission. Although extension of patient 
numbers and/or potential predictors may gain more 
precise estimates on diversity in performance between 
the models analysed, we demonstrate the superiority of 
models being able to investigate non-linear predictor-
to-event relationships and effects, regardless of a LR or 
ML approach. Specifically, our data support a potentially 
underestimated non-linear effect of the creatinine value 
for indicating critical COVID-19-related patient trajec-
tories. While our findings require external validation in 
larger datasets, future efforts should focus on leveraging 
ML technologies from static towards dynamic ML mod-
elling solutions that learn and adapt to changes in data 
environments over time. This would be obtained by inte-
grating actual data into continuous learning ML models 

that iteratively retrain and upgrade themselves, making 
them less prone to error and bias and more up-to-date 
for clinical decision support during actual periods of the 
evolving pandemic.
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