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Abstract

Since its discovery nearly a century ago, over 100,000 studies of growth hormone (GH) have 

investigated its structure, how it interacts with the GH receptor and its multiple actions. These 

include effects on growth, substrate metabolism, body composition, bone mineral density, the 

cardiovascular system and brain function, among many others. Recombinant human GH is 

approved for use to promote growth in children with GH deficiency (GHD), along with several 

additional clinical indications. Studies of humans and animals with altered levels of GH, from 

complete or partial GHD to GH excess, have revealed several covert or hidden actions of GH, such 

as effects on fibrosis, cardiovascular function and cancer. In this Review, we do not concentrate on 

the classic and controversial indications for GH therapy, nor do we cover all covert actions of GH. 

Instead, we stress the importance of the relationship between GH and fibrosis, and how fibrosis 

(or lack thereof) might be an emerging factor in both cardiovascular and cancer pathologies. We 

highlight clinical data from patients with acromegaly or GHD, alongside data from cellular and 

animal studies, to reveal novel phenotypes and molecular pathways responsible for these actions of 

GH in fibrosis, cardiovascular function and cancer.

Recombinant human growth hormone (hGH) is used primarily to treat children with short 

stature due to GH deficiency (GHD). In addition, hGH is approved for use in children 
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born small for gestational age, as well as children with idiopathic short stature, Turner 

syndrome, Noonan syndrome, Prader–Willi syndrome, short stature homeobox-containing 

gene deficiency and chronic renal insufficiency, and in adults with GH deficiency. Despite 

this success, controversial issues remain, and not all indications are approved in all 

countries1,2.

The Argentine clinician Bernardo Houssay discovered an adverse effect of GH nearly 

90 years ago; namely its ability to inhibit insulin action, which is now known as its 

diabetogenic effect3. Since that time and despite the astonishing success of hGH, several 

puzzling actions of GH have been and continue to be described. Here, we review three 

interrelated covert actions reported in adult mice and humans: fibrosis, cardiovascular 

disease and cancer. Many have joked that ‘too much of a good thing is bad’, which in 

this context is too much GH. Interestingly, the absence of GH action in animals and humans, 

despite short stature, results in resistance to type 2 diabetes mellitus (T2DM) and cancer, 

and improvements in other indicators of healthspan4. With regard to longevity, mice with 

a reduction or absence in GH action have a robust and reproducible increase in lifespan5. 

Although data from humans is insufficient to draw firm conclusions, some cohorts of 

individuals with isolated GHD (for example, in the Brazilian Itabaianinha cohort) have 

attained extreme longevity despite representing a fairly small proportion of the population. 

Such observations suggest that the findings in rodents are relevant to humans5. The effects 

of the GH–insulin-like growth factor 1 (IGF1) axis on human ageing, how GH levels change 

during ageing and the relationship to age-related diseases are discussed in detail elsewhere6.

In this Review, we explore the possibility that too much, too little or inappropriately 

expressed GH might provoke covert physiological actions related to fibrosis, cardiovascular 

function and cancer development.

GH and fibrosis

Fibrosis is characterized by excessive accumulation of the extracellular matrix (ECM) within 

tissues. Although fibrosis is initially a protective and adaptive response to wound healing 

and tissue repair, it can become uncontrolled and lead to tissue dysfunction and pathology. 

Almost every tissue type can be affected by pathological fibrosis; however, heart, adipose 

tissue, liver, kidney, intestine and skin are among the best studied. Tissue fibrosis is thought 

to be a major underlying cause of death in humans, with some studies estimating that it is 

associated with as much as 45% of all-cause mortality in industrialized nations7. As GH has 

an important role in growth and collagen turnover, it is a likely factor in ECM remodelling 

and fibrosis formation.

Influence of GH on collagens

A compelling reason for a GH–fibrosis link is the close correlation between GH exposure 

and collagen production. For example, in vitro studies of GH treatment of cells indicate 

increases in Colla1, Col3a1 and Col6a1 expression in differentiated adipocyte-like 3T3-L1 

cells (a mouse cell line)8 and type I collagen mRNA and protein in rodent intestinal primary 

myofibroblasts9. Animal studies have shown a similar positive correlation between collagen 

and GH. For example, GH treatment increases collagen IV protein in mouse neural tissue 
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damaged by stroke10, and type I collagen RNA and protein in the jejunum of GH-treated 

rats9. Chronic exposure to excess GH in rodent models also increases collagen expression in 

other tissues such as kidneys and tendons11,12.

The data in adult humans are similar. Both acute and chronic GH treatment in older men 

increases collagen expression in tendon and muscle13. Furthermore, the same study failed 

to detect an effect of GH on muscle fibre synthesis13. Acromegaly is a rare disease usually 

caused by a benign GH-producing pituitary tumour and elevated serum levels of IGF1 

(REF.14). Adult patients with acromegaly have increased collagen turnover and serum levels 

of type I collagen and procollagen III amino-terminal propeptide (PIIINP)15, which decline 

with remission of the disease16,17. The close association among GH, collagen synthesis 

and turnover, and fibrosis in clinical populations is further illustrated by several examples, 

including the use of validated tests to detect GH doping in sport that are based on elevated 

serum levels of IGF1 and PIIINP levels18. Moreover, a marker of growth plate activity 

and overall rate of linear bone growth (the intact trimeric non-collagenous domain of type 

X collagen) shows promise for reflecting GH action in children and adults with GHD19. 

Finally, hGH is used in a combination therapy to treat osteogenesis imperfecta, an inherited 

connective tissue disorder characterized by a quantitative or qualitative defect in collagen 

synthesis20.

GH and other fibrosis-promoting factors

GH influences many factors besides collagens that contribute to fibrosis, including ECM-

modifying proteins, several proteins and pathways implicated in fibrosis (for example, 

the transforming growth factor-β (TGFβ) pathway and mitogen-activated protein kinase 

(MAPK) pathways), senescence, immune cell function, and fibroblast activation or 

plasticity. In general, fibrosis is also often preceded by and closely associated with 

inflammation7. These fibrotic effects of GH are frequently context-specific and tissue-

specific and not always in a direction that favours fibrosis. For example, an ECM-degrading 

endopeptidase, matrix metalloproteinase 2 (MMP2), is decreased after GH treatment of 

individuals with GHD21, but increased in patients with active acromegaly22. Likewise, 

TGFβ, a master regulator and promoter of fibrosis in multiple tissues, is regulated distinctly 

by GH in a tissue-specific manner. For example, TGFβ expression is decreased by GH in 

primary cardiac fibroblasts23. Furthermore, TGFβ expression is increased in the glomeruli 

of bovine GH (bGH) transgenic mice, a model of GH overexpression11. Interestingly, GH 

action itself might also be influenced by ECM-modifying proteins. Tissue inhibitor of 

metalloproteinase 3 (TIMP3) is unique among the TIMP family because it alone has a 

high affinity for ECM proteoglycans and possesses the broadest range of substrates. TIMP3 

modulates GH receptor (GHR) abundance on the cell surface in human cell lines that stably 

express GHR and JAK2, and dampens the GH-induced intracellular signalling cascade, 

revealing an interesting interplay between GH and the ECM24.

Senescence.—Cellular senescence is characterized by irreversible cell cycle arrest and 

a senescence-associated secretory phenotype (SASP). The SASP is the main feature of 

senescent cells and includes pro-inflammatory cytokines and chemokines, growth factors 

and proteases, which contribute to a harmful tissue microenvironment. However, whether 
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senescence is beneficial or detrimental for the development of fibrosis remains debated. 

For example, senescence might be beneficial by preventing fibroblast differentiation and the 

ability of these fibroblasts to contribute to liver fibrosis, based on studies using senolytic 

chimeric antigen receptor T cells that efficiently target and ablate senescent cells in 

mice25. However, senescent cells could be detrimental, as removal of senescent cells in 

rodents either pharmacologically or genetically can reverse fibrosis at least in some tissues 

such as lung26, and can extend median lifespan27. Of note, GH and/or IGF1 levels are 

positively correlated with senescence and SASP in white adipose tissue in mice28, as well 

as in cardiomyocytes and skin fibroblasts from patients with acromegaly29, and in human 

primary fibroblasts and mouse embryonic fibroblasts30. In fact, GH can also be secreted by 

senescent cells, thus constituting a component of the SASP31. By contrast, however, GH 

treatment attenuated senescence of primary human endothelial progenitor cells32, and IGF1 

overexpression in rats improved stress-induced senescence in the liver33.

Fibroblasts.—Dysregulation of fibroblasts has long been considered a root cause of 

fibrosis. Data from the past 5 years show marked heterogeneity in fibroblast subtypes, 

which localize to unique anatomical sites and have distinct physiological functions34. Many 

studies have shown that GH and/or IGF1 influence the differentiation and proliferation of 

fibroblasts35,36. This association has been best studied in wound healing. For example, GH 

was identified as an inhibitor of TGFβ-induced myofibroblast differentiation in the skin 

of bGH transgenic mice37. A 2020 study showed that fibroblast activation protein (FAP) 

has been linked to GH action in humans16. FAP is a cell surface protease that has an 

important role in the degradation of ECM and with known substrates that include type I and 

III collagens38. FAP expression is limited after birth except in activated fibroblasts and in 

conditions associated with notable ECM remodelling, such as liver fibrosis39. Interestingly, 

serum levels of FAP are elevated in patients with untreated acromegaly and become 

considerably reduced after disease management, which closely correlates with reductions 

in markers of collagen turnover16. Additional studies are needed to determine if GH directly 

influences FAP abundance and action to influence ECM remodelling, as well as the ability 

of FAP to serve as a biomarker for GH-induced fibrosis.

Fibrosis and GH: the yin and the yang

As outlined above, GH has a complex relationship with many factors that contribute 

to fibrosis and ECM remodelling. Whether GH promotes or reduces pathological tissue 

fibrosis depends on the experimental conditions, the tissues analysed and the degree of GH 

signalling.

The yin: acromegaly and GH-transgenic mice.—Acromegaly is accompanied by 

soft-tissue enlargement and increases in ECM constituents; for example, glycosaminoglycan 

deposits that contribute to generalized oedema are apparent in the skin of patients 

with acromegaly40. Both early autopsy studies done in the 1980s41 as well as in vivo 

studies from 2015 using cardiac MRI have revealed myocardial fibrosis in adult patients 

with acromegaly42. Furthermore, increased hepatic fibrosis has also been shown in 

subpopulations of adult patients with acromegaly, particularly those that are already at 

genetic risk of developing hepatic steatosis43. Finally, hard thyroid nodules are common in 
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patients with acromegaly and are also thought to be caused by increased nodular fibrosis44. 

However, overdiagnosis due to surveillance bias is inherent with regard to thyroid nodules, 

and further studies are needed45.

Data derived from mice are more definitive of the actions of excess GH and IGF1 in 

inducing fibrosis and organ dysfunction. In fact, most tissues assessed for fibrosis in bGH 

mice show some increase in fibrosis at older ages (FIG. 1) compared with wild-type 

mice, which might reflect an unexplored benefit of somatopause (the gradual decline in 

GH secretion that occurs with ageing). The older bGH mice have an enlarged heart with 

impaired function and marked distinct perivascular and interstitial fibrosis46,47. These older 

transgenic mice also have renal damage with increased fibrosis and glomerular lesions47. 

Marked fibrosis is also apparent in their adipose tissue, more prominently in subcutaneous 

depots8, as well as in the intestines48. Severe skin fibrosis has also been found in bGH 

mice, which is more prominent in males than females37. Overall, increased fibrosis has 

been observed in many tissues assessed in bGH mice relative to controls, with males often 

exhibiting a more robust phenotype. By contrast, several mouse lines with decreased GH 

action (such as GHR antagonist mice8, mice with GHR disruption in adipocytes49 or mice 

deficient in GH50) have decreased fibrosis, at least in adipose tissue. Collectively, these 

data in humans with acromegaly and GH transgenic mice provide strong support of fibrosis 

being an underlying component of the organ dysfunction that is common with pathological 

increases in GH and/or IGF1 action.

The yang: therapeutic potential of GH.—The benefits of GH in promoting collagen 

deposition are best illustrated by its effect on promoting longitudinal growth and bone 

acquisition51. However, GH might also have therapeutic potential for selected fibrotic 

diseases. These benefits might relate to restored GH levels in deficient states or to indirect 

influences on other disease pathologies or severe conditions. For example, studies have 

suggested that the dysregulation of the GH–IGF1 axis in patients with morbid obesity or 

in adult patients with hypopituitarism and GHD might contribute to the severity of hepatic 

fibrosis52,53. Furthermore, in at least one small study of adult patients with GHD, GH 

replacement therapy improved hepatic fibrosis54. Another example of GH action to attenuate 

fibrosis was provided by a rat model of intestinal inflammation, in which GH improved 

rather than exacerbated intestinal fibrosis55, Moreover, in a randomized controlled trial, GH 

therapy was beneficial in the treatment of severely burned children, in whom it promoted 

healing without the development of hypertrophic scarring caused by tissue fibrosis56. 

Initial small, randomized studies in patients with large burns treated with GH have shown 

promising clinical benefit. However, treatment with GH also induces hyperglycaemia in 

adults with severe burns, which raises questions for its utility in clinical practice in the 

treatment of large burns57.

Importantly, several limitations exist for the use of GH therapy for fibrotic disease. First, in 

most studies that showed some benefit of GH therapy on fibrosis, GH was restored to normal 

levels in patients with GHD. Second, many studies assessed acute or short-term GH therapy 

without evaluating the long-term cardiometabolic effects. Third, attenuation of fibrosis, 

treatment of burns and improvement in obesity and its complications are non-approved uses 

of GH.
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Summary

Overall, the available data suggest an intricate balance between having sufficient GH action 

to promote favourable ECM remodelling and avoiding excess GH action that promotes ECM 

deposition and scarring, thereby resembling a ‘Goldilocks effect’. Although the focus of 

this Review is GH, disentangling the direct effects of GH versus indirect effects exerted via 

IGF1 is difficult in vivo. Endocrine and paracrine IGF1 also has an important role in fibrosis 

development. For example, local IGF1 administration stimulates in vivo tendon collagen 

synthesis in healthy, sedentary humans13. In addition, overexpression of IGF1 receptor 

(IGF1R) in human primary dermal fibroblasts suggests a role for IGF1 signalling in the 

development of keloid and hypertrophic scarring58. However, excess levels of GH, but not 

IGF1, have been shown to promote kidney glomerulosclerosis59. Together, these findings 

illustrate the need for additional studies or experimental systems that can help delineate the 

contributions of each individual hormone to fibrosis in specific tissues. In addition, further 

studies are needed to evaluate whether GH and IGF1 are primary drivers of fibrosis or if 

fibrosis occurs secondary to organ dysfunction.

GH and cardiovascular disease

GH hypersecretion: acromegaly

The onset of acromegaly is gradual, with a diagnostic delay of 5–10 years in most patients, 

which has negative therapeutic and prognostic implications. Patients with acromegaly 

are exposed to long-standing GH and IGF1 excess and have increased cardiovascular 

mortality60 that is associated with hypertension and heart failure14,61. Interestingly, 

atherosclerosis is not always present in acromegaly despite the presence of classic 

risk factors such as hypertension, insulin resistance and T2DM62. By contrast, typical 

cardiomyopathy present in active acromegaly is cardiomegaly and, in particular, hypertrophy 

of the left ventricle14,62. Histopathology of cardiac tissue from patients with acromegaly 

reveals pronounced interstitial fibrosis (FIGS. 1,2), myocardial hypertrophy and evidence 

of myocarditis with infiltration of inflammatory cells41. Importantly, 85% of patients with 

acromegaly have been observed to have interstitial fibrosis41. In addition, regurgitation of 

the aortic and mitral valves, as well as diastolic dysfunction, are described in acromegaly, 

whereas systolic dysfunction is a rare and late-onset occurrence14,62.

Due to the gradual onset of the disease and the paucity of long-term prospective studies, 

the pathogenesis of the cardiovascular complications of overt acromegaly remains elusive. 

Individual and combined effects can also be exerted by GH and IGF1, further complicating 

the picture. However, short-term experimental studies in humans could provide clues. 

For example, 1 week of supra-physiological GH administration in healthy men aged ~30 

years substantially increased fractional shortening of the left ventricle, which was mainly 

attributed to a reduced end-systolic diameter63. In concomitance with a significant 15% 

increase in resting heart rate, cardiac output increased by ~13% without a change in mean 

arterial blood pressure63,64, which suggests a simultaneous reduction in peripheral vascular 

resistance. Increased blood flow and reduced vascular resistance via a nitric oxide-dependent 

mechanism are also observed after short-term, high-dose GH infusion into the brachial 

artery of healthy individuals65. In addition, the GH–IGF1 axis is well recognized to acutely 
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induce fluid and sodium retention66 and increases heart rate without a change in blood 

pressure67. Similar findings of increased myocardial contractility and cardiac output are also 

encountered in patients with active acromegaly68 together with sodium and fluid retention69. 

Taken together, sustained fluid and sodium retention, in combination with direct inotropic 

effects of GH–IGF1, are hypothesized to promote hyperperfusion, cardiac hypertrophy and 

ultimately systemic hypertension in acromegaly66. In combination with other risk factors 

such as insulin resistance70, T2DM and obstructive sleep apnoea, these effects might 

eventually cause cardiomyopathy and heart failure in the absence of coronary atherosclerosis 

(FIG. 2).

Treatment of acromegaly that achieves biochemical remission71, translates into a life 

expectancy that is close to that in the general population61. Regarding cardiovascular 

function, successful surgical resection of the GH-producing adenoma improves diastolic 

function and reduces left ventricular mass, together with reductions in heart rate and blood 

pressure72. Similar beneficial effects have been reported after disease control obtained by 

pharmacological treatment with a somatostatin analogue alone73 as well as with a GHR 

antagonist (pegvisomant)14. In addition, disease control in acromegaly improves certain risk 

factors for cardiovascular disease, such as insulin resistance and obstructive sleep apnoea; 

however, body composition changes towards increased adipose mass and reduced lean body 

mass14.

GH deficiency

GHD in adults is caused by diseases affecting the hypothalamic–pituitary region, the most 

common being benign tumours. The diagnosis of GHD in adults must be made in the correct 

clinical context (that is, in patients with a well-defined hypothalamic–pituitary disorder) 

using a validated GH stimulation test, unless four or more anterior pituitary hormone 

deficiencies exist together with a low serum concentration of IGF1 (REF.74). GHD in 

adults can occur in isolation but is commonly associated with other pituitary hormone 

deficiencies. These deficiencies can also affect patient outcomes; for example, inadequate 

or untreated sex steroid deficiencies in women with hypopituitarism can affect their GHD 

outcome, inadequate treatment of central hypothyroidism might have negative effects on 

many metabolic processes and inadequate treatment of adrenal insufficiency has negative 

effects on metabolism as well as on risk of premature mortality75–77. Cardiovascular 

disease is a complication in adults with GHD; adults with GHD have increased blood 

pressure, a phenotype resembling the metabolic syndrome78 and increased cardiovascular 

mortality79. Several cardiovascular risk factors are increased in adults with GHD, which can 

be explained by many of the effects of GH and IGF1 on the cardiovascular system (which 

expresses both GHR and IGF1R80), as well as effects on lipid and lipoprotein metabolism 

and systemic inflammation81.

Adults with GHD often have overweight or obesity, with accumulation of visceral adipose 

tissue82,83. Studies on their body composition show that their total body adipose mass 

is increased (predominantly abdominal), muscle mass is reduced and extracellular fluid 

is reduced. GH antagonizes the effects of insulin in several important tissues such as 

liver, muscle and adipose tissue83,84. Studies in children and young adults with GHD have 
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clearly shown that these individuals have increased insulin sensitivity, and young children in 

particular might even experience hypoglycaemia85. Surprisingly, adults with long-standing 

untreated GHD deficiency showed markedly reduced insulin sensitivity, measured using the 

hyperinsulinaemic glucose clamp technique86,87. Their abdominal adiposity together with 

reduced muscle mass, reduced serum concentration of IGF1 and physical inactivity due to 

reduced exercise capacity might help explain this finding83,86,88. Abdominal adiposity and 

associated insulin resistance are therefore important mediators of premature atherosclerosis 

and increased risk of cardiovascular disease seen in adults with GHD.

Adults with GHD have reduced nitric oxide urinary excretion, increased peripheral 

vascular resistance89, increased sympathetic nervous system activity90 and increased 

systemic inflammation81 (FIG. 2). A consistent finding is that the extracellular fluid 

volume and plasma volume are decreased in GHD91. Untreated acromegaly is associated 

with hypertension, therefore blood pressure would be expected to increase with GH 

replacement in adults with GHD. However, the initial placebo-controlled trials with adult 

GH replacement showed that diastolic blood pressure decreases92 despite a sustained 

increase in extracellular fluid and plasma volume91. The mechanisms for reduced diastolic 

blood pressure seem to be nitric oxide-mediated vasodilation and reduced peripheral 

resistance89,93, reduced sympathetic nervous system activity93 and improved endothelial 

function94. Also, MMP and vascular endothelial growth factors, which are markers of 

endothelial function, are increased in adults with GHD and decline with GH replacement21. 

Of note, individuals with isolated GHD that is caused by an inactivating mutation of the GH-

releasing hormone RH receptor (GHRHR) have obesity, elevated levels of LDL cholesterol, 

C-reactive protein (CRP) and mild systolic hypertension, but an absence of atherosclerosis 

or heart failure95.

Long-term GH replacement therapy in patients with GHD induces sustained sodium and 

water retention96,97. This effect is due to increased sodium and water reabsorption from the 

distal renal tubuli, mediated by the direct actions of GH and IGF1, but also indirectly 

through stimulation of the renin–angiotensin–aldosterone system96–98. This sustained 

increase in extracellular water is in contrast to the effects of mineralocorticoids, which 

after administration increase the extracellular volume for days, where after renal sodium 

escape occurs, extracellular volume returns to baseline levels99. A probable explanation for 

the sustained sodium and water retention induced by GH is the reduction of natriuretic 

peptides induced by GH treatment, which mitigates renal sodium escape96,100, together with 

increased glycosaminoglycan deposition in peripheral tissues40.

Reduced exercise capacity has consistently been shown in adults with GHD, which improves 

with GH replacement101,102. The mechanism responsible could be related to effects on 

the heart and cardiovascular system, but also due to effects on muscle size and muscle 

function103. GHD is associated with reduced left ventricular mass index, reduced cardiac 

output with both impaired diastolic and systolic left ventricular function and reduced 

fractional shortening104. With GH replacement, an increase occurs in the left ventricular 

mass index as well as improvements in systolic and diastolic function that might contribute 

to improving exercise capacity104.
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GH has important regulatory effects on various aspects of lipid and lipoprotein metabolism. 

Lipid metabolism is strongly linked to atherosclerosis and local endothelial inflammation105. 

GH upregulates LDL receptors in the liver106, stimulates lipolysis107 and increases 

the synthesis and secretion of VLDL from the liver108. In addition, GH increases the 

ratio of plasma lecithin to cholesterol acyltransferase concentration and lipid transfer 

protein activities, which might explain the increase in HDL cholesterol levels seen in 

some GH replacement studies in adults with GHD109. Adults with GHD have increased 

concentrations of total cholesterol and LDL cholesterol, and in some studies also reduced 

HDL cholesterol110,111. Likewise, controlled studies of adult GH replacement have revealed 

decreased circulating levels of total cholesterol and LDL cholesterol92, whereas effects 

on HDL cholesterol and triglycerides are smaller and less robust. Lipoprotein(a) is a 

lipoprotein that is similar to LDL in terms of its lipid and apolipoprotein B-100 content, 

but also contains apolipoprotein(a) covalently linked to apolipoprotein B-100. Increased 

plasma concentration of lipoprotein(a) is associated with increased risk of cardiovascular 

disease and its plasma level is mainly genetically determined, with an inverse relationship 

between circulating levels of lipoprotein(a) and the size polymorphism of apolipoprotein(a). 

Adults with GH deficiency have similar lipoprotein(a) concentrations to healthy matched 

control individuals, but GH replacement increases the concentration of lipoprotein(a)112. 

However, the net outcome of these changes in lipid and lipoprotein metabolism during GH 

replacement cannot be determined from available data.

Systemic inflammation markers such as CRP are well recognized cardiovascular risk 

factors113. Adults with GHD have increased circulating markers of inflammation such as 

CRP and IL-6 (REF.114). In one controlled study, GH replacement reduced the circulating 

levels of both CRP and IL-6 (REF.115). Also, in studies in women with abdominal obesity, 

GH treatment in comparison with placebo reduced biomarkers of systemic inflammation116. 

Thus, GHD is associated with a pro-inflammatory state but not with tissue fibrosis81. 

Taken together, studies of GH replacement in adults with GHD have shown beneficial 

effects on cardiovascular risk factors, cardiovascular function and surrogate variables for 

cardiovascular morbidity and mortality. However, no prospective controlled studies are 

available demonstrating reduced vascular morbidity and mortality. Such a study is unlikely 

to be performed due to the low prevalence of the disorder. However, in a retrospective 

meta-analysis of mortality in patients with hypopituitarism (including patients receiving 

GH replacement), GH replacement was associated with reduced mortality, particularly in 

men117.

GH and endothelial cellular function

The vascular endothelium, which is the largest organ in the body, responds to various 

circulatory growth factors including GH. Angiogenesis is essential for organogenesis 

and successful embryonic and fetal development118. Disruption of the mechanisms 

controlling physiological angiogenesis underlies the pathophysiology and pathogenesis of 

various diseases including cancer, psoriasis, arthritis, retinopathies, obesity, asthma and 

cardiovascular disease. During angiogenesis, endothelial cells are regulated by an interplay 

between cells, multiple soluble factors and the ECM. For example, vascular endothelial 

growth factor A (VEGFA) binds to its receptor, VEGFR2, to stimulate downstream 
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signalling to activate endothelial nitric oxide synthase (eNOS) and nitric oxide release119 

(FIG. 2). Nitric oxide has a crucial role in angiogenesis and vasodilation, and also acts as 

an inhibitor of platelet adhesion and aggregation, monocyte adhesion and vascular smooth 

muscle cell growth. Endothelial cells express GHR, and GH, in part, regulates endothelial 

cell function and angiogenesis through VEGFA120.

As discussed earlier in the article, both in vivo and in vitro studies have shown that treatment 

with IGF1 stimulates eNOS expression and nitric oxide release121 (FIG. 2). Interestingly, 

age-dependent impairment of endothelial progenitor cells in middle-aged and older humans 

is corrected by treatment with hGH-mediated increases of IGF1 (REF.32), which supports 

the role of declining GH levels in ageing-associated cardiovascular dysfunction. Similarly, 

studies in adults with GHD have shown improved endothelial function and reduced vascular 

risk after GH replacement therapy122. As patients with GHD have reduced nitric oxide 

production89, a feasible explanation of increased blood flow after GH replacement could 

be the improvement in endothelial function123. In addition, an improvement in the arterial 

response to induced vasodilation is observed in adolescents with GHD after GH replacement 

therapy124.

Although atherosclerosis is not prevalent in acromegaly62, GH has been found in 

experimental studies to directly stimulate the development of atherosclerosis in endothelial 

cells. For example, GH stimulates VCAM1 and SELE transcripts in human umbilical vein 

endothelial cells (HUVECs) via the MAPK pathway, which results in augmented adhesion 

of a human leukaemia monocyte cell line (THP-1) and primary monocytes to HUVECs125. 

As the endothelium has a key role in the pathogenesis of atherosclerotic plaques, excess 

GH or IGF1 could play an active or passive part in atherosclerosis and cardiovascular 

dysfunction via effects on endothelial pathophysiology. These effects include endothelial 

proliferation, endothelial progenitor cell dysfunction or endothelial oxidative stress126.

The effect of GH–IGF1 on endothelial cells has also been noted in other tissues and organs. 

In mouse endothelioma cells, GH has mitogenic effects127. GH also affects endothelial cell 

morphology and augments the deposition of the ECM molecules, laminin and fibronectin, on 

the cell surface127. In addition, human GH at physiological concentrations stimulates human 

retinal microvascular endothelial cells in vitro, thereby enhancing their proliferation128. In 

retinopathy, the proliferative form of retinal endothelial cells is observed during a more 

advanced stage of the disease and is characterized by retinal neovascularization. Although 

now abandoned, pituitary ablation was a method to suppress GH secretion as a potential 

treatment for proliferative diabetic retinopathy129. Interestingly, GH has an essential role 

in ischaemia-induced retinal neovascularization in mice130 and a GHR antagonist prevents 

this effect130. Finally, topical application of GH accelerates the closure of skin wounds by 

accelerating re-epithelialization and collagen deposition, and stimulating angiogenesis127, 

which occurs primarily via local production of IGF1 in the tissue131. Overall, these studies 

highlight the importance of the GH–IGF system in vascularization and angiogenesis.

Regulation of cardiac function

Studies in vitro and in rats have shown that GH and IGF1 increase cardiomyocyte gene 

expression and protein synthesis, which translates into cardiac hypertrophy and remodelling, 
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but they also inhibit apoptosis132. GH transgenic mice that have elevated levels of GH and 

IGF1 show increased organ sizes including the heart, while heart-specific IGF1 expression 

markedly promotes myocyte proliferation133. Furthermore, the removal of GH action in the 

heart of adult mice affects neither the local levels of IGF1 nor cardiac function, even though 

endocrine IGF1 levels are altered134. As for IGF1, loss-of-function studies using cardiac-

specific Igf1r-knockout mice have shown that autocrine and paracrine IGF1 promotes heart 

repair in response to injury and conservation of cardiac function135.

Endothelial-specific human IGF1R-overexpressing transgenic mice show reduced basal and 

insulin-stimulated eNOS activity, with no change in size or weight or whole-body glucose 

homeostasis136. These mice show normal blood pressure, an enhanced aortic response 

and increased endothelial cell migration and regeneration. By contrast, the Igf1r-knockout 

mice show normal glucose homeostasis with enhanced basal and insulin-stimulated eNOS 

phosphorylation137 and vascular permeability in the endothelial lining138. These studies 

support an important role for IGF1R in regulating nitric oxide bioavailability and vascular 

repair, which are hallmarks of several human diseases involving tissue growth and 

vascularization. In addition, macrophage IGF1 signalling exerts anti-atherogenic effects 

through reducing macrophage activities, decreased atherosclerotic lesion formation and 

reduced plaque vulnerability139,140.

Summary

Overall, evidence indicates that GH–IGF1 pathways have an important role in endothelial 

cell metabolism. Both elevated (acromegaly) and low (GHD) levels of GH are associated 

with cardiovascular disease. GH is a critical regulator of inflammation and immune 

activation. Considering that inflammation and fibrosis regulate progressive cardiac 

dysfunction during ischaemic heart failure141, targeting mediators of GH action could 

provide an exciting therapeutic avenue for this disease. GH could also have a ‘Goldilocks 

effect’, where too little or too much can lead to insufficient or dysregulated immune 

activation and fibrotic mechanisms that lead to the exacerbation of cardiovascular disease. 

Comprehensive studies are warranted to fully investigate the involvement of the GH–

IGF1 axis in the pathogenesis and pathophysiology of cardiovascular disease and its 

complications.

GH and cancer

Numerous studies in multiple cancer types since 1950 have shown that the intrinsic growth-

promoting action of GH drives the growth and proliferation of cancer cells both in vitro 

and in vivo142. However, in light of our rapidly evolving understanding of different aspects 

of cancer as well as of GH action, a more ‘covert’ role of GH in cancer, beyond just 

promoting tumour growth, has also emerged. Pituitary secreted endocrine GH, critical 

for normal growth and development, is well known to decrease steadily in adults with 

age. By contrast, local or non-pituitary GH production from several non-pituitary sites 

(including peripheral tissues and multiple tumour types) seems to stay fairly steady or even 

increase with age143,144 and exerts a profound autocrine and/or paracrine action. Fibrosis 

seems to be a consistent underlying theme in this action, wherein GH induces extensive 
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ECM remodelling by inducing expression of proteases, collagen and various cytokines145. 

Studies in cultured cells and animal models have revealed an extensive array of molecular 

mechanisms by which non-pituitary GH is now known to be a critical driver of a tumour 

supportive microenvironment and cancer therapy resistance (FIG. 3).

GH in the tumour microenvironment

Local GH production in specific tissues exerts an autocrine and/or paracrine effect, distinct 

from its endocrine role. In tissues such as the colon and breast, local GH production 

increase with age143, forming a cellular niche in which oncogenic transformations could 

occur143,146. Furthermore, local GH production in these tissues could support the growth 

and survival of a tumour by affecting the tumour microenvironment (TME)147 (TABLE 1). 

Melmed and colleagues have elegantly elucidated the role of autocrine and/or paracrine 

GH in modulating the TME in support of tumour growth and survival through the ‘field 

cancerization’ paradigm147. This model is a much overlooked but increasingly appreciated 

aspect of local GH action in oncology via the TME that is intuitive and critical, and 

supported by several observations. First, extra-pituitary sites of GH production are found in 

multiple tissues144. Second, GHR is expressed in several cell types in the TME, including 

cancer-associated fibroblasts, adipocytes, immune cells, stromal cells147 and endothelial 

cells148, wherein GH exerts differential effects that are supportive of tumour growth148–151. 

Third, endocrine GH-induced hepatic IGF1 has well-studied mitogenic effects that act on the 

tumour and TME152,153.

Ageing or chemically inflicted DNA damage leads to activation of the tumour suppressor 

p53, which results in either apoptosis or induction of p53–p21 senescent pathway or a 

DNA damage repair (DDR) pathway143. Chromatin immunoprecipitation assays reveal 

GH as a target for p53 binding, whereas transcriptomic and proteomic analyses confirm 

DNA damage induces local GH production in normal colon and tumour cells154–156. 

In turn, locally produced GH exerts a feedback inhibition on p53 expression and 

diverts cellular commitment from senescence or apoptosis to proliferative survival155. 

Additionally, autocrine and/or paracrine GH signalling abrogates the DDR pathway, which 

increases the risk of oncogenic mutations, as is observed in human colonic epithelial 

transformation156–158. Increased colonic p53 expression was observed in Ghr-knockout 

(GHRKO) mice and Ames mice (which lack GH, prolactin and thyroid-stimulating 

hormone) compared with corresponding age-matched controls158. Furthermore, elevated 

expression of DDR genes were observed in γ-irradiated primary fibroblasts of GH-

deficient Lewis dwarf rats compared with those from wild-type rats159. Elevated DDR 

gene expression was also observed in Snell mice (deficient in GH, prolactin and thyroid-

stimulating hormone), GHRKO mice and Pappa-knockout mice (a model with alterations 

to the GH–IGF1 axis) compared with their respective wild-type controls160. Together, 

these findings in GH-deficient animal models support the ‘onco-promoting’ role of GH 

in peripheral tissues.

An analysis of the National Cancer Institute genome-wide association study identified that 

out of 421 pathways containing 3,962 genes, GH signalling is the third most associated 

pathway with breast cancer susceptibility161. Seminal work highlighted a concerted role 
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of GH and IGF1 in facilitating the functions of oestrogen and progesterone in normal 

mammary development162. The neoplastic effects of non-pituitary GH in breast cancer are 

particularly important, given that human GH binds to both GHR and prolactin receptor 

(PRLR), which are highly expressed together in ductal endothelium. These binding events 

result in a hyperplastic signalling cascade, which normally governs mammary development 

but can become an onco-driver under appropriate conditions163. This signalling cascade 

is of particular importance in the TME in the context of fibrosis, one of the hallmarks 

of cancer, which enables invasive and metastatic growth and compromises antitumour 

immunity164,165. As discussed above, GH is a potent inducer of fibrosis in multiple tissues, 

whereas the activation of the PRLR is also known to promote fibrosis in cancer via 

STAT3-dependent pathways166,167. Downstream effectors of GH action, IGF1 and TGFβ, 

are also strongly implicated as autocrine and/or paracrine drivers of fibrosis168, and can 

therefore have profound effects in the TME. Additionally, autocrine and/or paracrine GH 

has been established as a prominent component of SASP, wherein it promotes DNA damage 

accumulation in bystander cells and predisposes senescent cells to cell cycle re-entry and 

neoplastic transformation31. Of note, congenital GHRKO mice and adult-onset GHRKO (at 

age 6 months) mice have markedly reduced fatal neoplasms in both sexes, compared with 

wild-type littermates169,170.

GH in cancer therapy resistance

A set of key pathways observed across all types of cancer that are unresponsive to therapy 

are inhibition of apoptosis, active drug efflux via ATP-binding cassette (ABC) transporters 

and a phenotype switch via epithelial-to-mesenchymal transition (EMT). GH expression 

induces resistance against apoptosis in mammary and endometrial tumour cells following 

irradiation171 and induces resistance against several chemotherapy treatments (mitomycin-

C, doxorubicin, cisplatin, arsenic trioxide and ruxolitinib) in the same model145. Similar 

effects of GH in driving refractoriness against chemotherapy (doxorubicin, cisplatin and 

paclitaxel) and targeted (vemurafenib) therapies are also observed in melanoma172. The 

mechanistic validation comes from the identification that tumoural GHR activation induces 

a STAT5–SRC–ERK1/2-mediated upregulation of multidrug ABC transporters in human 

melanoma172,173. The ABC transporters impart resistance to a wide range of anticancer 

therapeutics by limiting their cytosolic retention through active efflux. Studies in human 

melanoma cells have shown autocrine GH signalling-induced upregulation of multidrug 

efflux transporters of the ABCB, ABCC and ABCG subtypes, which could be effectively 

blocked by GHR suppression172. Mouse xenograft models of human oestrogen receptor-

negative breast cancer further confirm that GHR silencing reverses docetaxel resistance 

via downregulation of ABCG2 transporter expression174. Furthermore, chemically induced 

mammary tumour establishment was possible in spontaneous dwarf rats (GH-deficient) only 

when they were supplemented with exogenous GH. Moreover, when GH supplementation 

was stopped and the rats were treated with doxorubicin, tumours regressed in the dwarf 

animals but not in GH-sufficient wild-type animals, which confirms a GH-dependent 

chemoresistance175. Importantly, ABC transporters (such as ABCB1, ABCB5 and ABCG2) 

are known biomarkers for cancer stem cells (CSCs)176, which are highly drug-resistant and 

are responsible for cancer relapse. Forced GH expression in liver cancer cells increased 

ABCG2 expression and conferred CSC properties by a JAK2–STAT3-mediated suppression 

Kopchick et al. Page 13

Nat Rev Endocrinol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the tight junction protein claudin 1 (REF.177). In addition forced GH expression stably 

increased CSC markers such as NANOG and SALL4 in both liver and colorectal cancer 

cells177,178.

In cancers of the breast179, colon158, liver177 and pancreas180 and in melanoma181, GH 

promotes successful metastasis from a primary tumour by the process of EMT. This 

process enables a switch from a well-defined, polarized, basement membrane-adherent 

cell phenotype to a depolarized, migrating invasive tumour cell phenotype182. In addition 

to its angiogenic and lymphangiogenic effects, GH is known to induce EMT in the 

overlapping pathways of tissue fibrosis and cancer metastases183. Suppression of the 

epithelial marker E-cadherin and upregulation of the mesenchymal markers N-cadherin and 

vimentin, and transcription factors ZEB1 and SLUG by recombinant hGH treatment occur 

in melanoma173,181 and pancreatic180 cancer cells and by autocrine GH in colorectal178 

and breast cancer cells184. Attenuating the GHR reverses these effects. The most extensive 

evidence of GH in promoting EMT is from breast cancer, where autocrine human 

GH expression in mammary tumour cells leads to robust EMT induction and massive 

ECM remodelling. This effect occurs by GH downregulating adherence factors such as 

plakoglobin via hypermethylation mediated by DNA methyltransferases 3A and 3B185, by 

GH increasing the production of ECM-degrading MMP2 and MMP9 (REF.184) and by 

GH upregulating the microRNA (miRNA) cluster comprising miRNA-96, miRNA-182 and 

miRNA-183 leading to elevated ZEB1 and suppressed BRMS1L186. In fact, in Dj1-knockout 

mice, which have incidental high production of GH in the lungs, this local GH enhances 

the metastasis of disseminated melanoma cells187. The pronounced effect of GH in inducing 

fibrosis, as a part of ECM remodelling, further emphasizes a unique and critical role in 

promoting cancer therapy resistance188 (TABLE 1).

Inhibition of GH action in cancer

Laron syndrome is congenital GH insensitivity due to inactivating mutations of GHR189. 

Independent long-term follow-up studies on two of the largest cohorts of individuals with 

Laron syndrome in Israel and in Ecuador have shown no cases of malignancy, while 

the incidence rate in first-degree relatives is >20%4,190 in both cohorts. Similarly, among 

patients with secondary GHD due to a GHRHR defect and patients with primary congenital 

isolated GH deficiency, cancer incidence is considerably suppressed compared with their 

relatives95. The cohort of patients with isolated GH deficiency type 1B (arising due to 

GHRHR insufficiency), in Itabaianinha, Brazil, also show an absence of colorectal, prostate 

and breast cancers, unlike their relatives95. Altogether, these epidemiological findings 

indicate that a congenitally absent or reduced GH action seems to be onco-protective. 

By contrast, large-scale, long-term follow-up studies in children with GHD treated with 

recombinant GH do not indicate an elevated risk of neoplastic developments.

Numerous studies estimating the risks of cancer and benign neoplasia in patients with 

acromegaly have shown elevated risks for specific cancer types and establish cancer as a 

major cause of mortality in these patients191. However, confounding factors exist, including 

surveillance bias, normalization of circulating levels of IGF1 due to various treatment 
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options and difficulty in adequately comparing the cause of death in individuals with well-

controlled acromegaly versus healthy control individuals.

Overall, the above discussion does provoke the question: can pharmacological suppression 

of GH action in the ageing population help tackle oncogenicity or improve cancer 

prognoses? Several GHR inhibitors are currently in development, which reflects a 

heightened pharmaceutical interest in targeting GH action in human disease143,192,193. So 

far, targeting GH action in cancer using somatostatin analogues has shown no objective 

response in humans, whereas GHRH antagonists so far show promising effects in several 

preclinical models194. Of note, somatostatin–GHRH control of GH production in the 

pituitary is seldom maintained in the context of the tumour. Pegvisomant, the first and 

only FDA-approved GHR antagonist, is highly successful in efficiently reducing serum 

concentrations of IGF1 in 70–90% of patients with acromegaly195. Moreover, pegvisomant 

has shown efficacy in attenuating growth of multiple GH-expressing and GHR-expressing 

human cancers in preclinical models196.

Although clinical validation of the efficacy of GHR antagonists in monotherapy or 

in combination with other anticancer therapies is awaited, more clarity is needed in 

understanding the mutually exclusive roles of GH and IGF1, as well as the ratio of 

GH-induced IGF1 and insulin-like growth factor-binding protein 3 (IGFBP3)197 in a cancer-

specific manner. Importantly, several studies have revealed that endocrine GH-induced 

hepatic production of IGF1 and IGFBP3 is not always observed in cultured tumour 

cells and mouse tumour xenografts and TME, wherein autocrine and/or paracrine GH 

has IGF1-independent oncogenic effects143,198. A clinical trial in patients with cancer 

published in 2013 for a combination of pegvisomant and figitumumab (an anti-IGF1R 

monoclonal antibody) against solid tumours (breast, lung, prostate and colorectal tumours, 

and sarcoma) was initiated. Unfortunately, the study was terminated prematurely “due to 

lack of operational feasibility and halt of figitumumab development”199. Therefore, whether 

targeting GHR in cancer is a clinically relevant option remains an open question, given 

the large volume of provocative studies mentioned above alongside the failure of IGF1R 

inhibitors and monoclonal antibodies in the treatment of cancer. Patient pre-screening for 

tumoural GHR overexpression and serum levels of IGF1–IGFBP3 might offer an important 

precision factor in this approach.

Conclusions

In this Review we emphasize the importance of GH in promoting fibrosis and its association 

with cardiovascular and cancer pathologies. GH induces the expression of a variety of 

genes encoding collagen. This is not surprising, as one of the most important actions of 

the hormone is stimulation of longitudinal growth in children, which involves the concerted 

actions of systemic GH and local IGF1 on the growth plate, a specialized connective 

tissue51. Moreover, GH administration also stimulates collagen synthesis and turnover in 

adult humans to such an extent that quantification of IGF1 and PIIINP in serum is now an 

approved assay for the determination of GH doping in sport18. Whether GH doping causes 

excessive fibrosis formation in, for example, muscle is unknown. Of note, however, GH 

administration in healthy adults does not increase either muscle strength or aerobic exercise 
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capacity200. Indeed, after completion of longitudinal growth and somatic maturation, the 

major anabolic effect of GH administration seems to relate to collagen rather than muscle 

fibres13. When present in excess, GH results in fibrosis in a tissue-specific manner (FIG. 1) 

and the subsequent alterations to normal tissue function represent an added caution to be 

considered when utilizing GH supplementation in adults.

Data derived primarily from humans with elevated levels of GH (acromegaly) have shown a 

correlation with cardiovascular pathology, wherein fibrosis was identified as a contributor. In 

addition, patients with GHD often show a pro-inflammatory state without tissue fibrosis81. 

Together, the results suggest that a ‘normal’ amount of GH action is needed to ensure proper 

heart structure and cardiovascular function and either abnormally high or low levels of GH 

lead to cardiac pathology. An effect of the GH–IGF1 axis on vascular endothelial cells 

might be a common denominator of these effects that is reflected in adults with GHD with 

premature atherosclerosis.

In cancer, the effect of GH on fibrosis and endothelial cells makes it an important factor 

towards development of a detrimental TME. Clinically, cancer risks associated with GH 

replacement so far do not suggest any elevated risk of de novo neoplasm. However, since 

1950 (REF.142), experimental and animal data clearly demonstrate the mechanistic links 

of how GH, and its partner IGF1, can influence the development, progression, therapy 

resistance and metastases of multiple human and animal cancers that express the GHR 

and, thus, depict a definite ‘oncodriver’ role. Therefore, the rational approach of targeting 

GH action in patients with cancer who have high tumoural GHR expression should be 

complemented with appropriate screening for the status of tumoural GH action, including 

testing tumour biopsy samples for GH or GHR expression.

Future studies that consider the surrounding tissue milieu and inherent subcellular 

differences associated with the covert actions of GH will ultimately define the molecular 

processes involved. Additionally, the question of local versus endocrine GH and IGF1 

participation in these phenotypes must be determined. In terms of growth, GH and IGF1 

have both independent and overlapping functions201. In this Review, we have updated the 

hidden or covert pathophysiological effects of GH and attempted to describe new molecular 

and cellular mechanisms responsible for them. Fibrosis is a common molecular ‘theme’ that 

seems to link these adverse phenotypes. Other fields of endocrinology clearly show that too 

much or too little exposure, or an abnormal time of exposure to a hormone, causes different 

adverse phenotypes. In the context of GH–IGF1, we conclude that either too much or too 

little of a good thing (GH) is ‘bad’ — a typical ‘Goldilocks effect’.
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Key points

• Growth hormone (GH) is important for growth and tissue remodelling, 

extracellular matrix formation and fibrosis.

• Patients with acromegaly, which is characterized by excessive circulating 

levels of GH, have increased cardiovascular mortality that is associated with 

hypertension and heart failure.

• Patients with GH deficiency have an increased risk of cardiovascular 

morbidity and mortality that is associated with cardiovascular risk factors 

and premature atherosclerosis.

• GH actions in cancer are particularly implicated in mechanisms of therapy 

resistance; for example, active drug efflux, the epithelial-to-mesenchymal 

transition, apoptosis inhibition and development of a tumour-supportive 

microenvironment.

• GH has a ‘Goldilocks effect’, where too little or too much can lead to poor 

clinical outcomes.
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Fig. 1 |. GH overexpression in mice induces tissue fibrosis.
Histology of assorted tissues in aged male mice (10–13 months of age) overexpressing 

bovine growth hormone (bGH) and wild-type control mice. White adipose tissue from 

inguinal or epididymal adipose depots was stained with Sirius red (a non-specific red 

collagen stain), Swiss rolls of the small intestine were stained using Sirius Red and Fast 

Green (which stains non-collagenous protein), heart was stained with Masson’s trichrome 

(which stains connective tissue blue) and kidney sections were stained with periodic acid 

Schiff stain (which stains connective tissue a purple–magenta colour). The tibial articular 

cartilage images were generated via immunostaining with a type X collagen (a bone-specific 

collagen)-specific antibody (orange–red colour). In bGH mice, the increased GH activity 

results in increased fibrosis in the tissues shown. The histological images of tibial articular 

cartilage are courtesy of S. Zhu, Ohio University.
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Fig. 2 |. The pleiotropic actions of GH–IGF1 on the cardiovascular system, and electrolyte and 
water balance in humans.
Growth hormone (GH) and insulin-like growth factor 1 (IGF1) promote renal reabsorption 

of sodium and water and thereby increase the extracellular volume (ECV) and plasma 

volume. This effect is accompanied by nitric oxide-mediated vasodilation and increased 

myocardial contractility, which translate into increased cardiac output. This increase results 

in hyperperfusion and reduced total peripheral resistance. Pathological GH–IGF1 excess 

(such as in uncontrolled acromegaly) results in hypertension and cardiac hypertrophy. 

We hypothesize that GH–IGF1-induced fibrosis eventually contributes to the development 

of cardiomyopathy and heart failure (systolic dysfunction). Pathological processes are 

highlighted in the figure in red.
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Fig. 3 |. Covert actions of GH in cancer.
The emerging covert actions of growth hormone (GH) in cancer as evidenced from reports 

in the literature to date. a | GH promotes a tumour-supportive microenvironment via the 

crosstalk of tumour cells and multiple types of cells in the tumour microenvironment 

(TME), such as immune cells, cancer-associated adipocytes (CAA) and cancer-associated 

fibroblasts (CAF). This crosstalk occurs via autocrine and/or paracrine GH actions, which 

promote fibrosis and extracellular matrix (ECM) remodelling via matrix metalloproteases 

and collagen turnover, production of pro-inflammatory cytokines and immune-suppressive 

molecules such as transforming growth factor-β (TGFβ). Parts b–d illustrate the process 

of tumour therapy resistance through various mechanisms involving GH. b | Suppression 

of apoptosis due to radiotherapy-induced or chemotherapy-induced DNA damage, via 

downregulation of p53 and apoptotic mediators including caspases and upregulation of anti-

apoptotic factors including BCL-2. c | Increased ATP-binding cassette (ABC) transporter 

multidrug efflux pump expression (ABCB1, ABCC1, ABCC2 and ABCG2), which actively 

removes multiple anti-cancer drugs out of the tumour cells. d | Induction of the metastatic 
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process of epithelial-to-mesenchymal transition (EMT) by GH acting to upregulate EMT 

mediators, including vimentin, N-cadherin, ZEB1, SLUG and the microRNA (miRNA) 

cluster comprising miRNA-96, miRNA-182 and miRNA-183 (miRNA-96–182-183), which 

altogether enable a phenotype switch of the tumour cells. The above processes are induced 

by autocrine and/or paracrine GH binding to GH receptor (GHR)-expressing cells in 

the tumour and TME, activating downstream signalling mediators JAK2, STAT5, SRC 

and ERK1/2. Therefore, a combination of a GHR antagonist with anticancer drugs is a 

transformative approach for highly effective tumour clearance, which has already been 

validated in preclinical models.
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