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A B S T R A C T   

Circular RNAs are non-coding RNAs that widely exist in eukaryotes. The research progress of its generation 
mechanism and biological function show that circular RNAs may be used in the development of tumors, 
neurological diseases, cardiovascular diseases. They play an important role in the occurrence and development of 
diseases and has a potential to be used as a disease marker. Oral squamous cell carcinoma is one of the most 
common malignant tumors in oral surgery. It is difficult to treat, easy to metastasize, and has a poor prognosis. 
Due to its unclear mechanism, blocking oral squamous cell carcinoma at the genetic level cannot be achieved. 
The research progress of circular RNA in the field of oral squamous cell carcinoma will bring new ideas for the 
biological treatment of oral squamous cell carcinoma. This review summarizes the circRNAs mechanism, the 
biological function and the research progress in the development of tumors, especially oral squamous cell 
carcinoma.   

1. Introduction 

Circular RNAs (circRNAs) are a new member of the long non-coding 
RNAs (lncRNAs) family [1]. Unlike linear RNA, this RNA does not have 
the characteristics of 5′methylguanosine cap and 3′polyadenylation tail, 
but a covalent closed-loop structure, so circular RNA is not effective for 
ribonucleases (Rnases), what makes they more sensitive and more stable 
than linear RNA [2]. According to different sources, circular RNA can be 
divided into exonic circular RNA (exonic circRNA), intronic circular 
RNA (intronic circRNA), exon-intron circular RNA (exon-intron 
circRNA), and tRNA-derived circular RNA (TriRNA) [3–6]. Research has 
shown that circular RNAs are widely involved in the pathogenesis of 
various diseases, and their complex and diverse functions, unique 
abundance, breadth, stability and tissue specificity play an important 
role in the pathological process and become a biological star in the field 
of science [7]. 

Oral squamous cell carcinoma (OSCC) is the 11th most common 
cancer in the world [8]. OSCC has the characteristics of local invasive-
ness, high recurrence, and easy metastasis. The 5-year survival rate is 
lower than performed in other solid tumors, which is only 50–60% [9]. 
However, the molecular mechanism of OSCC is still unclear, and there 
are no highly sensitive and specific biomarkers as monitoring indicators 
for the early diagnosis, treatment and prognosis of OSCC. Previous 
literature has shown that circRNAs are associated with the malignant 
progression of OSCC, suggesting that circRNAs have potential functions 
as markers for early diagnosis and biological treatment of OSCC. This 
article briefly introduces the characteristics and the generation process 
of circular RNAs, and discusses their research progress in tumors, 
especially OSCC, from their biological functions. 
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2. The mechanism of circular RNAs formation 

In eukaryotes, canonical splicing is formed by the spliceosome ma-
chinery, which removes introns and joins exons into one linear RNA 
transcript [10]. Most circular RNAs are derived from exons. The whole 
process can be divided into two parts: 1) the upstream intron of one or 
more exon pairs is connected with the downstream intron; 2) the 
2′-hydroxyl of the upstream intron is connected with the 5′-hydroxyl of 
the downstream intron The phosphate group reacts, and then the 
3′-hydroxyl group of the 3′-exon reacts with the 5′-phosphate of the 
5′-exon, finally forming a circular RNA [11]. ALU sequences in introns 
can also interact, promoting back splicing [12]. Some RNA-binding 
proteins act as regulators in this process. For example, the 
RNA-binding protein MBL joins proximal introns and promotes the 
production of circular RNAs; while the RNA editing enzyme ADAR1 
inhibits the production of circular RNAs [13,14]. In addition, a 
lasso-driven circularization is another mechanism for the generation of 
circular RNAs, upstream splice acceptors and downstream donors are 
brought close to each other due to the presence of RNA lasso, while 
exons are formed by 5′-3′ phosphodimers ester linkage [15]. 

3. Biological functions of circular RNAs 

Circular RNAs have diverse functions as non-coding RNAs, which are 
mainly divided into the following four aspects:  

a) Sponging of miRNAs. miRNAs are considered to be endogenous non- 
coding RNAs, which can inhibit downstream gene expression, 
thereby inhibiting protein synthesis. More and more studies have 
found that circular RNAs with complementary sequences can 
sponge-like adsorb miRNAs and inhibit their downstream gene 
expression [7]. For example, cirs-7, also known as CDR1as, is a cir-
cular RNA containing more than 70 miR-7 binding sites, which can 
bind to miR-7 and act on its downstream mRNA [5,16]. This mo-
lecular pathway axis is widely expressed in diseases such as astro-
cytoma and lung cancer (Fig. 1) [17].  

b) Regulation of linear RNA transcription. Circular RNA can promote or 
inhibit the transcription of linear RNA and is a key regulator of 
alternative splicing or transcription. Circular RNAs formed by exons 

constitute a vast majority of known circular RNAs, and their gener-
ation process has a competitive impact on conventional splicing.  

c) Sponging on proteins. Circular RNAs can also adsorb RNA binding 
proteins (RNA binding proteins, RBPs) to regulate protein levels. For 
example, circ-MBL found in flies and humans can bind to MBL pro-
teins at multiple binding sites [7]. An increasing number of studies 
have shown that some circular RNAs are also able to interact with 
proteins, thereby affecting the behavior of cells [18]. For example, 
circFOXO3, a circular RNA that has received the most extensive 
attention, has been shown to be an adaptor linking p21 and cyclin-
dependent kinases 2 (CDK2). circFOXO3 promotes the release of 
CDK2 from p21, which can phosphorylate cyclin A and cyclin E, 
thereby promoting cell division and proliferation. High expression of 
circFOXO3 can also promote the interaction between p53 and 
MDM2, thereby accelerating the degradation of p53 [19].  

d) Regulation of protein translation. The translation is performed by 
ribosomes and involves initiation, elongation, termination and 
ribosome recycling [20]. The Initiation on eukaryotic mRNAs in-
volves scanning by 43S preinitiation complexes from the 5′

cap-proximal point of attachment to the initiation codon, followed 
by ribosomal subunit joining and factor displacement [21]. Lacking 
the 5′-cap and 3′-tail, circRNA can only adopt cap-independent 
manners. In addition to previously described m6A-mediated trans-
lation [22], artificial and endogenous circRNAs containing an in-
ternal ribosome entry site (IRES) that directly recruits ribosomes 
[23], can also be translated. These two approaches may be coupled 
with each other. For example, m6A improves the efficiency of 
IRES-mediated translation of circZNF609 [24]. Additionally, 
circRNA with an infinite ORF undergoes rolling circle amplification 
in an IRES-independent manner, leading to a hundred-fold higher 
productivity than linear transcript [25]. Peptides encoded by circR-
NAs are generally truncated and their functions are mostly analogous 
to the full-length protein counterparts (circFBXW7-185aa [26]). 
However, some proteins originating from circRNAs exert functions 
are independent of or even opposed to those of their host gene 
products (circFNDC3B-218aa) [27]. These results broaden the range 
of human proteome. However, the regulatory mechanisms of 
circRNA translation and the processes of elongation and termination 
are still not completely understood. 

4. Circular RNAs and tumors 

Studies have shown that circular RNAs play an important role in the 
occurrence and development of solid tumors and hematological malig-
nancies, especially through their biological functions as miRNA sponges. 
Circular RNAs are involved in several characteristic processes of 
tumorigenesis and development, such as the evasion of growth sup-
pressors, maintenance of proliferative signals, the evasion of cells’ death 
and senescence, and the ability to promote angiogenesis and activate the 
invasion and metastasis. In addition, the abnormal expression, the tissue 
specificity, the diversity and the stability of circRNAs in tumor cells 
make them have a great potential as tumor markers. In liver cancer, 
researchers have found that the expression of hsa_circ_0005075 in 60 
groups of liver cancer tissues was significantly different from normal 
tissues, indicating that hsa_circ_0005075 is a potential biomarker [28]. 
In addition, the expression of hsa_circ_0001649 is also different, and is 
closely related to the size of HCC tumor and the occurrence of tumor 
thrombus, while circZFR, circFUT8 and circIPO11 have been proved to 
be useful for the identification of HCC specimens [29,30]. For lung 
cancer, both clinical cohort studies and cell-level studies have found that 
circRNAITCH plays an inhibitory role in lung cancer. Abnormal regu-
lation of circRNA-ITCH can enhance the expression of its parent tumor 
suppressor gene ITCH by sponging miR-7 and miR-214, thereby regu-
lating the proliferation of cancer cells [31]. circ-001569 can sponge-like 
adsorb miR-145 and upregulate the expression of its downstream genes 
such as E2F5, BAG4 and FMN12, resulting in an increase in G2/M phase Fig. 1. The biological functions of circRNAs.  
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cells and a decrease in tumor cell apoptosis [32]. In addition, in 
non-solid tumors, Salzman et al. serendipitously found genes producing 
hundreds of circular RNAs in acute myeloid leukemia, and these circular 
RNAs were also detected in HeLa cells [33]. Another study has 
confirmed that chemotherapy can inhibit the abnormal expression of 
hsa_circ_0004277 in patients with acute myeloid leukemia [34]. In 
addition to the above tumors, studies have also found that some circR-
NAs are associated with gastric cancer, breast cancer, colon cancer, 
bladder cancer, ovarian tumors, and skin squamous cells [35–42]. It is 
closely related to various cancers such as epithelial carcinoma [43]. 

5. Circular RNAs and OSCC 

5.1. Research status of circular RNAs in OSCC 

The application of high-throughput sequencing has allowed more 
and more OSCC-specifically expressed circular RNAs to be screened. 
Studies have screened circRNAs with significant differences between 
OSCC tissue and paracancerous tissue by circRNA chip technology, 
including 155 circRNAs with a relative expression ratio of more than 1.5 
times. Circular RNA hsa_circ_0001874 was shown to be closely related to 
a tumor’s clinical stage and a degree of differentiation, and its expres-
sion in low differentiated OSCC tissues has been significantly higher 
than in moderately and highly differentiated OSCC tissues [44]. 
Through the prediction of circular RNA target gene analysis software, it 
is inferred that miR-103A-3P, miR-107, miR-593–5p, miR-661 and 
miR-662 may be the sponge targets of hsa_circ_0001874, but the specific 
functions are still unknown. Similar studies have also included exploring 
the expression profiles of circRNAs in tongue squamous cell carcinoma 
tissues and normal paracancerous tissues. High-throughput sequencing 
was performed in 4 cases of cancer foci and 4 cases of adjacent tissues. A 
total of 17 171 circRNAs with differences were screened, among which 
15 circRNAs had a 50-fold difference [45]. The upper circular RNA 
hsa-circ-0033 967 with a differential fold of 116.31 is predicted to have 
163 potential binding sites for hsa-miR-608, and hsamiR-608 has been 
confirmed to play a tumor suppressor role in liver cancer glioma in 
recent years [46]. This finding suggested that hsa-circ-0033 967 could 
block the tumor suppressor effect of hsa-miR-608 through a sponge 
action, thereby promoting the occurrence and the development of 
tongue cancer. Some circular RNAs have been shown to have unique 
signaling pathways in the malignant process of OSCC, and have clinical 
application value. Cyclin-dependent kinases 6 (CDK6) promote tumor-
igenesis at some specific stages by regulating transcriptional responses. 
Wang et al. established a cell apoptosis model based on three oral 
squamous cell carcinoma cell lines CAL-7, SCC-9, and SCC-25 [47]. 
Compared with the control group, it was found that there were differ-
ences in the expression of 628 circRNAs, among which the circRNA 
DOCK1. It is one of the circular RNAs whose expression is significantly 
decreased in the apoptosis model. Real-time quantitative polymerase 
chain reaction found that this circular RNA is also highly expressed in 
OSCC cell lines and tissues. In this low-expression model of circular 
RNA, the expression level of miR-193a-5p, which plays an important 
role in various apoptosis pathways, increased, and at the same time, the 
apoptosis rate increased to varying degrees. Further experiments proved 
that miR-193a-5p could bind to the mRNA of baculoviral IAP repeat 
containing (BIRC) to reduce the content of BIRC in cells and increase the 
apoptosis rate. Chen X. et al. have found that circ_0014 359 was highly 
expressed in the OSCC tissues and cell lines compared to the normal 
controls and that expression was associated with the survival of patients. 
For the OSCC cell lines, circ_0014 359 knock down induced apoptosis 
and inhibited migration, invasion, and epithelial-mesenchymal transi-
tion of OSCC cells. In vivo, silencing the circ_0014 359 blocked the 
growth of OSCC tumors. The circ_0014 359 can directly interact with the 
micro-RNA-149 (miR-149) [48]. The existence of − 196a-5p/BIRC3 
signaling pathway-circRNA DOCK1 can indirectly affect the apoptosis of 
OSCC by regulating the expression of the protein BIRC, which reflects 

the potential of circRNA DOCK1 as a diagnostic biomarker and thera-
peutic target for OSCC. Another study has found that another circular 
RNA may also assist in the diagnosis of OSCC [49]. Cui L. et al. have 
found that CircCDR1as acted as an oncogene in OSCC progression 
through elevating SLC7A11 by targeting miR-876–5p [50]. The 
expression of hsa_circ_1001242 was significantly increased in 4 oral 
squamous cell carcinoma cell lines SCC-9, SCC-15, SCC25, and CAL-27, 
and the expression of hsa_circ_1001242 was significantly increased. 
Levels and tumor size were negatively correlated with T stage. Similarly, 
the expressions of hsa_circ_0001874 and hsa_circ_0001971 in saliva 
were significantly increased in OSCC samples, and they have the po-
tential to be used as OSCC tumor markers to judge the degree of tumor 
development, because their contents are related to the TNM stage of 
OSCC, and the former is related to the tumor grade. The hsa_-
circ_0001874 had a higher expression level in the more malignant 
samples. Not only that, OSCC and oral leukoplakia can also be distin-
guished by comparing the differences in the expression levels of these 
two circular RNAs, and surgery will also reduce the content of the two 
circular RNAs in saliva [51]. Not all circRNAs in OSCC are reported 
below. The only circRNA forming the circRNA-mRNA regulatory axis is 
described, along with a description of the role in other forms of cancer to 
understand the diversity of function. Table 1 provides a succinct 
description of the regulatory network and expression levels in OSCC 
tissues. 

5.2. Application value of circular RNAs in OSCC 

Nowadays, some progress has been made in early diagnosis, surgical 
methods, and radiotherapy and chemotherapy for OSCC. However, the 
early symptoms of OSCC are not typical, and tissue biopsy is often 
required for final diagnosis. There is still a lack of rapid, accurate and 
non-invasive early diagnosis in clinical work. Circular RNAs are abun-
dant, widespread, conserved, and can be stably expressed in saliva, 
blood, urine, and exocrine vesicles, and their expression in tissues and 
organs is stage-specific. Since OSCC occurs in the mouth, the test of 
saliva samples may become an early screening and a diagnosis method 
for OSCC high-risk markers, and the operation is simple and does not 
require invasive procedures to obtain samples. Several studies have 
shown that microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) 
in saliva can be used as early diagnostic markers for OSCC [63,64] 
[Fig. 2]. Compared with long non-coding RNAs, circular RNAs are less 
sensitive to RNases due to their closed loop structures, and the half-life 
of circular RNAs is often higher than 48 h, while the half-life of micro-
RNAs is only 10 h on average. Therefore, circular RNAs are more suit-
able as markers [65]. Literature has shown that there are OSCC-specific 
circular RNAs in saliva. As mentioned above, the content of 
has-circ-0001874 and has-circ-0001971 in the saliva of OSCC patients 
are significantly increased. Specific circular RNAs are used as the strong 
evidence for the diagnosis of OSCC [51]. Similarly, circRNAs can also be 
used as prognostic markers for OSCC cyclic, and these OSCC-specific 
circRNAs can be used as monitoring indicators for regular follow-up of 
patients after surgery or medical treatment [66]. Research shows that 
some circRNAs can regulate the biological behavior of tumor cells 
through intracellular signaling pathways, so circRNAs are considered to 
be one of the future molecular biology therapeutic targets for OSCC in 
case circRNAs can be interfered by drugs and inhibit the proliferation of 
OSCC cells and promote apoptosis [67]. Nowadays, the most important 
method to interfere with the expression of circRNAs is to construct a 
targeted small interfering RNA (siRNA) of a specific type of circRNA 
through a database query, and to introduce it into OSCC cells, which can 
reach the level equivalent to the gene encoding the circRNA, thereby 
hindering the further development of cancer cells or cancerous tissue by 
the knockout effect. Research found that the introduction of 
circRNA-100290 targeting siRNA into OSCC cell lines inhibited the 
proliferation of OSCC cell lines in vitro and in vivo by regulating the 
circRNA-miR29 family-CDK6 pathway [25]. Similarly, Wang et al. 
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constructed a low-expression model of this circRNA by introducing 
siRNA of circRNA DOCK1 and found that the apoptosis rate of CAL-7, 
SCC-9, and SCC-25 3 OSCC cell lines increased [68]. Using molecular 
biological methods to maintain the low expression state of circRNAs that 
promote the malignant development of OSCC has the potential to be 
used in clinical treatment. 

On the contrary, the overexpression of certain circular RNAs has a 
certain inhibitory effect on the proliferation and development of cancer 
cells. It has become possible to synthesize circular RNAs with specific 
benign effects by artificial means and to transfect them into cells to 
achieve therapeutic effects. Some researchers have successfully syn-
thesized a circular RNA-scRNA21 that can significantly inhibit the 
proliferation of cancer cells in vitro [69]. This circular RNA can bind 
miR-21 through sponge action when introduced into cells, thereby 
up-regulating the target inhibition of miR-21. The expression of tumor 
suppressor gene Daxx induces the apoptosis of gastric cancer cells. By 
increasing the intracellular content of circRNAs and then affecting the 
biological behavior of OSCC cells, it provides a new idea for the treat-
ment of OSCC. 

6. Conclusions 

Although circular RNAs have high advantages as biomarkers for 
diagnosis, prognosis and treatment of OSCC, the current research results 
still have great limitations. For example, when analyzing the differen-
tially expressed circRNAs in OSCC patients, the size of a sample and a 

selection of the samples will affect the final data, and the current 
research results cannot represent the situation of all OSCC patients. In 
summary, as a molecule that has just been discovered to have special 
biological functions, circular RNA has good specificity and stability, and 
its potential as a tumor marker has been demonstrated in gastric cancer, 
colon cancer, breast cancer and other cancers [29–34]. OSCC is a cancer 
that is prone to metastasis and has a poor prognosis, and its mechanism 
of occurrence and development is still unclear. Revealing the occurrence 
and development of OSCC at the molecular level will certainly provide 
more information on the early diagnosis, treatment and prognosis of 
OSCC and become a more efficient and accurate method. Studies on the 
role of circRNAs in OSCC have also appeared one after another, 
providing new ideas for tumor diagnosis and prognosis. Although more 
and more circRNAs that are differentially expressed between tumor 
tissues and normal tissues have been discovered, only a small number of 
circRNAs have been elucidated for their precise roles in cellular and 
molecular mechanisms, and the mechanism of action of the vast ma-
jority of circRNAs is still uncertain, and there is still much unknown to 
be explored [70–76]. Moreover, before the role of circRNA as a tumor 
diagnostic marker transitions from a theory to a clinical application and 
becomes a simple, efficient and accurate laboratory examination 
method, a plenty of research is needed as a basis. 
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Table 1 
A Short display of the above described circRNA-miRNA pathway regulatory axis.  

circRNA Expression IN OSCC Sponged miRNA Regulatory Axis Reference 

ciRS-7 Upregulated miR-671–5p ciRS-7/miR-671–5p/CDR1/AKT/ERK1/2/mTOR/ROS 47 
circPVT1 Upregulated miRNA-125b circPVT1/miRNA-125b/STAT3 52 
circHIPK3 Upregulated miR-124 circHIPK3/miR-124/ITGB1 53 
circMDM2 Upregulated miR-532–3p circMDM2/miR-532–3p/HK2 54 
circPKD2 Downregulated miR-204–3p circPKD2/miR-204–3p/APC2/WNT/β-catenin/p-AKT/p- 

ERK1/2 
55 

circDOCK1 Upregulated miR-196a-5p circDOCK1/miR-196a-5p/BIRC3 56 
circATRNL1 Downregulated miR-23a-3p circALTR1/miR-23a-3p/PTEN/AKT/P13K/ATM/ATR/P53 57 
hsa_circRNA_100 

533 
Downregulated miR-933 hsa_circRNA_100533/miR-933/GNAS 58 

hsa_circRNA_100 
290 

Upregulated miR-378a hsa_circRNA_100 290/miR-378a/GLUT1 59 

hsa_circ_000140 Downregulated miR-31 hsa_circ_000140/miR-31/LATS2 60 
hsa_circ_0001971 Upregulated miR-104, miR-204 hsa_circ_0001971/miR-104/miR-204/P13K/AKT/FoxO3a 61 
hsa_circ_0008309 NC: Variation but significantly showed 

downregulation 
miR-136–5P, miR- 
382–5P 

hsa_circ_0008309/miR-136–5P/miR-382–5P/ATX1 62  

Fig. 2. Schematic diagram of the circRNA-miRNA networks in OSCC.  
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