Skip to main content
. 2022 Nov 28;378(1868):20210427. doi: 10.1098/rstb.2021.0427

Table 1.

Results of 1000 permutations of the multi-model inference procedure performed on four variables of dyadic relationship strength as predictors of the number of coalitions formed during biennial periods. The table contains the model diagnostics and estimates of predictors for the top three GLMM models, which fell within the top 95% cumulative weight confidence set on more than 95% of permutations, the null model and the weighted average estimates and error based on these top models. Bold values indicate where the confidence intervals around effect size estimates excluded zero in more than 95% of permutations. All continuous measures are z-scored.

model 1 2 3 null avg.
AICC mean 683.055 684.877 685.67 727.442
d.f. 9 10 8 6
ΔAICC 0 1.822 2.615 44.388
weight 0.474 0.192 0.139 0
cumulative weight 0.474 0.666 0.805 1
freq. in 95% set 1000 1000 979 0
conditional R2 0.093 0.093 0.094 0.101
predictors
party association
β 0.315 0.324 0.453 0.340
 s.e.(β) 0.119 0.121 0.102 0.127
 % CI exclude 0 96.4 97 100 98.4
five-metre association
β 0.231 0.22 0.190
 s.e.(β) 0.105 0.108 0.27
 % CI exclude 0 86.4 61.1 8.2
grooming presence [Y]
β 0.532 0.515 0.667 0.550
 s.e.(β) 0.193 0.196 0.184 0.199
 % CI exclude 0 99.6 98.4 100.0 99.5
grooming duration
β 0.049 0.012
 s.e.(β) 0.105 0.056
 % CI exclude 0 0 0
control variables
intercept
β 10.385 10.382 10.436 −10.088 10.39
 s.e.(β) 0.327 0.328 0.324 0.357 0.327
 % CI exclude 0 100.0 100.0 100.0 100.0 100
summed dyad rank
β 0.403 0.415 0.366 −0.467 0.400
 s.e.(β) 0.132 0.134 0.133 0.146 0.133
 % CI exclude 0 99.8 100.0 98.8 100.0 99.8
kinship
β −0.853 −1.028 −0.558 1.205 −0.847
 s.e.(β) 0.530 0.644 0.518 0.413 0.576
 % CI exclude 0 11.9 12.4 0.3 99.6 4.6