Skip to main content
. 2022 Nov 24;4(1):65. doi: 10.1007/s42979-022-01464-8

Table 4.

Summary of the conventional machine learning techniques applied on X-ray and/or CT images

Image Type Authors Dataset Classifiers used Accuracy (%)
X-ray Hussain et al. [139]

Github repository “covid-chest X-Ray dataset”

Kaggle repository—pault imothymooney/chest-X-Rray pneumonia

KNN,

NB,

XGB-Tree,

CART,

XGB

96.34
Mahdy et al. [140] Montgomery County X-ray Set, covid-chest X-Ray-dataset-master SVM 98.81
Farhat et al. [142] Kaggle repository, GitHub (Dr. Joseph Cohen) LBP + SVM, HOG + SVM and GLCM + SVM 98.66
Kumar et al. [143] public dataset from Italy LR, NN, DT, RF, AdaBoost, NB, XGBoost 97.77
Pereira et al. [144] RYDLS-20, NIH dataset KNN, SVM, MLP, DT, RF 89.0
Tuncer et al. [149]

Github,

Kaggle

DT, LD, KNN, SVM, SD 100.0
Saha et al. [153] Github repository developed by Cohen et al. [154] RF, DT, SVM, AB 98.91
Rasheed et al. [155] Kaggle dataset LR 97.97
Gilanie et al. [156] Data collected four medical center in Israel KNN 90.3
Mijwil [157] Kaggle [158, 159] RF, NB, SVM, LR 97.7
imad et al. [160] Kaggle SVM, DT, NB, KNN, RF 96.0
Samsir et al. [161] Kaggle SVM, KNN 98.0
CT Shi et al. [138] Huazhong University of Science and Technology [138] LR, SVM, NN 87.9
Liu et al. [151] National Health Commission of the People’s Republic of China [151] SVM, LR, DT, KNN 94.16
Perumal et al. [162] Data used from three sources Kaggle, Radiopedia and Zenodo SVM, RF, DT, KNN, NB 96.96
Feng et al. [163] Seven Hospital in China LR, SVM, RF, XGBoost 94.6
X-ray, CT Hosseinzadeh et al. [164] X-ray from Kaggle dataset and CT from RSNA Pneumonia Detection LightGBM, Bagging, Adaboost, R, XGBoost, DT 99
Muhammad et al. [165] Kaggle databases KNN, SVM, LR, NB, (AB) 95.94

SVM support vector machine, LR logistic regression, CART classification and regression tree, DT decision tree, KNN K-nearest neighbor, MLP multilayer perceptron, NB naive Bayes, AB AdaBoost