Table 1. Details and quantitative metrics of networks involved in the ablation experiment.
Network structure | Conditional input | Loss function | PSNR (dB) | NMSE (%) | SSIM | CNR (%) |
---|---|---|---|---|---|---|
Low dose | – | – | 18.50 | 1.80 | 0.862 | 26.1 |
U-net | PET | lL1 | 25.44 | 0.37 | 0.976 | 6.13 |
U-net | MRI | lL1 | 21.23 | 0.96 | 0.924 | 3.95 |
Bi-U-net | PET* & MRI | lL1+Lbias | 25.86 | 0.33 | 0.976 | 6.68 |
c-GAN | PET | lL1+LGAN | 29.94 | 0.15 | 0.990 | 0.61 |
M-c-GAN | PET & MRI | lL1+LGAN | 30.03 | 0.13 | 0.991 | 2.99 |
Bi-c-GAN | PET* & MRI | lL1+Lbias+LGAN | 32.07 | 0.08 | 0.994 | 0.67 |
Bi-c-GAN | PET & MRI* | lL1+Lbias+LGAN | 25.74 | 0.34 | 0.976 | 0.8 |
The best results are marked in bold. *, treated as the primary task’s conditional input. c-GAN, conditional generative adversarial network; M-c-GAN, multiple c-GAN; Bi-c-GAN, bi-task c-GAN; PSNR, peak signal-to-noise ratio; PET, positron emission tomography; MRI, magnetic resonance imaging; NMSE, normalized square error of the mean; SSIM, structural similarity; CNR, contrast noise ratio.