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Abstract

Conduction disorders and arrhythmias remain difficult to treat and are increasingly prevalent 

owing to the increasing age and body mass of the general population, because both are risk factors 

for arrhythmia. Many of the underlying conditions that give rise to arrhythmia — including atrial 

fibrillation and ventricular arrhythmia, which frequently occur in patients with acute myocardial 

ischaemia or heart failure — can have an inflammatory component. In the past, inflammation was 

viewed mostly as an epiphenomenon associated with arrhythmia; however, the recently discovered 

inflammatory and non-canonical functions of cardiac immune cells indicate that leukocytes can 

be arrhythmogenic either by altering tissue composition or by interacting with cardiomyocytes; 

for example, by changing their phenotype or perhaps even by directly interfering with conduction. 

In this Review, we discuss the electrophysiological properties of leukocytes and how these cells 

relate to conduction in the heart. Given the thematic parallels, we also summarize the interactions 

between immune cells and neural systems that influence information transfer, extrapolating 

findings from the field of neuroscience to the heart and defining common themes. We aim to 

bridge the knowledge gap between electrophysiology and immunology, to promote conceptual 

connections between these two fields and to explore promising opportunities for future research.

The clinical presentation of patients with heart rhythm abnormalities ranges from a lack 

of symptoms to sudden cardiac arrest, which can result in sudden cardiac death (SCD). 

SCD is a major public health problem, accounting for 50–60% of deaths in patients with 
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coronary artery disease. With an incidence between 50 and 100 per 100,000 in the general 

population, SCD is a leading cause of death worldwide1–5. Even when cardiac arrest occurs 

in a hospital, survival rates are only 3–10%, highlighting an unmet clinical need for risk 

prediction, prevention and adequate treatment of arrhythmias6–8.

Classic electrophysiological concepts provide mechanistic insights into the pathophysiology 

underlying arrhythmogenesis, including abnormal automaticity, triggered activity and re-

entry (FIG. 1). Although these mechanisms are well characterized, the prevalence of sudden 

cardiac arrest remains high. Effective treatment options are mostly limited to implantation 

of a defibrillator, and rates of SCD remain high, perhaps owing to the lack of preventive 

therapies. Expanding our understanding of the pathobiology of the arrhythmia beyond 

electrophysiology might help to develop new approaches to prevention and treatment.

New insights into leukocyte function suggest that immune cell populations might have 

a role in normal heart rhythm via crosstalk with cardiomyocytes and hypothetically also 

in the pathophysiology of arrhythmogenesis. Re-entrant arrhythmias, in which anatomical 

obstacles are arrhythmogenic, are particularly associated with leukocyte recruitment, which, 

we hypothesize, shapes the composition of the arrhythmogenic substrate. Re-entry is 

the underlying mechanism for most sustained cardiac arrhythmias and is thought to be 

based on two components3: a trigger, which is often a mild form of arrhythmia such 

as a premature ventricular complex, and a substrate, leading to sustained and prolonged 

arrhythmia, including structural remodelling such as scar formation after acute myocardial 

infarction (MI) or patchy fibrosis in the setting of hypertension and hypertrophy. The 

underlying structural heart diseases are diverse and range from acute events to chronic 

processes, each with unique electrophysiological properties. Re-entrant arrhythmias can 

also cause atrial fibrillation (AF)9, a common type of arrhythmia10,11 (TABLE 1). Treating 

re-entrant arrhythmias often begins with resolving the underlying disease, such as alleviating 

ischaemia or repairing a valve. However, understanding the specific electrophysiological 

characteristics of structural heart disease is important for the development of targeted 

treatment options.

In this Review, we aim to integrate electrophysiology and immunology by focusing on 

conceptual bridges between these two fields. We summarize basic principles of leukocyte 

biology, focusing on those that are relevant to conduction in the heart and also in the 

brain, where resident macrophages (microglia) modulate information transfer by neurons. 

We discuss the clinical association between leukocyte expansion and arrhythmias and 

explore emerging mechanistic data on the causal role of leukocytes in arrhythmogenesis. 

Furthermore, we examine inflammation as a potential therapeutic target and highlight 

technical developments in immunology and electrophysiology that will facilitate future 

investigation into the interactions between leukocytes and conducting tissue. We are 

promoting the case for a more comprehensive consideration of the roles of leukocytes 

in cardiac conduction and arrhythmia; however, we do not discount the undisputed 

contributions by other heart cells that have been reviewed previously12–14.
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Charging leukocytes for defence

The innate immune system

Innate immunity refers to immune responses that are inborn and not learned, as opposed to 

lymphocyte-based responses that form the adaptive immune system15. The innate immune 

response — a crucial step in the first-line host defence against infectious agents and tissue 

damage — is mounted by the epithelial and endothelial barriers, neutrophils, macrophages 

and monocytes, dendritic cells, natural killer cells and mast cells16. The innate immune 

system is activated when Toll-like receptors (TLRs), NOD-like receptors or RIG-I-like 

receptors recognize pathogen-associated molecular patterns17. Some of these receptors also 

recognize self-derived host molecules called damage-associated molecular patterns, which 

arise from tissue injury and inflammation18. The binding of ligands to these receptors 

releases cytokines and chemokines, which recruit and activate additional immune cells.

Leukocytes

Leukocytes are the cellular protagonists of immune defence, but also have non-

immunological functions that are dependent on the organ in which they reside. In this 

section, we briefly summarize the functional properties of leukocytes and their subsets, 

focusing on the heart (BOX 1). Monocytes and macrophages are the most numerous 

leukocytes in the heart and have pivotal roles in cardiovascular pathophysiology. Monocytes 

are produced in the bone marrow and circulate in the bloodstream before migrating to 

tissues where they differentiate into macrophages or dendritic cells19. In mice, mature 

monocytes can be identified by the expression of CD11b and CD115 and distinguished 

by the surface marker Ly6C. Ly6Chigh monocytes preferentially accumulate at sites of 

inflammation and differentiate into macrophages. Ly6Clow monocytes patrol the vasculature, 

remove damaged endothelial cells, and maintain vascular integrity and homeostasis20,21. 

Macrophages reside in almost all tissues. In the murine heart, macrophages constitute 7–8% 

of non-cardiomyocyte cells22,23, and single-cell RNA-sequencing data indicate that 5–10% 

of cells in the human heart are leukocytes24.

Cardiac macrophage subsets are classified by their surface expression of CC-chemokine 

receptor 2 (CCR2) and major histocompatibility complex (MHC) class II molecules. 

Human and mouse hearts contain at least three subpopulations of macrophages: 

CCR2−MHCIIlow, CCR2−MHCIIhigh and CCR2highMHCIIhigh (REF.25). The two CCR2− 

macrophage subsets have embryonic origins and are maintained by local proliferation in the 

myocardium, independent of blood monocytes26. CCR2− macrophages reside predominantly 

in the myocardial wall and participate in coronary vasculature development27. The 

CCR2+ macrophage subset (5–15%) is the smallest in healthy hearts and derives from 

blood monocytes. Single-cell RNA-sequencing studies have revealed additional cardiac 

macrophage subsets28–30, but their functional relevance remains to be determined.

Electrophysiology and leukocyte function

Like cardiomyocytes, neurons and many other cell types, leukocytes express various 

channels to regulate their membrane potential as well as signalling by Ca2+ and other 

ions. These cell features regulate gene expression, cytokine release, cell activation and 
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migration31 and, consequently, inflammation32,33. The resting membrane potential of 

leukocytes ranges from −30 mV to −60 mV (REFs34–39) and is determined by the 

equilibrium potentials of ions such as K+, Na+ and Cl−, which traverse the cell membrane 

through specific channels.

In the 1970s, K+ currents in peritoneal macrophages were first described34,35,40. K+ 

channels in macrophages include the voltage-gated K+ channel Kv1.3 and the Ca2+-

activated K+ channel KCa3.1, and these channels mainly promote a negative membrane 

potential. Kv1.3 is activated by membrane potential depolarization41. Although Kv1.3 is 

the predominant form of voltage-gated K+ channel, Kv1.5 is also present in myeloid 

cells and can form heterotetramers with Kv1.3. The ratio of Kv1.3 to Kv1.5 in the Kv 

complex can vary, leading to biophysically and pharmacologically distinct channels42,43. 

Interestingly, cell activation with either the bacterial wall component lipopolysaccharide or 

tumour necrosis factor (TNF) increases Kv1.3 activity in macrophages42,44. By contrast, 

anti-inflammatory signals such as glucocorticoids downregulate Kv1.3 and increase the 

presence of Kv1.5 in the heteromeric Kv channels42,44. Unlike Kv1.3, KCa3.1 is voltage-

independent and is activated by the binding of Ca2+ to calmodulin, which is associated with 

the C terminus of the KCa3.1 channel45. Opening of KCa3.1 channels hyperpolarizes the 

membrane potential following an increase in the intracellular Ca2+ concentration.

In lymphocytes, the relative contributions of Kv1.3 and KCa3.1 to Ca2+ influx are 

determined by their expression levels, which depend on the lymphocyte subset and on cell 

activation33,46,47. Under resting conditions, naive T cells predominantly express the Kv1.3 

channel46. Following activation, T cells transcriptionally upregulate KCa3.1, which sustains 

Ca2+ signalling47. T helper 1 and T helper 2 lymphocytes predominantly express KCa3.1 and 

depend on KCa3.1 for cytokine production, whereas T helper 17 cells mainly express Kv1.3, 

which regulates IL-17 production33. Taken together, activation of Kv1.3 by depolarization 

and of KCa3.1 by Ca2+ preserves the negative membrane potential required for Ca2+ entry.

Transient receptor potential cation channel subfamily M member 4 (TRPM4) is another 

essential regulator of the membrane potential of leukocytes and is much more permeable to 

Na+ than to Ca2+ (REF.48). TRPM4 channels are activated by increases in intracellular Ca2+ 

concentration, resulting in Na+ influx and membrane depolarization, which then limits Ca2+ 

influx because of the reduction in the electrochemical gradient.

Ca2+ is a second messenger that regulates proliferation, gene expression and motility in 

leukocytes. Ca2+ release-activated Ca2+ (CRAC) channels (ORAI1, ORAI2 and ORAI3), 

known as store-operated Ca2+ channels, are present in most leukocytes. Activation of CRAC 

channels is mediated by stromal interaction molecule 1 (STIM1) and STIM2, which are 

located in the endoplasmic reticulum membrane. Following the depletion of endoplasmic 

reticulum Ca2+ stores, STIM1 and STIM2 activate, oligomerize and translocate to the 

junctions between the endoplasmic reticulum and the plasma membrane, into which ORAI1 

is recruited, resulting in Ca2+ influx49–51. The importance of ion channels for inflammation 

is exemplified by the observation that CD4+ and CD8+ T cells from mice and humans 

that are deficient in ORAI1 and/or STIM1 have defective production of many cytokines, 

including IL-2, IL-4, IL-17, IFNγ and TNF52,53. Moreover, B cells from mice lacking either 
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ORAI1 or STIM1 and STIM2 have less B cell receptor-induced proliferation54. The crucial 

roles of CRAC channels in adaptive immune responses are well established, but little is 

known about their function in innate immunity.

Ionotropic P2X receptors are ligand-gated, non-selective cation channels that are activated 

by extracellular ATP and facilitate the influx of Na+, Ca2+ and other cations55. P2X receptor 

opening causes Ca2+ influx and activates downstream signalling, leading to the proliferation 

of T cells and B cells56,57. Ion and connexin channel expression in leukocytes based on data 

from the Immunological Genome Project58 is summarized in TABLE 2, and their known 

functions are summarized in Supplementary Table 1. Taken together, these data indicate that 

leukocyte functions — and inflammation as a consequence32,33 — are regulated by ion flux 

across the leukocyte plasma membrane and the resulting changes in membrane potential. 

Of note, leukocytes and cardiomyocytes share several ion channels, such as ORAI1 and its 

activator STIM1. Genetic variants in ORAI1 or STIM1 in humans that lead to the expression 

of non-functional ORAI1 or STIM1 protein or a complete lack of the protein are associated 

with a clinical phenotype characterized by immunodeficiency59. Because individuals who 

lack ORAI1 or STIM1 have lethal immunodeficiency and die in their first years of life, the 

influence of a sustained lack of these proteins on the heart might not be apparent. However, 

cardiomyocyte-restricted Stim1-knockdown mice have a proclivity for arrhythmia, involving 

decreased conduction velocity and increased action potential duration (APD)60. How cardiac 

immune cell functions are influenced by the regular depolarization and repolarization of 

the surrounding myocardium, electrolyte imbalance or even arrhythmia is so far unknown. 

Given that the heart has a sizeable population of resident immune cells that might affect 

cardiomyocyte health61 and extracellular matrix composition, this question merits further 

investigation.

Leukocytes in cardiac conduction

Gap junctions, formed by the connexin protein family, allow cytoplasmic exchange of 

ions, nucleotides, metabolites and electrical signals between connected cells62. Connexins 

are present in almost all cells, including cardiomyocytes and leukocytes. In the healthy 

heart, gap junctions provide pathways for intercellular current flow, enabling coordinated 

propagation of the action potential63,64. Direct macrophage–cardiomyocyte interaction 

through connexin 43 (Cx43)-containing gap junctions was found in mouse and human 

hearts37. This contact enables electrical coupling between the two cell types. Patch-clamp 

experiments revealed that many macrophages rhythmically depolarize when they are 

coupled to cardiomyocytes. In vitro coupling rendered the resting membrane potential of 

cardiomyocytes more positive — a change that was reversed by pharmacological blockade 

of Cx43 (REF.37). Computational modelling indicated that coupling of higher numbers of 

macrophages to one cardiomyocyte (a reasonable assumption given that cardiomyocytes are 

much larger than macrophages) lowers the action potential upstroke and overshoot, leading 

to earlier repolarization and a shorter refractory period37.

Optical clearing of mouse and human heart samples followed by confocal fluorescence 

microscopy documented that macrophages are concentrated not only in the distal 

atrioventricular node, which electrically connects the atria and the ventricles, but also in 
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the sinus node37. In vivo, macrophage-specific genetic ablation of Cx43 (also known as 

Gja1) delayed conduction through the atrioventricular node, and depletion of myeloid cells 

in CD11bDTR mice resulted in progressive atrioventricular block37. Collectively, these 

findings suggest that macrophages support normal electrical conduction and influence 

cardiac conduction through gap junctions. In addition to questions about whether this 

communication might hypothetically shape arrhythmias, which we discuss below, we 

speculate that immune cells can affect electrical communication between cardiomyocytes 

and influence conduction via currently unknown mechanisms, perhaps by shaping the 

development of the conduction system, regulating turnover of insulating extracellular matrix, 

interfering with gap junction communication between cardiomyocytes, or regulating ion 

channel expression and function in cardiomyocytes. The abundance of macrophages in 

cardiac conduction system structures37 suggests that they have undiscovered roles. Single-

cell RNA-sequencing analysis of mouse atrioventricular node samples37 indicated that 

macrophages in the atrioventricular node cluster according to the typical subset markers 

MHC class II and CCR2 and express conduction-related genes, including those encoding 

ion channels, such as Cacna1c (Cav1.2), Kcnj2 (Kir2.1), Kcnq1 (Kv7.1), Hcn2 (HCN2) 

and Kcnh2 (Kv11.1) (TABLE 2; Supplementary Table 1). This single-cell RNA-sequencing 

study contains data on 76 macrophages isolated by microdissection of the atrioventricular 

node but lacks a comparison with macrophages from a remote control region37. Whether 

atrioventricular node macrophages differ from other macrophages located in the atria or 

ventricles remains unresolved. Another important question is which of these ion channels 

are functional in cardiac macrophages. Furthermore, whether other immune cells, although 

less numerous than macrophages, also couple to cardiomyocytes is worth exploring.

Leukocytes and neural function

Similar to the population of macrophages resident in the heart, the brain contains a large 

population of resident innate immune cells. Another similarity inviting a comparison of 

these organ systems is illustrated by electrophysiological studies showing that the behaviour 

of cardiac Purkinje fibres is electrically similar to that of nerve axons65. Both the heart 

and the brain contain a massive number of electrically excitable cells (cardiomyocytes 

and neurons, respectively), which rely on an organized conduction system to function. 

In the brain, axonal projections from different neuronal subtypes propagate electrical 

impulses to specific anatomical locations. Microglia, the brain’s equivalent of tissue-resident 

macrophages, interact with almost all cell types in the central nervous system to mediate 

developmental programmes and maintain homeostasis66.

Microglia have essential roles in excitatory networks in the brain. During development, 

microglia engulf synapse components and actively participate in synapse maturation67,68, 

raising the question as to whether cardiac macrophages participate in the development of the 

cardiac conduction system. IL-33 produced by astrocytes in the brain promotes microglial 

synapse engulfment, indicating that astrocyte–microglia communication is required for 

synapse homeostasis during development69. Moreover, microglia contact with dendrites 

induces filopodia formation in the developing somatosensory cortex70. Microglia are also 

required for the development of oligodendrocytes, their progenitors and the subsequent 

myelination process71. In adults, microglia maintain the oligodendrocyte progenitor pool 
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and modulate synaptic neurotransmission via microglia–astrocyte crosstalk. Activation of 

microglia by lipopolysaccharide induces a rapid increase in spontaneous excitatory post-

synaptic currents in hippocampal slice preparations72. These activated microglia release 

small amounts of ATP, which targets P2Y1 receptors located on astrocytes, leading to 

glutamate release; subsequently, glutamate acts on neuronal receptors72.

Connexin expression by microglia depends heavily on the context of cell activation, which 

has not been explored in cardiac macrophages. Whereas Cx32 and Cx36 are expressed in the 

resting surveillance state73,74, Cx43 expression is rarely detected in steady-state microglia. 

Intercellular electrical coupling was observed between cultured microglia and neurons 

through Cx36 gap junctions73. Approximately one-third of co-cultured microglia and neuron 

pairs showed evidence of electrical coupling, with small unitary conductance and very 

low voltage sensitivity, which is consistent with the characteristics of Cx36 channels. This 

situation is reminiscent of the coupling between cardiac macrophages and cardiomyocytes 

via Cx43 (REF.37). Likewise, Cx36 is involved in coupling between microglial pairs73, 

raising the question as to whether cardiac macrophages couple to each other. Of note, 

>2 weeks of co-culture might have affected the native characteristics of microglia–neuron 

crosstalk, especially given that Cx36 expression is low in non-cultured naive microglia, as 

reported by the Immunological Genome Project58. Nevertheless, the findings support the 

notion that brain tissue-resident macrophages couple with excitable cells and contribute to 

electrical conduction in the brain, just as in the heart.

Despite the obvious differences between the brain and the heart, both are organs in 

which the primary function directly depends on electrical activity; therefore, comparing 

them might be instructive. Direct electrical coupling between tissue-resident macrophages 

and cardiomyocytes37 or neurons73 has been observed in culture, but in vivo data on 

coupling are currently available only for the heart37. Extrapolating the observation that 

microglia influence synaptic neuron-to-neuron communication leads us to wonder whether 

cardiac macrophages might have similar roles. We speculate that cardiac macrophages 

might modulate the excitation transfer between two neighbouring cardiomyocytes, perhaps 

by influencing gap junction abundance or deposition of insulating extracellular matrix 

by fibroblasts. One question arising from the microglia data on synaptic pruning67,68 is 

whether macrophages influence the embryonic development of the conduction system. 

These conceptual connections underscore the value of neuroscience tools for research on 

cardiac conduction, as indicated by the use of optogenetics37 and in vivo heart microscopy75 

in conjunction with ion and voltage reporters76,77 (BOX 2).

Inflammation and arrhythmias

Clinical associations

AF is a prevalent condition, with a rising incidence in elderly individuals10,78. The lack 

of organized atrial contraction causes blood stasis, which increases the risk of thrombus 

formation and stroke79. Moreover, during AF, the ventricles might not fill adequately, 

reducing cardiac output and elevating the risk of heart failure (HF), cardiovascular death 

and SCD80. Repetitive high-frequency ectopy and re-entry are thought to be the major 

AF-maintaining mechanisms in atria with vulnerable morphological substrates81,82.
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More than 20 years of research point to an association between inflammation and AF83–85. 

Leukocyte recruitment occurs in the atria of patients with AF86–88. Among immune cells, 

CD68+ macrophages are more numerous than adaptive immune cells such as CD3+ T 

lymphocytes in the atria of patients with AF89. Leukocytes have an important role in 

local inflammation in releasing cytokines and chemokines, such as interleukins and TNF, 

and activating innate signalling pathways, such as the inflammasome90. These actions 

contribute to structural, electrical and mechanical heterogeneity in the atrial myocardium 

and thereby facilitate the pathogenesis of arrhythmogenesis (see Inflammatory mechanisms 

below). Case–control studies have shown elevated circulating levels of inflammatory 

molecules (C-reactive protein (CRP), heat shock protein 27, IL-6 and TNF) in patients with 

AF91–93. CRP has been linked to the development of AF94,95: in the Cardiovascular Health 

Study96 involving 5,806 participants, higher circulating CRP levels were associated with the 

presence and future development of AF. Anti-inflammatory therapy reduced the burden of 

AF in a dog model of sterile pericarditis and in patients after cardiac surgery97–100. Profiling 

inflammatory biomarkers and other signalling molecules might help to predict the risk of AF 

in patients101,102.

Multiple major cardiovascular risk factors and inflammation-associated conditions, 

including hypertension, coronary artery disease, HF and obesity, are linked to AF103–105. 

Although various pathological mechanisms, including endothelial dysfunction and 

myocardial ischaemia, underlie these risk factors, they might converge on a final common 

pathway: leukocyte expansion in the atrial myocardium and consequent production of pro-

inflammatory cytokines.

The interconnected development of HF and AF involves inflammatory components that 

probably interact with neurohumoral activation, morphological remodelling, fibrosis and 

disruption of cardiomyocyte energy metabolism; together, these actions alter the myocardial 

substrate, leading to arrhythmogenesis. In patients with AF, the arrhythmogenic substrate 

involves three electrophysiological mechanisms: abnormal automaticity106, triggered 

activity107,108 and re-entry109. The most common underlying mechanisms for ventricular 

tachycardia (VT) or ventricular fibrillation (VF) are early or delayed afterdepolarizations, 

which can affect the cardiomyocyte APD. Several inflammatory mechanisms might 

contribute to ventricular dysfunction (reviewed previously110).

New-onset AF is common in patients with acute sepsis111. The pathogenesis of 

sepsis includes the interaction between pro-inflammatory cytokines and stress hormones, 

autonomic dysfunction, extravascular volume shifts and cardiovascular compromise112, all 

of which can beget AF. Signs of systemic inflammation consist of changes in leukocyte 

count, fever and elevated heart rate113. AF commonly occurs in patients with severe 

sepsis114–116 and results in increased morbidity and mortality117,118. Higher CRP levels 

occur before AF in patients with septic shock116, which suggests that systemic inflammation 

might trigger AF. In support of this hypothesis, hydrocortisone therapy was associated with 

a lower risk of AF and reduced production of pro-inflammatory cytokines in patients with 

septic shock119,120.
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In contrast to AF, third-degree atrioventricular block or severe arrhythmia affecting 

the ventricles can have acute and marked haemodynamic consequences, resulting in 

high mortality121 (TABLE 1). Patients presenting with ventricular tachyarrhythmias have 

a substantially increased mortality, regardless of the underlying disease122–125. The 

electrophysiological origins of VT and VF include abnormal automaticity, triggered 

activity and re-entry126–128. Ventricular arrhythmias have multifactorial origins and 

various combinations of derangements in ion channel distribution and expression 

patterns, intracellular ion dynamics, anatomical features and metabolic pathways (reviewed 

previously129–131).

Myocarditis remains a major cause of SCD in young individuals132 and is usually caused 

by viral infections or autoimmunity leading to heterogeneous clinical manifestations, 

including life-threatening ventricular tachyarrhythmias133. Acute myocarditis is associated 

with massive cardiac recruitment of macrophages and T lymphocytes, oedema and cell 

necrosis, all of which can contribute to electrical instability134–137. Mild symptoms of 

infection, elevated leukocyte count and increased CRP levels often precede the onset of life-

threatening ventricular arrhythmias and sudden cardiac arrest138. Polymorphic and irregular 

ventricular arrhythmias are common during the active phase, whereas monomorphic, 

regular-shaped tachyarrhythmias are associated with healed myocarditis139. The underlying 

mechanisms remain elusive, and hypotheses range from abnormal Ca2+ handling140 to 

long-lasting, disturbed expression patterns of gap junctions141. A series of patients with 

viral myocarditis complicated by VF showed electrocardiographic features of Brugada 

syndrome, a genetic disorder caused by genetic variation in SCN5A, encoding the cardiac 

Na+ channel (Nav1.5), and associated with ST-segment elevation and right bundle branch 

block124. These patients showed electrocardiogram (ECG) changes that persisted after acute 

myocardial inflammation had subsided, suggesting structural and electrical remodelling 

of the ventricular substrate. For patients with Brugada syndrome, temperature-dependent 

alteration of ion-channel function might trigger ventricular arrhythmias during infection, 

indicating that fever might be arrhythmogenic142. This association aligns with previous 

findings linking febrile illness with infectious aetiology to increased vulnerability to VT 

and VF, not only in patients with Brugada syndrome143–145 but also in patients without 

known repolarization abnormalities146–148. Taken together, these data support the hypothesis 

that infection and fever might initiate life-threatening ventricular arrhythmias. Although no 

mechanistic data are available, we speculate that leukocytes recruited to the myocardium 

contribute to the occurrence of arrhythmia, especially in patients with myocarditis.

VF often occurs after MI149,150. The onset of ventricular arrhythmias after MI follows 

certain temporal dynamics: the first 3 days constitute an acute phase, and a subsequent 

chronic phase is dominated by ventricular remodelling151. The ischaemia-induced 

cardiomyocyte death causes a rapid, massive infiltration of monocytes and neutrophils. 

The resulting increase in tissue heterogeneity might contribute to the markedly higher 

risk of ventricular arrhythmias early after MI122,152–155, when the electrophysiological 

properties of the ventricular substrate change profoundly and in a layer-specific manner156. 

The tissue heterogeneity in the peri-infarct region, which is particularly rich in leukocytes, 

favours arrhythmogenesis by forming re-entrant circuits with zones of slow conduction or 

complete block, leading to sustained monomorphic VTs157,158. Very large, acute ischaemic 
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zones might create the substrate for a transiently stable re-entrant circuit that can sustain 

a monomorphic re-entrant tachycardia159. In subacute MI, the physiological substrate 

continues to change. Whereas macrophages and cardiomyocytes produce varying amounts 

of inflammatory cytokines and chemokines, such as IL-1, IL-6, TNF and CC-chemokine 

ligand 2 (REFs160–162), cardiac fibroblasts release haematopoietic growth factors, such 

as granulocyte–macrophage colony-stimulating factor163, and endothelial cells become 

activated, possibly also contributing to conduction heterogeneity in the ventricular substrate. 

During the subsequent development of myocardial scar tissue and inflammation-associated 

HF, ventricular arrhythmias and sudden cardiac arrest can occur164. To address the increased 

risk of SCD, patients who experience VT or VF episodes >48 h after MI are implanted with 

defibrillators that effectively terminate life-threatening arrhythmias165. Selection criteria 

for this treatment are weak, given that 80% of patients experiencing SCD do not meet 

the criteria for implantation of a defibrillator166,167. Inflammatory biomarkers might 

improve risk prediction for ventricular arrhythmias and guide patient selection for device 

implantation, if further research documents a robust association between these biomarkers 

and SCD.

Inflammatory mechanisms

In accordance with the associations described above, emerging data suggest a causal 

relationship between inflammation and arrhythmia. We postulate that four distinct 

electroimmunological pathways can lead to arrhythmia: leukocyte release of cytokines 

that act on cardiomyocytes; altered electrotonic gap junction communication between 

conducting cells and leukocytes; leukocyte-instigated, insulating fibrosis; and autoimmune 

channelopathies.

Inflammatory mediators acting on cardiomyocytes.

The secretion of inflammatory cytokines by leukocytes can affect the capacity of 

cardiomyocytes to conduct properly. Clinical data associate arrhythmias with elevated 

levels of IL-1β168,169, IL-6 (REFs170–172), IL-8 (REF.173), IL-10 (REF.173), IL-17 

(REFs174–176) and TNF168,169,177. Data obtained in mouse and dog models of 

AF indicate that macrophages, which are a major source of cytokines, have a 

causal role in the pathogenesis of AF; specifically, lipopolysaccharide-stimulated pro-

inflammatory macrophages were shown to induce atrial electrical remodelling, increase AF 

inducibility and decrease atrial effective refractory period178. Macrophage depletion with 

clodronate liposomes protected mouse atria from lipopolysaccharide-triggered electrical 

remodelling178. Macrophage-specific Il1b knockout reversed lipopolysaccharide-mediated 

phenotypes in atrial myocytes178. Macrophage-derived IL-1β also prolonged the APD 

and lowered K+ currents in diabetic mice, changes that increased the susceptibility to 

arrhythmia179. IL-1β reduced L-type Ca2+ current density in neonatal mouse ventricular 

myocytes by activating protein kinase C180. In agreement with these findings, IL-1 receptor 

inhibition raised conduction velocity and curtailed spontaneous and inducible ventricular 

arrhythmias in mice with acute MI181.

These preclinical data are particularly interesting when viewed together with the CANTOS 

trial182, which demonstrated that anti-inflammatory therapy targeting the IL-1β pathway 
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with canakinumab led to significantly lower rates of recurrent cardiovascular events. IL-1β 
and IL-6, which is downstream of Il-1β, both affect cardiomyocyte Ca2+ regulation; 

although both cytokines prolonged the APD, IL-6 worsened Ca2+-mediated arrhythmia 

substrates more than IL-1β183. Elevated circulating levels of IL-6 have been observed in 

both AF184 and polymorphic VT185. Data from humans suggest that increased circulating 

levels of IL-6 rapidly induce atrial electrical remodelling by downregulation of cardiac 

connexins184. Anti-IL-6 treatment had beneficial effects in patients with rheumatoid arthritis 

and systemic inflammation, typically associated with long QT intervals and increased rates 

of SCD186. Treatment with tocilizumab, an anti-IL-6 receptor antibody, shortened QTc 

intervals, which correlated with reduced CRP and TNF levels, suggesting a potential anti-

arrhythmic effect of anti-IL-6 treatment.

Increased circulating levels of leukocyte-released IL-17A have been linked with AF176. 

Moreover, IL-17A levels in the plasma were positively correlated with left atrial diameter, 

suggesting the functional relevance of IL-17 signalling in the pathogenesis of AF174. 

This hypothesis is supported by preclinical studies demonstrating that IL-17 mediates 

inflammation by inducing increased cytokine release (IL-1β and IL-6) and collagen 

deposition, thereby shaping the arrhythmogenic substrate of the atria175. IL-17 inhibition 

with an extract from Rhodiola crenulata suppressed atrial fibrosis, cardiomyocyte apoptosis 

and the incidence of ventricular arrhythmias in a dog model of HF187, suggesting that 

targeting the IL-17 pathway has therapeutic potential.

Although we are only beginning to understand the multifaceted effects of leukocyte-released 

cytokines on conduction, these effects have already been partially shown for TNF, which 

alters the expression and distribution patterns of Cx40 and Cx43 in cardiomyocytes 

through the transforming growth factor-β (TGFβ)–SMAD signalling pathway, activates 

myofibroblasts, increases collagen deposition and ultimately shapes an arrhythmogenic 

substrate for AF188,189. TNF might affect Ca2+ handling in cardiomyocytes by electrical 

remodelling, such as by decreasing sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 

2a expression190–192. Finally, TNF induces cardiomyocyte apoptosis via cell death 

pathways193, creating conduction heterogeneity (FIG. 2).

Upstream of cytokine release, nuclear factor-κB (NF-κB) signalling and the NLRP3 

inflammasome cause cardiac arrhythmias. NF-κB facilitates transcription of IL-1, IL-6, IL-8 

and TNF in response to damage-associated molecular patterns194. A common mechanism 

for NF-κB signalling is the TLR4–MYD88 pathway195,196. NF-κB, TLR4 and MYD88 

protein expression increase in the atrial tissue of individuals with AF197, while TLR4 

activation also promotes cardiac arrhythmias by IRF3-dependent, but MYD88-independent, 

pathways198. Moreover, NF-κB suppresses the transcription of genes encoding cardiac Na+ 

channels in response to oxidative stress, a hallmark of AF, and therefore also acts on 

electrical remodelling of the cardiac substrate199.

NLRP3 inflammasome activation leads to atrial electrical and structural remodelling, 

frequent atrial ectopy and pacing-induced AF200,201. Underlying mechanisms might 

include abnormal release of Ca2+ from the sarcoplasmic reticulum202, shortening of the 

APD or atrial hypertrophy. Activation of the NLRP3 inflammasome and Ca2+/calmodulin-
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dependent protein kinase II signalling was evident in atrial cardiomyocytes from patients 

who subsequently developed postoperative AF compared with postoperative samples 

from patients without AF203. These inflammatory mediators sensitized cardiomyocytes 

to spontaneous release of Ca2+ from the sarcoplasmic reticulum and arrhythmogenic 

afterdepolarizations200.

Altered electrotonic gap junction communication between cardiomyocytes and leukocytes.

Similar to stromal cells, macrophages communicate with cardiomyocytes through Cx43-

containing gap junctions37,204,205. The functional relevance of heterocellular coupling 

has been indicated by synchronized electrical activity and electronic interactions between 

cardiomyocytes and stromal cells in the steady state206–208 and in ventricular infarct border 

zones209,210. In the diseased heart, Cx43 is expressed at lower levels and heterogeneously 

redistributed to the lateral sides of cardiomyocytes211. Reverse remodelling of reduced Cx43 

expression can restore electrical stability211. In the steady state, macrophage coupling affects 

cardiomyocyte action potentials, producing a more positive resting membrane potential 

as well as a decrease in APD and refractory period37. This contribution to physiological 

conduction might depend on macrophage number and phenotype, and we speculate that 

a change in these parameters might be arrhythmogenic. Data from mice with acute MI 

indicate that inflammation induced by lipopolysaccharide injections or atherosclerosis 

leads to inducible non-sustained VTs that were attributed to slower conduction205. In this 

model, macrophage expansion areas colocalized with regions of Cx43 degradation and 

decreased Cx43 expression205. In the setting of acute MI, resident cardiac macrophages, 

which stabilize physiological conduction37, die alongside ischaemic cardiomyocytes212. 

We hypothesize that the loss of these cardiomyocyte-coupled resident macrophages might 

alter conduction. Recruited, phenotypically distinct monocyte-derived macrophages boost 

macrophage numbers by an order of magnitude in the ischaemic myocardium and 

simultaneously are likely to increase conduction heterogeneity.

In support of this hypothesis, a report suggested that cardiomyocyte–macrophage coupling 

occurs in MI border zones of mice and humans213 (FIG. 3). Patients with arrhythmia after 

MI have more pro-inflammatory mononuclear cells in the circulation than patients with 

MI who do not have arrhythmia213. In vitro macrophage co-culture with cardiomyocytes 

demonstrated that cardiomyocyte APD differs depending on the macrophage phenotype 

and their gap junction status213. The concept of gap junction communication between 

cardiomyocytes and non-excitable cells has been promoted since the 1990s by Kohl and 

Noble214,215 and is supported by a study testing whether lentivirus-mediated delivery of 

Cx43 into acute myocardial lesions increased electrical signal propagation216. Gene therapy 

with Cx43 led to expression of Cx43 in (myo)fibroblasts and CD45+ leukocytes in the 

infarct region and prevented arrhythmia216. Optical mapping of Cx43-overexpressing hearts 

revealed amplified conduction velocity within the scar, indicating that the therapy increased 

Cx43-mediated coupling between cardiomyocytes and non-cardiomyocytes216.

Taken together, an emerging body of evidence suggests that leukocytes directly participate 

in conduction in healthy and diseased hearts. In HF26, myocarditis217, sepsis218 and 

acute MI154, macrophage numbers increase and phenotypes are altered. Hypothetically, 
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these changes could directly influence the action potential in cardiomyocytes, perhaps 

contributing to arrhythmia. Although we are only beginning to understand immune cell 

coupling to cardiomyocytes, we believe this field of research will reveal new therapeutic 

options for conduction disorders and arrhythmia.

Leukocyte-instigated, insulating fibrosis.

Leukocyte-mediated extracellular matrix deposition might disturb the capacity of 

cardiomyocytes to conduct properly because insulating extracellular matrix slows or even 

blocks conduction. Leukocytes orchestrate the formation of extracellular matrix in acute 

MI219, HF220 and angiotensin II-induced cardiomyocyte hypertrophy221. Macrophages 

modulate the extracellular matrix by releasing interleukins and TGFβ222–224, thereby 

activating cardiac fibroblasts. The differentiation of fibroblasts into secretory and 

contractile myofibroblasts is a cellular hallmark of cardiac fibrosis, replacing dead 

cardiomyocytes with non-contractile scar tissue. Macrophages reside in close proximity 

to patchy fibrosis and myofibroblasts in ischaemic hearts, and their abundance increases 

in segments with contractile dysfunction225,226. Indeed, the release of cytokines by 

macrophages might influence the activation and phenoconversion of cardiac fibroblasts 

into myofibroblasts227,228, which deposit collagen to form scar tissue229. Myofibroblasts 

increase Cx43 expression in cardiac injury, which could have direct implications 

for heterocellular coupling between conducting cells230. Moreover, macrophages might 

themselves produce extracellular matrix229, although the relative importance of this direct 

contribution to fibrosis is unclear.

Only a few studies have addressed the possible causal relationship between leukocytes and 

AF via fibrosis. An experimental and clinical study of the haem enzyme myeloperoxidase 

(MPO), which is typically expressed by neutrophils, mechanistically demonstrated leukocyte 

involvement in the pathogenesis of atrial fibrosis and AF231. Leukocyte-derived MPO 

generates hypochlorous acid, which modulates matrix metalloproteinase (MMP) activity 

and, therefore, extracellular matrix turnover232. MPO-deficient mice were protected against 

the development of AF, which was reversed when MPO abundance was restored231. 

Patients with AF had higher plasma concentrations of MPO and higher MPO levels in 

the right atria231. Subsequent trials confirmed these results233,234. Attenuated infiltration 

of neutrophils into the atria decreased atrial fibrosis and prevented AF episodes after 

angiotensin II infusion in CD11b-deficicent mice, providing further evidence for leukocyte-

mediated fibrosis formation in AF235.

Additional research demonstrated a positive correlation between atrial fibrosis and higher 

numbers of macrophages and myofibroblasts in epicardial adipose tissue236, which produces 

inflammatory cytokines237 and has previously been linked to the pathogenesis of AF238. 

Left atrial collagen content correlated with the abundance of IL-6, MMPs and TNF in 

epicardial adipose tissue236. These data suggest that macrophages in the peri-atrial adipose 

tissue trigger atrial fibrosis and thereby shape the arrhythmogenic substrate236.

Macrophages also mediate the resolution of fibrosis by producing MMPs, removing 

apoptotic myofibroblasts or suppressing fibroblast activation239–243. For instance, MMP7 

is produced by macrophages244 and cardiomyocytes245 during the acute phase after MI, 
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and this protease can cleave extracellular matrix substrates. Interestingly, deletion of Mmp7 
in mice resulted in improved survival after MI and decreased the degradation of Cx43, 

which in turn influenced electrical remodelling of the ventricular substrate246. Although 

the mediating effects of leukocytes on fibrosis are well established in many settings, data 

on leukocyte-mediated fibrosis in arrhythmogenesis are mostly associative at this time, 

indicating a need for mechanistic studies.

Autoimmune channelopathies.

The absence of morphological substrates and ion channel mutations in some patients with 

SCD led to the recognition of arrhythmia caused by autoantibodies247,248 that target β1-

adrenergic receptors249 or Na+, K+ or Ca2+ channels250. Cardiac inflammation and its 

resolution are believed to trigger the release of proteins (such as ion channels) that can 

become ‘self antigens’, provoking immune system humoral responses that cause plasma 

cells to generate autoantibodies. Given that potential self antigens are present in virtually 

unlimited supply, the results can be chronic autoimmunity and cardiac inflammation.

Long QT syndrome, an ECG abnormality with a prolonged repolarization phase (the QT 

interval) and extended APD, predisposes individuals to life-threatening tachyarrhythmias251. 

This channelopathy arises from either genetic variants252 or drugs that prolong the QT 

interval253. Antibodies reacting with K+ channels (Kv1.4) can induce an autoimmune 

version of the long QT syndrome254,255 (FIG. 4a). By directly binding to a channel subunit, 

antibodies limit K+ currents (the rapid component of the delayed rectifier K+ current (IKr) or 

the transient outward K+ current (Ito)), thereby prolonging the APD254. Injecting guinea pigs 

with a peptide corresponding to an extracellular subunit of the hERG K+ channel produced 

autoantibodies that inhibited IKr and lengthened the QT interval256.

Autoantibodies causing short QT syndrome in patients with dilated cardiomyopathy activate 

Kv7.1 K+ channels, increase the slow component of the delayed rectifier K+ current (IKs) 

and shorten the APD, which is associated with ventricular arrhythmias and AF257,258 

(FIG. 4a). Cardiomyocytes isolated from rabbits injected with patient serum containing 

antibodies targeting Kv7.1 had a shortened APD, increased IKs and an increased likelihood 

of arrhythmia258. Autoantibodies specific for Ro proteins (also known as Sjögren syndrome-

related antigen A; SSA)259,260, which are associated with systemic lupus and Sjögren 

syndrome, were found to be present in 60% of patients with torsades de pointes261 and 

can also trigger congenital heart block262,263. Congenital heart block is associated with 

the transplacental transfer of maternal anti-Ro/SSA antibodies to the embryo as early as 

week 11 of gestation, leading to atrioventricular block, sinus bradycardia, inflammation, 

calcification and fibrosis (also referred to as neonatal lupus)264. The major arrhythmic 

manifestation of congenital heart block is a third-degree atrioventricular block265,266; other 

ECG abnormalities, such as a long QT interval, sinus node dysfunction and atrial flutter, 

have occasionally been reported. These conduction abnormalities in the fetal heart result 

from autoantibodies targeting L-type and T-type voltage-gated Ca2+ channel α-subunits 

(Cav1.2, Cav1.3, Cav3.1 and Cav3.2), causing inhibitory effects on the L-type Ca2+ channel 

current (ICaL) and T-type Ca2+ channel current (ICaT)267,268 (FIG. 4b). A small clinical 

trial demonstrated that autoantibody-related second-degree congenital heart block can 
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be ameliorated to first-degree congenital heart block or even to normal atrioventricular 

conduction with the use of a combined anti-inflammatory therapy involving plasmapheresis, 

intravenous immunoglobulins and betamethasone269.

Some patients with idiopathic atrioventricular block have autoantibodies against Nav1.5 

(REF.270). These autoantibodies inhibit Na+ channel function and consequently decrease 

INa currents but can also lower protein expression levels of the Nav1.5 channel. Profiling 

autoantibody signatures in patients with idiopathic cardiac arrest identified autoantibodies 

against the L-type Ca2+ channels as a biomarker for sudden cardiac arrest, whereas 

autoantibodies against K+ channel subfamily K member 2 (KCNK2; also known as TREK1) 

were found in both patients with ischaemic cardiac arrest and healthy control individuals271. 

Autoantibody-induced arrhythmias have been reviewed in detail previously250.

Immune modulation and arrhythmia

Twentieth century research into electrophysiology gave rise to implantable defibrillators, 

anti-tachycardiac pacing terminating life-threatening VTs and VFs, catheter ablation 

of arrhythmic foci and antiarrhythmic drugs. However, arrhythmia-associated mortality 

remains high, and the use of some channel inhibitors was abandoned due to pro-arrhythmic 

and other adverse effects. We speculate that anti-inflammatory therapeutics might help to 

overcome these problems. Emerging data indicate that this approach is promising, such 

as the effects of low-dose hydrocortisone on AF in patients with sepsis119, IL-1 receptor 

inhibition in mice with acute MI181 or antibodies against KCNQ1 that suppress arrhythmic 

activities in ex vivo models of long QT syndrome272. We concede that this development 

is still in its early stages, which is unsurprising given that cardiac immune cells were 

virtually unknown a decade ago. The next steps involve carefully dissecting the hypothetical 

inflammatory pathways that lead to arrhythmia, followed by selecting immune targets that 

are safe — that is, inhibiting them would not compromise host immune defence. The 

increasing availability of high-resolution data, especially single-cell RNA-sequencing data 

sets, on cardiac immune cells will aid this development. Fortunately, immunomodulatory 

therapy has been successful in many diseases, including cancer, leading to optimism that 

similar objectives can be accomplished for cardiovascular disease and cardiac arrhythmias. 

Particularly promising platforms include neutralizing antibodies against cells or secreted 

proteins182, nanoparticle drug delivery to phagocytic cells such as macrophages273 and 

liposome-enabled RNA interference274. Cell therapy might also be an option, as indicated 

by data on CD8+ T cells targeting fibroblast activation protein, which reduced cardiac 

fibrosis in mice275. On the basis of these and other studies, we believe understanding 

the role of immunity in physiological conduction and exploring electroimmunological 

contributions to arrhythmias will provide a foundation for the development of next-

generation drugs to correct abnormal conduction. Of note, immune cell-targeted therapeutics 

can also elicit unwanted pro-arrhythmic adverse effects. For instance, immune checkpoint 

inhibitors can lead to myocarditis and arrhythmia276,277.
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Conclusions

Growing preclinical and clinical evidence demonstrates that immunity has a role in the 

pathophysiology of arrhythmia. Emerging findings obtained by understanding leukocyte 

electrophysiology provide insights into non-canonical leukocyte function associated with 

physiological and abnormal conduction. By extrapolating findings on the interaction 

between microglia and neurons, we suspect that cardiac macrophages might also have 

additional, currently unknown functions modulating the cardiac conduction system. 

Targeting inflammatory processes might be central to preventing and treating arrhythmias, 

but comprehensively understanding leukocyte heterogeneity, immune cell subtypes and their 

functions is necessary for the development of future therapeutic strategies for arrhythmia 

and SCD.
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Box 1 | Leukocytes and their subsets in heart homeostasis

Macrophages comprise 75% of total cardiac leukocytes, and their subsets and functions 

in cardiac health are described in the main text, but how other leukocytes present in the 

heart contribute to heart homeostasis and conduction in steady state is mostly unknown.

Neutrophils

Neutrophils are polymorphonuclear, phagocytic leukocytes that act as the first line of host 

defence against pathogens but also mediate inflammation-induced injury. Rarely found in 

the healthy myocardium, neutrophils are terminally differentiated cells with phenotypic 

heterogeneity and functional versatility290,291. The granulocyte population in the heart 

increases with age292. Myeloperoxidase, which is a haem enzyme abundantly expressed 

by neutrophils, promotes atrial fibrosis, leading to an increased vulnerability to atrial 

fibrillation231.

Dendritic cells

Dendritic cells, which are the major antigen-presenting cells, have an essential role in 

adaptive immunity and are an important link between the innate and adaptive immune 

systems293. The healthy heart contains resident cardiac dendritic cells, abundant in 

the aortic valve and sinus, that constitute about 1% of total cardiac leukocytes. These 

dendritic cells comprise CD103+CD11b− and CD103−CD11b+ subsets26,294; CD103+ 

cardiac dendritic cells proliferate more than CD11b+ cardiac dendritic cells295. CD26 

expression is higher in cardiac dendritic cells than in cardiac macrophages295. Resident 

dendritic cells isolated from the aorta and valves present antigens to CD8+ T cells in vitro 

and in vivo294.

B lymphocytes

B lymphocytes produce antibodies, present antigens and secrete factors involved 

in immune regulation. Prevalent in the healthy murine heart, B lymphocytes 

make up about 9% of cardiac leukocytes23,296,297. Myocardial B cells can 

be grouped into three subpopulations: CD19+CD11b−, CD19+CD11b+IgM+CD5+ 

and CD19+CD11b+IgM+CD5− (REF.296). Most myocardial B cells reside in the 

microvasculature and patrol along the endothelium, whereas some cross the endothelium 

into myocardial tissue298. B cell-deficient mice have fewer myocardial Ly6C+ monocytes 

and more myocardial CD4+ and CD8+ T cells298, suggesting that B cells modulate the 

composition of the myocardial leukocyte pool.

T lymphocytes

T lymphocytes elicit cell-mediated immunity and are divided into T helper cells, 

cytotoxic T cells and regulatory T cells. In the healthy heart, T lymphocytes comprise 

about 3% of total cardiac leukocytes23,297. Aged hearts have more CD8+ lymphocytes; 

CD4 to CD8 ratios decrease with age, but the functional implications of this change 

are unclear292. After myocardial infarction, activated CD4+ T lymphocytes are found 

in the heart-draining lymph nodes. Elderly MHC class II-deficient mice have preserved 

left ventricular fractional shortening and end-diastolic dimension292. Heart samples from 
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CD4-deficient or MHC class II-deficient mice showed reduced expression levels of 

pro-inflammatory cytokines compared with heart samples from wild-type mice292. These 

data indicate that CD4+ T lymphocytes mediate inflammation and mild dysfunction in 

aged hearts.

Mast cells

Mast cells are well known as primary effector cells of allergic and anaphylactic reactions. 

Mouse28,299 and human24,300 hearts contain a fairly low number of mast cells. Most 

of the heart’s mast cells are located in the myocardium and in the epicardium28. Mast 

cell-derived renin cleaved angiotensin I and promoted local angiotensin II formation and 

arrhythmias in guinea-pig isolated hearts subjected to ischaemia301. In addition, cardiac 

mast cells accumulated in the left and right atria of mice with pressure overload, where 

they promoted atrial fibrosis through the secretion of platelet-derived growth factor A302.
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Box 2 | Technological developments

Optogenetics

Optogenetics combines genetic and optical methods to cause or inhibit precisely 

defined events in specific cells of living tissue and animals303. There are two classes 

of optogenetic devices: actuators and light-emitting sensors304. Actuators, such as 

channelrhodopsin 2 (ChR2), transduce optical signals into physiological signals. Light 

exposure at a certain wavelength elicits action potentials in ChR2-expressing cells, 

such as neurons305,306. ChR2 opens after absorption of a photon to generate a large 

permeability for cations, leading to depolarization307. Sensor proteins, such as voltage-

sensitive fluorescent protein308 or green Ca2+ indicator protein (GCaMP)309, produce 

fluorescent signals in response to changes in membrane potential, intracellular Ca2+ 

concentration or synaptic transmission, which make such activity detectable. The first 

cardiac optogenetics studies used light to pace the hearts of transgenic mice310 and to 

modulate pacemaker activity in the hearts of zebrafish311. Optogenetics can be used 

to alter the function of both cardiomyocytes312 and non-cardiomyocytes37. Moreover, 

optogenetics can be used to terminate arrhythmias in rodent hearts313–315.

Intravital microscopy

Intravital microscopy provides the ability to visualize and quantify events in the native 

tissue environment. Subcellular spatial and millisecond temporal resolution in the mouse 

heart in vivo were achieved by combining tissue stabilization, cardiac gating and image-

processing algorithms to suppress motion artefacts316,317. Fluorescent imaging probes 

can be used to assay physiology and cell–cell interaction in the heart by staining 

for specific cells, including leukocytes75. Imaging of the genetically encoded, highly 

sensitive Ca2+ indicator GCaMP6 (REF.76) in the beating heart resolves Ca2+ dynamics 

in single cardiomyocytes318. In the future, cardiac intravital microscopy will be used 

quantitatively to measure not only cardiomyocyte contraction317 but also membrane 

potential changes, Ca2+ signalling at the cellular level318 and leukocyte trafficking319.
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Key points

• Immune cells express various ion channels that influence their phenotypes 

and functions.

• Numerous leukocytes reside in the normal myocardium; their numbers, 

phenotypes and electrophysiological properties change in pathologies that 

give rise to arrhythmia, including acute myocardial infarction, sepsis, heart 

failure and myocarditis.

• Macrophages are the most abundant leukocytes in the heart and 

electrotonically couple to cardiomyocytes via connexin 43-containing gap 

junctions; this sink–source relationship leads to rhythmic macrophage 

depolarization and modulates the resting membrane potential and action 

potential of cardiomyocytes.

• Leukocytes might contribute to rhythm disorders either directly through 

altered coupling or indirectly by influencing cardiomyocytes and their 

environment.

• Indirect pro-arrhythmic leukocyte actions include production of cytokines and 

antibodies, which act on cardiomyocytes and change tissue properties by 

instigating fibrosis.

• Immunotherapy is an emerging option for the treatment of rhythm disorders 

such as atrial fibrillation.
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Fig. 1 |. Electrophysiological concepts of conduction and arrhythmogenesis.
a | The physiological cardiac action potential can be divided into different phases. 

Depolarization due to rapid Na+ influx (phase 0). Transient K+ channels open and cause K+ 

efflux (phase 1). The plateau phase is facilitated by Ca2+ influx and counterbalanced by K+ 

efflux (phase 2). Closing of the Ca2+ channels causes rapid repolarization, but K+ channels 

remain open until the membrane potential returns to −90 mV (phase 3). Resting membrane 

potential, with Na+ and Ca2+ channels closed, but K+ channels open, holding the membrane 

potential at −90 mV (phase 4). b | Triggered activity usually results from prematurely 

activated cardiac tissue, causing early or late afterdepolarizations. c | Increased automaticity 

from dominant pacemaker cells is usually triggered by abnormal impulse function and 

can lead to tachyarrhythmias by increasing the rate of action potential discharge due to 

sympathetic stimulation, whereas decreased pacemaker rates slow the heart rate. d | A 

depolarizing impulse (red arrow) encounters an anatomical obstacle and circles around it. 

The electrical impulse constantly ‘runs around’ the block, along the excitable tissue gap. If 

the wavefront never reaches the refractory tail, a re-entrant loop forms, causing sustained 

arrhythmia. ECG, electrocardiogram; LV, left ventricular.
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Fig. 2 |. Leukocyte-released cytokines shape the arrhythmogenic substrate.
Structural remodelling can be facilitated by leukocyte-released cytokines (such as 

tumour necrosis factor) by decreasing connexin (Cx) protein expression, hampering 

the intercellular conduction between cardiomyocytes and non-cardiomyocytes (such as 

leukocytes), ultimately affecting the cardiomyocyte action potential morphology, or by 

activating fibroblasts to become myofibroblasts, resulting in collagen deposition, shaping 

an arrhythmogenic substrate. Electrical remodelling by leukocyte-released cytokines usually 

refers to effects on ion channel expression (such as the sarcoplasmic/endoplasmic reticulum 

Ca2+ ATPase 2a (SERCA2a)), leading to abnormal Ca2+ handling in cardiomyocytes. 

Both structural and electrical remodelling increase conduction heterogeneity and 

arrhythmogenicity. PLN, phospholamban; RYR2, ryanodine receptor 2; SR, sarcoplasmic 

reticulum.
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Fig. 3 |. Macrophage–cardiomyocyte interactions.
a Macrophages are coupled to cardiomyocytes via connexin 43-containing gap junctions, 

which allow cation exchange that contributes to the steady-state cardiomyocyte action 

potential and improves atrioventricular node conduction. b | In the diseased heart, 

macrophages undergo phenotypic changes (for example, tissue-resident macrophages die 

and are replaced by monocyte-derived macrophages, which have distinct features) and are 

recruited in enormous numbers to the site of injury, affecting the cardiomyocyte action 

potential by modulating repolarization and conduction velocity and increasing conduction 

heterogeneity.
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Fig. 4 |. Autoimmune channelopathies.
a | Autoantibodies released by plasma cells can either inhibit ventricular ion channels such 

as hERG and Kv1.4, producing long QT syndrome, or activate ventricular ion channels such 

as Kv7.1, producing short QT syndrome. b | In pacemaker cells, blockade of Ca2+ channel 

subunits by autoantibodies can generate atrioventricular block or sinus bradycardia.
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