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Abstract

Background: Machine learning may enhance prediction of outcomes after coronary artery 

bypass grafting (CABG). We sought to develop and validate a dynamic machine learning model to 

predict CABG outcomes at clinically relevant pre- and postoperative timepoints.

Methods: The Society of Thoracic Surgeons (STS) registry data elements from 2,086 isolated 

CABG patients were divided into training and testing datasets and input into XGBoost decision-

tree machine learning algorithms. Two prediction models were developed based on data from 

the pre- (80 parameters) and postoperative (125 parameters) phases of care. Outcomes included 

operative mortality, major morbidity or mortality, high-cost, and 30-day readmission. Machine 

learning and STS model performance was assessed using accuracy and the area under the 

precision-recall curve (AUC-PR).

Results: Preoperative machine learning models predicted mortality (Accuracy=98%; AUC-

PR=0.16; F1=0.24), major morbidity or mortality (Accuracy =75%; AUC-PR=0.33; F1=0.42), 

high cost (Accuracy =83%; AUC-PR=0.51; F1=0.52), and 30-day readmission (Accuracy =70%; 

AUC-PR=0.47; F1=0.49) with high accuracy. Preoperative machine learning models performed 
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similar to the STS for prediction of mortality (STS AUC-PR=0.11;p=0.409) and outperformed 

STS for prediction of mortality or major morbidity (STS AUC-PR=0.28;p<0.001). Addition 

of intraoperative parameters further improved machine learning model performance for major 

morbidity or mortality (AUC-PR=0.39;p<0.01) and high cost (AUC-PR=0.64;p<0.01), with cross-

clamp and bypass times emerging as important additive predictive parameters.

Conclusions: Machine learning can predict mortality, major morbidity, high cost, and 

readmission after isolated CABG. Prediction based on the phase of care allows for dynamic 

risk assessment through the hospital course, which may benefit quality assessment and clinical 

decision making.

Graphical Abstract

Coronary artery bypass graft (CABG) is the most frequently performed cardiac operation, 

however, significant variability exists in outcomes at a national level. Multiple highly 

sophisticated models have been developed to guide clinical decision making; these include 

the Society of Thoracic Surgeons (STS) Predicted Risk of Mortality (PROM) and the 

EUROSCORE II.(1,2) These models use a large number of patient-level datapoints and 

apply sophisticated logistic regression statistics to predict postoperative outcomes based on 

preoperative datapoints. These calculators have been widely validated and remain the gold 

standard for risk prediction.(3)

Machine learning (ML) is a branch of artificial intelligence which can identify linear and 

non-linear patterns across input parameters which contribute to output class results.(6) In 

healthcare, one of its applications is evaluating clinical data for previously unknown or 

complex interactions between clinical data parameters contributing to a predicted outcome. 

ML algorithms can ingest large patient datasets to predict an outcome and support 

enhanced data insights to better risk-stratify patients.. Previous studies that have applied 

ML algorithms to predict outcomes after cardiac surgery suggest that ML may be better than 

current models.(4,5) As such, ML is currently being evaluated by cardiothoracic surgical 
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societies for application to national databases in order to enable more accurate prediction of 

outcomes.(6,7)

Moreover, ML has the potential to continuously “learn”, and when coupled with high-

performance computing power, may enable continuously evolving risk models capable of 

providing institution and surgeon-specific risk. Furthermore, ML algorithms may allow for 

a dynamic risk prediction throughout the different phases of clinical care (i.e. preoperative, 

operative, intensive care unit, floor, and discharge). However, current clinical calculators 

only provide preoperative risk estimates. A dynamic phase of care clinical risk calculator 

may allow for more appropriate deployment of resources and aid in clinical decision 

making.

The objective of this study was to develop and validate a decision-tree based ML algorithm 

that could predict patient outcomes after CABG. We evaluated performance of prediction 

for post-CABG mortality, major morbidity or mortality, cost, and readmission. We further 

evaluated performance at different phases of clinical care.

Patients and Methods

This study was approved by the Baylor College of Medicine Institutional Review Board 

(H-44702) and informed consent was waived.

Study Population

The algorithm was trained and tested using preoperative and operative parameters of patients 

within the Baylor College of Medicine STS Adult Cardiac Surgery Database who underwent 

isolated CABG between 2015–2020 (n=2,086). Patient records were linked to cost, utilizing 

financial billing records for each hospitalization and hospital cost-to-charge ratios. This 

dataset included relevant patient demographics, comorbidities, laboratory values, operative, 

and outcome data as delineated by the STS Adult Cardiac Surgery database definitions 

versions 2.81 and 2.9.

Tables 1, 2 and Supplemental Table 1 describe the pre- and operative characteristics of 

the population. The mean age at the time of surgery was 65±10 years, and 514 patients 

(25%) were female. Median 3 distal anastomoses were performed with median bypass and 

cross-clamp times of 69 and 40 minutes.

Predictive Outcomes

The primary outcomes were operative mortality, major morbidity or mortality, high total 

hospitalization cost, and 30-day readmission. Predictive models were developed at two 

clinically relevant timepoints corresponding to distinct phases of care. The Preoperative 

Phase of Care model consisted of parameters that were only available to the clinician 

immediately preoperatively. The postoperative Phase of Care model consisted of parameters 

available upon admission to the intensive care unit (ICU) after surgery. Mortality was 

defined as in-hospital or 30-day out of hospital mortality per STS definitions. Major 

morbidity was defined as reoperations for any cardiac reason, renal failure, deep sternal 

wound infection, prolonged ventilation/intubation, or cerebrovascular accident/permanent 
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stroke. Patients were classified as high cost if total patient care cost including hospitalization 

cost was above the 75th percentile, which was $48,667 for this cohort. Readmission was 

defined as any readmission within 30 days of discharge.

ML Input Parameter Selection for Phases of Clinical Care

For the Preoperative Phase of Care model, all preoperative data parameters (STS data 

elements 50–1855 in Ver 2.81 and Ver 2.9) were included. For the postoerative Phase of 

Care model, all operative parameters (STS data elements 1960–2710 in Ver 2.81 and Ver 

2.9) were added to the available model parameters (Supplemental Table 2). When less than 

50% of patients had available data for a parameter, the parameter was excluded.(8,9) The 

parameters with similar clinical significance were merged. These input parameter exclusion 

criteria reduced the available parameters to 80 preoperative and 45 operative parameters. 

This resulted in 80 and 125 parameters for the pre- and postoperative models, respectively.

Model Development

Multiple classification models have been applied to healthcare outcomes. Some other 

common models are support vector machines, artificial neural networks, and random forest 

algorithms.(10,11) For this analysis, an Extreme Gradient Boosting (XGBoost) algorithm 

was utilized. This is an ensemble tree method that supports the identification of both linear 

and nonlinear data patterns in the datasets. Imbalanced cross-validation capabilities are 

integrated into XGBoost and the algorithm offers the ability to tune and optimize a range 

of hyperparameters, i.e. model parameters that are not derived from underlying data but can 

be set to control the learning process. Additionally, XGBoost has an advantage in that it is 

computationally efficient, handles missing data effectively, and provides both a probability 

output as well as insight into the importance of each parameter. Figure 1 provides an 

overview of the process performed.

An XGBoost model for each outcome of interest was optimized to maximize the AUC-

PR. The XGBoost algorithm contained 19 available hyperparameters and 10 of these 

hyperparameters, shown in Supplemental Table 3, were optimized. These were chosen for 

their ability to address the imbalanced nature of the datasets and prevent overfitting. An 

80/20 and 50/50 split were used between the training and testing datasets by a simple 

randomization technique. The 80/20 split performed better for all outcomes except for 

mortality, in which the highly imbalanced dataset prevented accurate assessment of model 

performance. Supplemental Table 4 provides the baseline characteristics of the testing and 

training datasets.

Using the grid search optimization library and optimization routines, the XGBoost models 

were optimized using up to 20,000 iterations across a range of hyperparameter combinations 

and performing 5-fold cross-validation. A two-pass optimization was performed, in the 

first a wider range of hyperparameter settings was applied. Afterwards, more granular 

hyperparameter settings in a narrower range were applied. This made the process 

computationally efficient. XGBoost provides the feature importance for each parameter, 

which represents the number of times each parameter was a decision point in the tree. The 

relative feature importance was calculated as the feature importance score for the parameter 
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divided by the sum of feature importance score for all the input parameters for each model. 

Model development, optimization and testing were performed on workstations containing 

Intel 40 CPU processing cores and 128 GB RAM utilizing the Ubuntu Linux operating 

system. The algorithms were developed using libraries including the Python programming 

language, scikit-learn (XGBoost), pandas (dataset partitioning), NumPy (data arrays), and 

matlibplot (feature importance plots).

Model Performance Assessment

For each model, accuracy, area under the curve of the receiver operator characteristic (AUC-

ROC) curve, precision-recall (AUC-PR) curve, and F1 scores were derived to assess model 

performance as noted in Supplemental Figure 1. Accuracy was defined as the number of 

true positives and true negatives divided by the entire cohort. Precision was calculated as 

true positives divided by the sum of true positives and false negatives. Recall was calculated 

as true positives divided by the sum of true positives and false positives. The PR curve 

and F1 scores are more accurate for assessing unbalanced datasets. The preoperative model 

was compared to STS risk scores for outcomes with established calculators (PROM and 

predicted risk of mortality or major morbidity [PROMM]). Model performance was then 

compared between the preoperative versus postoperative model. The comparison between 

models for AUC-ROC and AUC-PR were done using DeLong’s test and bootstrapping, 

respectively. These analyses were done in R (Foundation for Statistical Computing, Vienna, 

Austria), using the glm, caret, pROC, PRROC and MASS packages.

Results

Mortality

Operative mortality was 2.0%. The preoperative model had an accuracy of 98%, an AUC-

ROC of 0.77, AUC-PR of 0.16, and F1 score of 0.244.(Figure 2A) The most important 

predictive parameters were white blood cell count (13%), platelets (9%), weight (8%), 

hematocrit (8%), and ejection fraction (6%) as depicted in Figure 2B. The ML model 

performed similar to the STS PROM (AUC-PR of 0.16 [ML] versus 0.11 [STS PROM]; 

p=0.409).

Major Morbidity or Mortality

Major morbidity or mortality for the cohort was 16.8% (n=351), table 3 described a 

breakdown of these. The preoperative model had an accuracy of 75%, AUC-ROC of 0.69, 

AUC-PR of 0.33, and F1 score of 0.42 as seen in Figure 3A. The most important parameters 

were preoperative creatinine (9%), hematocrit (8%), hemoglobin A1c (6%), platelets (6%) 

and white blood cell count (6%) as illustrated in Figure 3B. The ML model performed 

superior to the STS PROMM (AUC-PR of 0.33 [ML] vs 0.28 [STS]; p<0.001).

High Total Hospitalization Cost

Among the 1,680 patients with hospital cost data, the average cost was $43,044.79. The 

preoperative cost model achieved an accuracy of 77%, AUC-ROC of 0.75, AUC-PR of 

0.51, and F1 score of 0.52 shown in Figure 4A. The parameters with the highest feature 
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importance were ejection fraction (7%), preoperative creatinine (7%), platelets (7%), weight 

(7%), and hematocrit (6%) as seen in Figure 4B.

30-day Readmission

Among the 1142 patients with readmission data, 252 (22%) were readmitted within 30 

days. The preoperative model achieved an accuracy of 70%, AUC-ROC of 0.73, AUC-PR 

of 0.47, and F1 score of 0.49, as shown in figure 5A. Figure 5B shows the parameters 

with the highest feature importance, the top five of which were weight (8%), platelets (7%), 

creatinine (7%), hematocrit (7%), and ejection fraction (6%).

Phase of Care Prediction Models

Postoperative Phase of Care risk models were developed utilizing pre- and operative 

parameters for all outcomes. Notably, operative factors such as bypass and cross-clamp 

time and lowest intraoperative hematocrit and temperature, became high feature importance 

for prediction of all outcomes. Figure 6 illustrates the variation in relative feature importance 

and modulation of relative feature importance in pre- vs postoperative models. For example, 

weight was consistently a high importance predictor, but its relative importance decreased 

(8% to 5% for operative mortality) after adding operative parameters for all four outcomes. 

The full list of feature importance is shown in Supplemental Tables 5–8.

The differences between the pre- and postoperative models are described in Table 4. Overall, 

modest improvements in AUC-ROC, AUC-PR, F1 score, and accuracy were seen among all 

outcomes. Most notably, postoperative ML models for major morbidity or mortality and for 

high cost performed superior to preoperative ML models (p<0.001).

Comment

In this study, a ML XGBoost model to predict postoperative CABG outcomes of operative 

mortality, major morbidity, high cost, and 30-day readmission was developed and validated. 

The ML algorithm predicted major morbidity or mortality better than the established STS 

PROMM score. Addition of operative parameters improved prediction performance, as 

indicated by higher AUC and F1 scores for prediction of major morbidity or mortality and 

high cost. The addition of parameters through the phase of care may enable a dynamic risk 

prediction strategy for patients undergoing CABG.

ML has been previously evaluated to predict mortality after CABG. Prediction of low 

frequency events, such as operative mortality after CABG (2.2% in STS national data) is 

challenging for all statistical models. A recent meta-analysis identified 15 studies using ML 

algorithms to predict outcomes after cardiac surgery.(4) Seven of these were specific to 

patients undergoing CABG. These studies included only preoperative variables, employed 

mostly neural networks, and achieved an AUC-ROC between 0.76 and 0.91. However, a 

significant limitation of neural networks is the inability to determine the importance of 

individual risk factors for predicting outcomes. This lack of interpretability limits utility in 

medical applications and adds to the “black-box” concern of ML. Lippmann and colleagues 

also utilized neural networks to evaluate 80,606 patients from the national STS database. 

They found that neural networks could accurately predict mortality risk in most patients 
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except for those at the highest risk; calibration improved when combined with logistic 

regression as assessed by calibration plots.(12) One of the challenges of this landmark 

study is that the AUC-ROC was calculated without accounting for the imbalanced dataset, 

which is likely to overestimate model performance. These considerations emphasize the 

significant advantages of XGBoost decision tree models when applied to real-world datasets. 

Additionally, we used the more accurate F1 score and AUC-PR to assess performance in 

these imbalanced datasets, particularly for mortality.

Kilic and colleagues examined over 11,000 patients, of which 7,048 underwent an isolated 

CABG.(5) They found that the XGBoost ML model offered modest improvements when 

compared to the STS PROM, similar to our findings. Our current study supports the 

conclusions from prior studies, while also expanding the use ML to prediction of other key 

CABG metrics. Major morbidity is highly relevant to patient outcomes and a more frequent 

event compared to mortality. This is one of the few studies to utilize ML to predict major 

morbidity as defined by STS. The prediction of major morbidity may play an important role 

in decision making, especially in high-risk groups, such as elderly patients.

Current risk predictors rely on preoperative parameters. Clinical intuition tells us that more 

accurate prediction should be possible through the phases of clinical care. This is one of 

the few studies to evaluate risk prediction for multiple outcomes at these two distinct time 

points using ML and the first to assess cost. Not surprisingly, bypass times and cross-clamp 

times were found to have an important role in predicting risk for patients after CABG. Prior 

studies estimate the odds of perioperative mortality increase by 1.4–1.8 times per 30-minute 

increments in bypass time.(13,14) The findings of lowest hematocrit and blood transfusion 

as important predictors also correlate with literature showing excessive blood loss increases 

risk of adverse outcomes.(15,16)

Interestingly, preoperative thrombocytopenia has been described as a risk for mortality and 

major morbidity in CABG. A possible explanation is the increased risk of bleeding.(17) 

Finally, an increased white blood cell count could be associated with a preoperative higher 

inflammatory state and increase the chance of complications.(18) The current findings are 

consistent with previous literature and point to paying closer attention to frequently obtained 

laboratory tests.

Prediction performance improved for morbidity or mortality and high cost upon arrival to 

ICU. For medical and surgical ICU patients, Thorsen-Meyer and colleagues applied artificial 

neural networks to predict 90-day mortality in 14,190 ICU admissions.(19) They found 

that the AUC-ROC at time of admission was 0.75, which increased to 0.82 at 72 hours 

afterwards. Since the model did not significantly improved postoperatively for mortality and 

readmission, it is possible that the preoperative parameters are more relevant predictors. 

Using this framework to predict risk by phase of care, and quality assessment at different 

phases may identify opportunities to improve patient outcomes.

Finally, ML predicted 30-day readmission and high cost, two outcomes for which no 

standardized regression model exists. With reduction in mortality, resource utilization 

is becoming an increasingly important outcome. Major databases have previously been 
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explored by our group and others to predict 30- and 90-day readmission with AUC-ROCs 

ranging between 0.62–0.67 using logistic regression.(20,21) Manyam recently assessed the 

use of an XGBoost model to predict post-CABG readmission and developed a model with 

AUC-ROC of 0.87 on the testing cohort once time-dependent variables were added.(15) 

This study adds to the literature by providing insight into the predictors of readmission. 

Prediction of hospital cost remains challenging yet is an obvious need for reimbursement 

and resource allocation. In this study, ML enabled identification of a cohort of patients that 

are high cost for CABG.

This study has some limitations. Similar to others, we found that ML performed on-par 

than the existing STS model for mortality. For most post-CABG outcomes, especially 

mortality rate (2.0%), event rates are low, leading to highly unbalanced datasets. Thereby 

overfitting of the model is possible despite the characteristic strength of XGBoost to use 

of hyperparameter tuning and confusion matrices to avoid this. This limitation would also 

improve with access to larger datasets with greater number of events to further improve the 

model’s training and performance.(22) Finally, this model was applied to one timepoint 

in the postoperative period with data available in the STS database. The addition of 

hemodynamic data and medication may allow for a deep learning model to produce real-

time risk scores, particularly if incorporated with the electronic medical record.

Conclusions

In conclusion, this study has demonstrated that a ML model can be used to predict mortality, 

major morbidity, high total hospitalization cost, and 30-day readmission. Furthermore, 

adding operative parameters enhances the predictive capabilities of the model, allowing for 

dynamic prediction of risk at clinically relevant time points. Major preoperative predictors 

included laboratory values, weight, ejection fraction, and kidney disease, while major 

operative factors included cardiopulmonary bypass time, aortic cross-clamp time, lowest 

temperature, lowest hemoglobin, and highest glucose. Applying these methods to larger 

databases and the application of higher computational power to efficiently mine data from 

the electronic medical record would make real-time risk prediction feasible and enhance 

outcome prediction.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Abbreviations:

AUC Area under the curve

CABG Coronary Artery Bypass Graft

ICU Intensive Care Unit

ML Machine Learning

PROM Predicted risk of mortality
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PROMM Predicted risk of morbidity or mortality

PR Precision-Recall

ROC Receiver operator curve

STS Society of Thoracic Surgeons
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Figure 1. 
Overview of the methodology followed to develop the machine learning models. The 

outcomes were defined, and the initial datasets split 50/50 or 80/20. Following that, a 

preoperative model and a postoperative model were developed, the lower part shows some 

representative decision trees in this study. Finally, the key findings including most important 

predictors and change of the model performance per phase of care were assessed.
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Figure 2. 
(A) Precision-recall curve and (B) relative feature importance of top 15 feature importance 

scores for operative mortality in the preoperative model.

INR: International normalized ration, LV: Left ventricular, WBC: White blood cell count.
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Figure 3. 
(A) Precision-recall curve and (B) relative feature importance of top 15 features for 

operative mortality or morbidity in the preoperative model.

INR: International normalized ration, LV: Left ventricular, WBC: White blood cell count.
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Figure 4. 
(A) Precision-recall curve and (B) relative feature importance of top 15 features for high 

cost in the preoperative model.

INR: International normalized ration, LVEF: Left ventricular ejection fraction, WBC: White 

blood cell count.
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Figure 5. 
(A) Precision-recall curve and (B) relative feature importance of top 15 features for 30-day 

readmission in the preoperative model.

CAD: Coronary artery disease, LV: Left ventricular, WBC: White blood cell count.
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Figure 6. 
Changes in most predictive parameters between pre- and postoperative models for mortality 

(A), major morbidity or mortality (B), high cost (C), and 30-day readmission (D). Only the 

top 15 for each are included, the table is ordered in decreasing value per the preoperative 

model. CAD: Coronary Artery Disease; INR: International Normalized Ratio; LVEF: Left 

Ventricular Ejection Fraction; WBC: White blood cell count
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Table 1.

Patient Demographics and Comorbidities

Parameter Overall
N=2,086

Age 65(59–72)

Female Gender 514(24.6%)

Urgency of Procedure

 Elective 719(37.9%)

 Urgent 1,240(59.4%)

 Emergent/Salvage 55(2.6%)

Diabetes 1,170(56.1%)

Dyslipidemia 1,886(91.4%)

ESRD on dialysis 156(7.5%)

Hypertension 1,949(93.5%)

Congestive heart failure 637(30.5%)

Left Ventricular Ejection Fraction 55%(45–60)

Liver disease 139(6.7%)

Peripheral vascular disease 290(14.0%)

Cerebrovascular Disease 457(21.9%)

Preoperative Laboratory Values

 Hematocrit 39.7(35.2–43.0)

 White Blood Cell Count 7.5(6.2–9.1)

 Platelets (thousands) 209(172–249)

 Creatinine 1.0(0.8–1.2)

 INR 1.1(1.0–1.1)

 Hemoglobin A1c 6.3(5.6–7.6)

ESRD: End stage renal disease, INR: International normalized ratio. Categorical variables reported as frequency and percentage, continuous 
variables reported as median and interquartile range.
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Table 2:

Operative Characteristics

Operative Parameter Overall
N=2,086

Number of distal anastomoses 3(2–4)

Cardiopulmonary bypass time(min) 69(46–110)

Aortic cross-clamp time(min) 40(27–69)

Lowest intraoperative hematocrit(g/dL) 25(21–29)

Lowest intraoperative temperature(C) 31(30–34)

Highest intraoperative glucose(mg/dL) 199(160–244)

Received intraoperative blood transfusion 879(42.5%)

Data reported in frequency(%) and median(interquartile range), as appropriate.
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Table 3.

Outcomes of CABG Patients.

Outcome Result

Operative Mortality 41(2.0%)

Major Morbidity 342(16.4%)

 Prolonged Ventilation 226(10.8%)

 Renal Failure 44(2.1%)

 Cardiac Reoperation 98(4.7%)

 Stroke 37(1.8%)

 Sternal Wound Infection 12 (0.6%)

Cost $43,044(26,644–48,667)

30-day Readmission 252/1,142(22%)

Data reported in frequency (%) and median (interquartile range), as appropriate.
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