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Forecasting medical 
state transition using machine 
learning methods
Xiaokai Nie 1,2,3 & Xin Zhao 4*

Early circulatory failure detection is an effective way to reduce medical fatigue and improve state pre-
warning ability. Instead of using 0-1 original state, a transformed state is proposed in this research, 
which reflects how the state is transformed. The performance of the proposed method is compared 
with the original method under three models, including logistic regression, AdaBoost and XGBoost. 
The results show that the model XGBoost generally has the best performance measured by AUC, F1 
and Sensitivity with values around 0.93, 0.91 and 0.90, at the prediction gaps 5, 10 and 20 separately. 
Under the model XGBoost, the method with transformed response variable has significantly better 
performance than that with the original response variable, with the performance metrics being around 
1% to 4% higher, and the t values are all significant under the level 0.01. In order to explore the model 
performance under different baseline information, a subgroup analysis is conducted under sex, age, 
weight and height. The results demonstrate that sex and age have more significant influence on the 
model performance especially at the higher gaps than weight and height.

The Intensive Care Unit (ICU) is an organized medical system for critically ill patients, which provides intensive 
and specialized medical and nursing care, an enhanced capacity for monitoring, and multiple modalities of physi-
ologic organ support to sustain life during a period of life-threatening organ system  insufficiency1. Real-time 
state monitoring in ICU supports medical decision by providing massive online data that is instantly processed 
by clinicians for medical and nursing care actions in most cases. As a frequently used monitoring method, real-
time state monitoring makes the physiological signals observed mechanically while they are originally difficult or 
even impossible to be measured. However, real-time monitoring can only give an alert exactly when the signals 
are out of range. If clinicians always keep ready for such urgent states, medical fatigue could not be avoided, 
which will therefore likely lead to serious consequences including low caring efficiency, slow reaction behavior, 
and medical accidents. Such consequences will have the negative influence on not only the clinicians but also 
the patients, including slow and non-precision medical treatment, high cost and low surviving rate due to the 
inaccurate prescription and treatment delay.

State forecasting is an effective approach to reducing such medical fatigue, which works by forecasting the 
patient state some time ahead using the current monitored signals. If clinicians can be alerted even a few minutes 
in advance before the urgent state arises, they will have more precious time for the preparation for coping with 
it, and consequently there will be less intensive requirement for their instant reactions. The medical resources 
saved can be used for many other purposes. For example, the saved medical expenditure covered by the local 
governments can be shifted for further medical assistance and thus boost the medical technology development. 
The improved medical treatment effect can definitely increase the patient survival rate and reduce their medical 
costs, leading to the remarkable improvement of the overall medical experience.

Due to the advantages of state forecasting, developing suitable specific method becomes essential. The input 
variables mainly include the physiological signals and drug treatment information, and the response variable 
is the state of the patient, with 0 representing the current condition that is relatively safe, and 1 indicating that 
instant medical care is required in response to the occurring of some diseases. The current state forecasting mod-
els mainly concentrate on two ways of improving the model performance, which mine more information involved 
in the input variables, and use better models to explore the relationship between the input and response variables.
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The existing methods exploring the information involved in the input variable include: dimension reduction 
methods to leave out redundant variables, and dimension ascension methods to transform original variables into 
more variables on multi-resolution levels. Dimension reduction methods mainly include orthogonal-transfor-
mation-based principle component analysis, factor analysis and so on. Categorical principal component analysis 
is used to study the risk factors for healthcare-associated infections in acute cardiac  patients2. The functional 
ensemble survival tree is constructed by incorporating multivariate functional principal component analysis to 
characterize the changing patterns of multiple time-varying neurocognitive biomarker  trajectories3. Risk fac-
tor analysis and nomogram are used for predicting in-hospital mortality in ICU patients with sepsis and lung 
 infection4. Dimension ascension methods include resolution decomposition method like wavelet transform. 
The maximal overlap discrete wavelet transform is used to explore the original variables on different resolution 
 levels5. In order to improve the performance of automated detection of sudden cardiac death, the discrete wave-
let transform is used to explore the non-stationary characteristics involved in the electrocardiograms  signals6. 
These methods aimed to improve the model performance by mining more information contained in the original 
input variables.

The main models used for describing the relationship between the input and response variables include 
parametric models like logistic regression, and non-parametric models like decision trees. Parametric models 
explore the relationship between the input and the response variables by solving the optimum parameters while 
non-parametric models construct optimum decision rules to predict the best value for the response variable. 
The logistic regression model is suggested to predict binary outcomes via a mobile application for Android 
with an example of a real case in  ICU7. Logistic regression model is applied to explore the relationship between 
acute kidney injury and in-hospital  mortality8. The logistic early warning scores is constructed to predict death 
after cardiac  surgery9. In addition to logistic regression, parametric models ARIMA, GARCH are also the main 
contributors for the relationship exploration. The model ARMA is applied to explore the COVID-19 infection 
process in Italy and  Spain10. Performance of models ARMA and GARCH is compared with others in the stream-
ing forecasting  context11. Models based on non-parametric estimation mainly include the machine learning 
methods like decision trees, ensemble methods like bagging and boosting methods, and neural networks as 
well as deep learning  methods12. An interval forecasting model is developed to predict the monitored variables 
over a few observations  ahead11. Machine learning models like logistic regression, random forest, and XGBoost 
are proposed to predict the occurrence of acute kidney  injury13. A deep learning-driven approach based on a 
generative adversarial network (GAN) model is developed to predict the length of stay for patients in the  ICU14.

In fact, one of the difficulties in analyzing such data is caused by their response variable instead of the input 
variables and their underlying relationship. Compared to the typical survival  analysis15,16, in which patient keeps 
staying at state 0 and finally censored at state 1, the state forecasting problem has the state changes between 0 and 
1 until the end of the time series. The state transition process renders the forecasting problem complex and chal-
lenging. Instead of simply predicting the state  that is either 0 or 1, clinicians focus more on the transition of the 
state like from 0 to 1or from 1 to 0. If the state stays at 0 or 1, they can maintain their current medical treatment 
without changing. The response variable with such a switching state can be regarded as a Markov process which 
describes the transition process among the predefined different states. The current research mainly concentrates 
on the Hidden Markov model (HMM) and its extensions. For example, HMM and decision trees are combined to 
estimate the prior distribution for the monitored variables in the  ICU17, and a coupled HMM is applied to model 
a sequential contrast patterns based septic shock prediction  approach18. In addition to the transition property, 
the class-imbalance phenomenon is also involved in the response variable, which means the proportions of the 
states are quite imbalanced and thus the forecasting models tend to predict all states as the major class to seek 
for high accuracy. The disadvantage of such behavior is obvious. With high accuracy, the model may tend to 
have a good performance in terms of some metrics, but the model becomes meaningless in terms of medical 
assistance. Instead of using traditional ways to deal with problems caused by class-imbalance phenomenon, 
the transformed state will replace the original state as the response variable, in which different transition ways 
can be tested whether they can bring more information than the original states or not. The comparison is con-
ducted under different models including traditional logistic regression and machine learning methods. Beyond 
the comparison, a subgroup analysis is conducted to compare the model performance under different patient 
baseline information like age, sex and weight, which are collected instantly at the admission. In this way, the 
subgroup analysis can help clinicians decide the preferred model as soon as the patient is admitted into the ICU.

In this study, a transition based state forecasting method is proposed to deal with the complex properties 
involved in the response variable. A subgroup analysis is conducted to compare the performance of the method 
under different baseline information. The rest of this paper is organized as follows. Section 2 describes the method 
proposed in this research. Section 3 presents the real medical data analysis. Concluding remarks and perspec-
tives on the further research are given in Section 4. All the computations are implemented using R  software19.

Methods
For a specific individual n, the response variable is Sn,·,

in which, sn,t is a random variable changing between 0 and 1, with n = 1, 2, . . . ,N and t = 1, 2, . . . ,Tn . In order 
to compare the model performance under the original Sn,· and the state transformed response variable, denoted 
as S∗n,· , the transition is expressed as follows,

Sn,· =
[

sn,1, sn,2, · · · , sn,Tn
]T
,
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In the modeling process, Sn,· and S∗n,· are the response variables respectively. But afterwards, in order to com-
pare the model performance on the same response variable level, the prediction result denoted as Ŝ∗n,· is trans-
formed back to the original state Sn,· with values 0 and 1 according to Equation  1. The input monitored variables 
are the multivariate time series Mn,·,· which is referred to as the matrix containing all monitored variables K at 
all times Tn (the time length for individual n) and given below.

If the response variable is forecasted over gap observations ahead, then the model established for the indi-
vidual n  is given by

The model f(.) has various choices including logistic regression, AdaBoost and XGBoost. Following the 
modeling process, Ŝ∗n,· is transformed back to Ŝn,· for comparison.

Models for classification. Logistic regression belongs to the  generalized linear regression, which is an 
umbrella term that encompasses many other models, allowing the response variable to have an error distribution 
other than a normal distribution. Instead of using the original response variable, logistic regression has the func-
tion of response as the new variable, like Normal, Poisson, and binomial responses. The link function chosen for 
logistic regression is binomial. For multinomial logistic regression, also referred to as the Softmax model, the 
formula is given by

where wk is the parameter vector for the category k. The parameter estimation method is maximal likelihood 
estimation and the predicted category is the one with highest probability.

AdaBoost, namely Adaptive Boosting, is an ensemble method working by having higher weights assigned 
to incorrectly classified instances at each iteration to improve the performance. AdaBoost is an additive model 
using forward stagewise algorithm with the exponential loss function L(s, ŝ) = e(−sŝ) . Based on the loss function, 
the weight for the model Gr(m) and the weighted misclassification rate at iteration r are

where αr decreases as er increases. The updating method for ωr,t is

The final AdaBoost model is defined as

The basic model Gr(m) with better performance are assigned with higher weight. If the value 
∑

r αrGr(m) is 
positive, then G(m) is 1, and vice verse.

XGBoost, short for eXtreme Gradient Boosting, is also an additive model composed of m basic models,

Compared with AdaBoost, the optimization function Lc is a combination of loss function L(s, ŝ) and regu-
larization term �(gr) to control the model complexity,

The advantage of XGBoost is that it approximates its optimization function Lc by the second order Taylor 
expansion, which gained better performance than the first order model Gradient Boosting Decision Tree (GBDT). 
The second order Taylor expansion of Lc is expressed as

(1)s∗n,t =











0 sn,t = 0 and sn,t+1 − sn,t = 0,
1 sn,t+1 − sn,t = −1,
2 sn,t+1 − sn,t = 1,
3 sn,t = 1 and sn,t+1 − sn,t = 0.

Mn, ·, · =











Mn,1,1 Mn,2,1 · · · Mn,K ,1

Mn,1,2 Mn,2,2 · · · Mn,K ,2

...
. . .

...
Mn,1,Tn Mn,2,Tn · · · Mn,K ,Tn











.

Ŝn, gap+1:Tn =f̂ (Mn, ·, 1:Tn−gap),

Ŝ∗n, gap+1:Tn
= ˆf ∗(Mn, ·, 1:Tn−gap).

P(S = k|M) =
ewkM

1+
∑K

k=1 e
wkM

,

αr =
1

2
log

1− er

er
, er =

∑

st �=ŝt

ωr,t ,

ωr+1,t =
ωr,t

Zr
e−αr stGr (mt ), Zr =

∑

t

ωr,t e
−αr stGr (mt ).

G(m) = sign{
∑

r

αrGr(m)}.

ŝ
(r)
t = ŝ

(r−1)
t + gr(mt).

Lc =
∑

t

L(st , ŝt)+
∑

r

�(gr).
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If the basic model is decision tree, by assuming that the sample mt falls into the terminal node j, the corre-
sponding indicator variable can be represented as 1j = {i|q(mt) = j} , where 1 is the indicator variable with value 
as 1 if the condition are satisfied. The score for terminal node j is defined as ωj . The total number of terminal 
nodes is T. The regularization term is defined as

which balances the complexity of the tree defined by the number of terminal nodes and the score value for each 
node. γ and � are balanced weights which can be optimized using cross validation. In this way, the basic function 
gr(mt) becomes ωq(mt ) and the optimization function Lc becomes

It follows that the best value of parameter ωj at iteration r is obtained as

The structure of the tree can be found using greedy algorithm or approximation algorithm by choosing the 
best split which maximizes the Lc gain.

Performance metrics and subgroup analysis. The performance under the original variable and the 
transformed variable are compared using AUC, F1 and Sensitivity. The metric Sensitivity describes the rate of 
diagnosed positive (predicted state as 1) out of true positive (real state as 1), which is intensively cared by the 
clinicians. The comprehensive metric of Specificity and Sensitivity used is the AUC value, which balances the 
accuracy of both positive rate and negative rate. The metrics F1 is also a comprehensive performance metric. A 
model with higher values in these metrics (maximum as 1) has the better performance than others. The defini-
tions of these metrics are as follows. The number of True Positive for individual n is denoted as TPn , and the 
others are similarly defined. Let f (i, j) =

∑Tn
t=gap+1 1{sn,t = i ∧ ŝn,t = j} , i, j ∈ {0, 1} , then

The Sensitivity and Specificity are defined as

The precision and F1 are defined as

The AUC value is defined as the area under the ROC curve with 1-Specificity as the x lab, and Sensitivity 
as the y lab. For each individual n, the model is trained with around 70% of data and the rest data are used for 
testing. The performance metrics are all computed from the test data. To test whether there is a significant dif-
ference between the two methods (the original forecasting and the transformed forecasting), t test is conducted 
to analyze their performance under different forecasting gaps and machine learning models.

In order to explore whether the model performance varies among different individuals or not, a subgroup 
analysis is conducted by using model ANOVA to test whether or not the baseline information has significant 
influence on the model performance. In the model, the response variable is

and the baseline variables Zn,· , such as age, sex and weight across the individuals are the input variables:

Lrc =
∑

t

L(st , ŝ
(r−1)
t + gr(mt))+

∑

i≤r

�(gr)

=
∑

t

[L(st , ŝ
(r−1)
t +

∂L(st , ŝ
(r−1)
t )

∂ ŝ
(r−1)
t

gr(mt)+
∂2L(st , ŝ

(r−1)
t )

∂(ŝ
(r−1)
t )2

g2r (mt))] +�(gr)+
∑

i≤r−1

�(gr)

≃
∑

t

[
∂L(st , ŝ

(r−1)
t )

∂ ŝ
(r−1)
t

gr(mt)+
1

2
(
∂2L(st , ŝ

(r−1)
t )

∂(ŝ
(r−1)
t )2

g2r (mt))] +�(gr).

�(gr) = γT +
1

2
�

T
∑

j=1

ω2
j ,

Lrc ≃

T
∑

j=1

[
∑

i∈1j

∂L(st , ŝ
(r−1)
t )

∂ ŝ
(r−1)
t

ωj +
1

2
(
∑

i∈1j

∂2L(st , ŝ
(r−1)
t )

∂(ŝ
(r−1)
t )2

+ �)ω2
j )] + γT .

ω∗
j = argmin

ωj

Lrc .

[TPn, FPn, FNn, TNn] = [f (1, 1), f (0, 1), f (1, 0), f (0, 0)].

sen =
TPn

TPn + FNn
, spn =

TNn

FPn + TNn
.

pren =
TPn

TPn + FPn
, F1n =

2pren ∗ sen

pren + sen
.

[AUC., F1. se.],
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It follows that the subgroup model can be given by

Consequently, from the model g, whether the baseline variables have significant influence on the model 
performance or not can be quantitatively measured and identified.

Real data analysis
This dataset origins from  HiRID20, which is a freely accessible critical care dataset containing the data relating 
to almost 34 thousands patient admissions to the Department of Intensive Care Medicine of the Bern University 
Hospital, Switzerland (ICU). The original dataset has been imputed and processed by the  research20, with 18 input 
variables left, including bedside monitored variables like heart rate, lab test variables like serum glucose, and drug 
presence variable indicating whether the drug is used or not. The response variable is an indicator variable, with 
value as 1 if circulatory failure occurs and value as 0 if not. The dataset is down sampled to a five-minute time 
grid with missing value imputed. After deleting datasets with only one state either in training data ( 70% ) or the 
whole data, the individuals left in this research is 18210. As the whole dataset is quite large, the description of 
the dataset is based on the randomly selected 70 individuals with 123160 observations in total. 

From Fig. 1, it is clear that all the 18 input variables have significant relationships with the variable state. For 
example, individuals under circulatory failure generally have lower MAP, Cardiac output, RASS and so on. The 
general standard for MAP is 65 mmHg, and a value lower than that indicates a higher death rate. Vasopressors 
drugs should be applied under lower MAP. For variable RASS, it has wider range and lower value under state 1. 
The Richmond Agitation Sedation Scale (RASS) is an instrument designed to assess the level of alertness and 
agitated behavior in critically-ill patients. It demonstrates the fluctuating levels of consciousness. Lower RASS 
represents lower consciousness, and individuals are more likely to be at state 1. The distributions of the variable 
RASS under state 0 and 1 are also different. Variable Systolic blood pressure (BP) indicates how much pressure 
the blood is exerting against the artery walls when the heart beats pumping blood out. A lower Systolic BP 
indicates a higher possibility at state 1 according to the Fig. 1. The variable diastolic blood pressure (BP) shows 
similar behavior like that of Systolic BP. Cardiac output is an important metric reflecting the Cardiac dysfunction, 
which is an important consequence of circulatory failure that affects mortality. For variables like PIP, Lactate 
arterial, they generally have the higher values under the state circulatory failure. The peak inspiratory pressure 
(PIP) is the highest pressure measured during the respiratory cycle and is a function of both the resistance 
of the airways and the compliance of the respiratory system. High PIP is associated with pneumothorax and 
reduction in cardiac output, which indicates a possibility of circulatory failure. Lactate arterial is highly related 
with serum lactate level. When MAP is lower than 65 mmHg and serum lactate level is higher than 2 mmol/L, 
the in-hospital mortality rate can be over 40%. Overall, all the input 18 variables have significant relationships 
with the response state.

The models used in the process include Logistic regression, AdaBoost and XGBoost. The prediction gap has 
values 1, 5, 10 and 20. The response variables include the original state and the transformed state. From Table 1, 
averaged from all the individuals, all the methods have the performance increases as the gap decreases. Models 
tend to have better performance when the prediction gap is small. But, the best model XGBoost among the three 
models has the best performance, even when the gap becomes 10 or 20, with values over or around 0.9 across 
AUC, F1 and Sensitivity. In terms of gap 1, XGBoost has similar performance to that of AdaBoost, being 0.933 
in AUC with standard deviation 0.056, around 0.9 in F1 and Sensitivity with standard deviation 0.08 and 0.1. 
When the gap is 5, 10 or 20, XGBoost has generally better performance than the others in both the mean value 
and the standard deviation, mostly being around 0.93 in AUC, 0.91 in F1, and 0.9 in Sensitivity.

Through comparing the method using the transformed state with that using the original state, it is found 
that they share similar performance for Logistic regression and AdaBoost. But when it comes to the model 
XGBoost, the transformed states have significantly better performance than the original one, generally having 
values of 0.01 higher in all three metrics. The corresponding standard deviation is similar to or smaller than 
that of the original one especially when the gap is 20. A higher value in AUC or F1 represents a better overall 
performance, while a higher value in sensitivity represents a higher ability in detecting the circulatory state, 
which is especially important for the clinicians. It can be seen that the XGBoost model with the transformed 
states achieved more satisfactory performance across the possible gaps.

Figure 2 shows the results of the XGBoost model performance under different baseline information. For the 
baseline variable sex, the model performance metrics AUC, F1 and Sensitivity all have significantly different 
values under gaps 5, 10 and 20. Except gap 1 (not significant), males tend to have a little bit higher performance 
than that of females under gaps 5, 10 and 20, being 0.928 (0.928), 0.934 (0.931), 0.921 (0.918), 0.937 (0.933) for 
males (females) in AUC, being 0.901 (0.900), 0.911 (0.907), 0.895 (0.891), 0.920 (0.914) for males (females) in 
F1, and being 0.902 (0.903), 0.907 (0.902), 0.886 (0.881), 0.911 (0.905) for males (females) in Sensitivity. In terms 
of the baseline variable age, AUC decreases significantly as age increases for all the gaps, F1 increases for gap 
10 and gap 20 but decreases under gap 1, and Sensitivity decreases under gap 1 but increases under gap 20. In 
terms of the baseline variable weight, all performance metrics increase but only significantly under gap 5 and 20 











Z1,1 Z1,2 · · · Z1,NZ
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.
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Figure 1.  The variables information under state 0 and 1. The state 0 means the individual is not in circulatory 
failure and 1 means circulatory failure which should be alerted. The t value is based on the student t-test, and 
chi-squared test is conducted for the categorical variable Non-opioid analgesics, with all the p-value significant 
under level 0.01(***).
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for variable AUC. In terms of the baseline variable height, the performance metrics increase but only significant 
under gaps 5 and 20 for Sensitivity.

Conclusion
Aiming to forecast the circulatory failure status, this study develops the methods based on the models Logistic 
regression, AdaBoost and XGBoost. The highlight of this study is that, instead of the original state, the trans-
formed state  representing the way in which the states are transformed from the previous states is used as the 
response variable. The transformed states contain more information than the original states. In order to compare 
their performance on the same level, the predicted transformed states are transformed back to states 0 and 1. The 
results demonstrate that, XGBoost has the best performance among all the models especially at gaps 5,10 and 
20. XGBoost and AdaBoost share the similar performance at gap 1. Among the XGBoost results, methods based 
on transformed response variables have significant better performance than that of the original variables among 
all the performance metrics AUC, F1, and Sensitivity. A better performance in Sensitivity means the circulatory 
failure state has the higher chance to be detected, which is of critical importance for clinicians.

In order to investigate whether different individuals have the same good performance or not, the performance 
of XGBoost is further compared under different baseline information, including age, sex, weight and height. 
The model ANOVA is applied to test the significance among the performance metrics AUC, F1, Sensitivity 
and the baseline variables. The results show that sex has some extent of influence to AUC, F1 and Sensitivity, 
especially at higher gaps. Age has lower but still significant influence on the model performance. The baseline 
variables weight and height have some significant values indicating dataset with higher weight and height has 
higher performance. This subgroup analysis gives a method to explore how the baseline information influences 
the model performance.

In the further research, a prior value for the model parameters can be given based on the subgroup analysis for 
parametric models. For non-parametric models, a suggested model can be given based on the baseline informa-
tion. A good prior information can facilitate improving the performance of forecasting especially at the beginning 
of the modeling compared to randomly assignment. In terms of the input variables, more information can be 
included in the further research, like medical image data, gene data and pharmacy information. Research on 
these variables is multimodal data analysis, which combines data information on different levels. Different kinds 
of multimodal inputs require complex feature extraction and combination methods. The multimodal variables 
are also collected at different times, which means the information combination is not only at the feature level 
but also at the time level. Developing such a dynamic model of combining the features that sequentially arise is 
expected to be a challenging but valuable research direction.

Data availibility
The source code in the method are available from the corresponding author upon request. The real data in the 
application can be requested from the  reference21.

Table 1.  Performance results for different forecasting gaps and methods with the original response variable 
and the transformed response variable. The gaps have values 1, 5, 10 and 20. Under each performance metric, 
four values are colored representing the best performance under the four gaps. The red one means that 
the transformed response variable has better performance, while the blue one indicates the original variable is 
better.

Performance

Model Logistic regression AdaBoost XGBoost

gap 1 5 10 20 1 5 10 20 1 5 10 20

AUC 

Ori mean 0.869 0.850 0.803 0.777 0.933 0.925 0.902 0.899 0.933 0.926 0.908 0.906

Ori sd 0.087 0.094 0.115 0.126 0.056 0.060 0.070 0.073 0.056 0.060 0.069 0.070

Tra mean 0.867 0.844 0.800 0.779 0.919 0.919 0.899 0.914 0.929 0.933 0.920 0.936

Tra sd 0.085 0.095 0.115 0.126 0.060 0.069 0.076 0.078 0.057 0.062 0.063 0.064

t-value 2.704 6.635 2.541 -1.231 23.58 9.396 3.282 -18.90 6.909 -11.06 -17.59 -42.98

p(t) 0.007 0.000 0.011 0.218 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

F1

Ori mean 0.822 0.798 0.733 0.694 0.907 0.899 0.868 0.864 0.908 0.900 0.877 0.875

Ori sd 0.139 0.153 0.200 0.229 0.084 0.089 0.109 0.112 0.086 0.090 0.109 0.108

Tra mean 0.816 0.786 0.726 0.695 0.887 0.892 0.868 0.890 0.901 0.910 0.894 0.917

Tra sd 0.140 0.159 0.202 0.227 0.093 0.102 0.113 0.112 0.088 0.093 0.097 0.092

t-value 4.078 7.303 3.124 -0.467 21.61 7.036 -0.276 -21.97 7.321 -9.566 -15.60 -40.21

p(t) 0.000 0.000 0.002 0.641 0.000 0.000 0.783 0.000 0.000 0.000 0.000 0.000

Sensitivity

Ori mean 0.819 0.791 0.715 0.673 0.911 0.898 0.860 0.856 0.909 0.895 0.866 0.863

Ori sd 0.166 0.183 0.235 0.265 0.098 0.105 0.130 0.136 0.102 0.110 0.133 0.133

Tra mean 0.816 0.781 0.712 0.677 0.891 0.888 0.856 0.877 0.903 0.905 0.884 0.908

Tra sd 0.164 0.185 0.236 0.263 0.109 0.120 0.140 0.139 0.104 0.109 0.120 0.114

t-value 1.662 4.938 1.560 -1.361 18.49 8.428 2.827 -15.06 5.842 -8.737 -14.00 -34.14

p(t) 0.097 0.000 0.119 0.174 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000
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