Skip to main content
. 2022 Dec;12(12):5326–5342. doi: 10.21037/qims-22-116

Table 1. Details and quantitative metrics of networks involved in the ablation experiment.

Network structure Conditional input Loss function PSNR (dB) NMSE (%) SSIM CNR (%)
Low dose 18.50 1.80 0.862 26.1
U-net PET lL1 25.44 0.37 0.976 6.13
U-net MRI lL1 21.23 0.96 0.924 3.95
Bi-U-net PET* & MRI lL1+Lbias 25.86 0.33 0.976 6.68
c-GAN PET lL1+LGAN 29.94 0.15 0.990 0.61
M-c-GAN PET & MRI lL1+LGAN 30.03 0.13 0.991 2.99
Bi-c-GAN PET* & MRI lL1+Lbias+LGAN 32.07 0.08 0.994 0.67
Bi-c-GAN PET & MRI* lL1+Lbias+LGAN 25.74 0.34 0.976 0.8

The best results are marked in bold. *, treated as the primary task’s conditional input. c-GAN, conditional generative adversarial network; M-c-GAN, multiple c-GAN; Bi-c-GAN, bi-task c-GAN; PSNR, peak signal-to-noise ratio; PET, positron emission tomography; MRI, magnetic resonance imaging; NMSE, normalized square error of the mean; SSIM, structural similarity; CNR, contrast noise ratio.