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ABSTRACT

Background: The dynamics of the cellular glycolysis pathway underpin cellular function and dysfunction, and therefore ultimately health,
disease, diagnostic and therapeutic strategies. Evolving our understanding of this fundamental process and its dynamics remains critical.
Scope of review: This paper reviews the medical relevance of glycolytic pathway in depth and explores the current state of the art for monitoring
and modelling the dynamics of the process. The future perspectives of label free, vibrational microspectroscopic techniques to overcome the
limitations of the current approaches are considered.
Major conclusions: Vibrational microspectroscopic techniques can potentially operate in the niche area of limitations of other omics tech-
nologies for non-destructive, real-time, in vivo label-free monitoring of glycolysis dynamics at a cellular and subcellular level.
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1. INTRODUCTION

Most of the metabolic networks for energy production/nutrient uti-
lisation were elucidated during the ‘golden age of biochemistry’
(roughly 1920se1960s) [1], resulting in around fifteen Noble Prizes
related to energy balance or core metabolic pathways [1]. Glycolysis,
an anaerobic mechanism, is believed to be the first ATP production
pathway to evolve, as it is common to both prokaryotes and eukaryotes
[2,3]. It is involved in aerobic and anaerobic energy production,
responsible for production of precursors for other metabolic pathways
and serves as the primary energy source for cells without mitochondria
[4]. The glycolysis process was first explored by Louis Pasteur in the
1800s, and it took almost 100 years to fully elucidate the complete
pathway, proposed by Embden, Meyerhof and Parnas in the 1940s [5].
Glycolysis is intricately linked with several human disease mechanisms
and drug toxicities [1,6,7]. It is involved in a multitude of epidemic
diseases such as cancer [8], neurological disorders [9], diabetes [10],
etc., and has attracted substantial attention from scientific community
for disease diagnostics [11], therapy [12,13], drug targeting [14], etc.
Almost 8 decades after the complete elucidation of the pathway, new
insights continue to emerge, and reconsideration of the original dogma
of the pathway has even been proposed [15].
Technologies to monitor glucose metabolism with increasing effi-
ciencies continue to emerge, taking more and more holistic ap-
proaches to map the inter- and intra-cellular interactions. Omics
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approaches (metabolomics, proteomics, lipidomics, transcriptomics,
genomics, etc.), employing high-throughput technologies, have
opened up new opportunities in systems-biology, such that different
genotypic/phenotypic levels of intracellular metabolic activities can be
captured in a snapshot with high-precision and efficiency [16]. The
massive amount of data generated requires intensive statistical anal-
ysis to resolve the underlying processes and, additionally, this data can
be computationally-modelled and simulated to enrich the experimental
observations, guide experimental strategies, and predict pathway ki-
netics to hypothesise the behaviour of the system and its components
[17,18]. Knowledge and understanding of cellular metabolic dynamics
are essential for differentiation between healthy and diseased cells
[19], identifying target pathways and drug discovery for disease
therapy [12,20e22], etc., which opens up scope for development of
novel strategies for dynamic, non-destructive, single-cell metabolic
analysis. Dynamic analysis of the systemic interactions remain a
challenge, given the multi-omics analysis techniques are destructive to
cell/tissue samples, and demand multiple experimental setups.
Furthermore, omics technologies are restricted by the minimum
sample detection limit which makes single-cell analysis complicated,
as due to the cellular heterogeneity some features might be missed in
analysis of cell populations [23]. Cellomics, also referred to as high-
content analysis/screening, involves labelling, imaging, analysis, and
visualisation of the biological system to provide a better alternative for
decoding single-cell dynamics. However, labelling techniques are, by
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definition, limited to visualisation of what has been labelled and as-
sume an a priori knowledge of the process to be monitored. As an
alternative, vibrational spectroscopy provides a label-free, holistic
representation of the biomolecular content of the sample, in real-time
[24]. It is a relatively well established analytical approach, compared to
modern omics approaches, but is being increasingly investigated for
clinical and pharmaceutical applications, given the development of
ever more sophisticated microscopic instrumentation enabling cellular
and subcellular analysis, as well as tools to datamine and analyse the
complex datasets [25e27]. Although many approaches to date have
focussed on analysis of tissues, and biofluids for disease diagnostics
[28,29], the potential of vibrational spectroscopy for cellular and
subcellular analysis of dynamic processes is increasingly being
explored [30e34], including for in vitro drug screening and toxicology
analyses of cell lines [27,35e37].
In this paper, we review the medical relevance of the glycolytic
pathway in detail and briefly explore the current state of art for its
monitoring and modelling. The future perspectives specifically focuses
on the potential of vibrational microspectroscopic techniques, which
are non-destructive, and can be harnessed to gain insights into the
cellular metabolism in a label-free, dynamic manner. Additionally, the
high resolution of microspectroscopy can be used for analysis at
organelle level in a single-cell.

2. THE GLYCOLYSIS PATHWAY: CURRENT UNDERSTANDING

Glycolysis is a ten-step anaerobic process (Figure 1_A) divided into two
phases. The first five steps are collectively referred to as the prepa-
ratory/investment phase, in which the six-carbon glucose molecule is
broken down into two, three-carbon carbon molecules by investing
energy, while the proceeding five steps are termed the payoff phase, in
which energy is produced.
The first, irreversible, regulatory investment step in glycolysis is
phosphorylation of glucose to glucose-6-phosphate (G6P), catalysed
by hexokinase (cofactors Mgþþ, Mnþþ). Consuming one adenosine
triphosphate (ATP) molecule ensures maximum intake of glucose as
the added charge prevents it diffusing out of the cell [38]. Glucokinase
is a differentially regulated isozyme of hexokinase, present only in the
liver and beta cells along with hexokinase [39]. Glucokinase is stim-
ulated by insulin and supressed by cyclic adenosine monophosphate in
the liver, and activated by increased glucose concentration in the
pancreas [40,41]. Glucokinase has significantly lower affinity to
glucose, lowering its uptake in liver cells during starvation to spare
glucose for more important organs. Glucokinase remains unaffected by
the accumulation of G6P and continues to phosphorylate glucose
(Figure 1_B.2). Hence, the presence of an extra isozyme helps liver
cells regulate the glucose concentration in the body.
The second irreversible, regulatory investment step is the phosphor-
ylation of fructose-6-phosphate (F6P) to fructose-1,6-bisphosphate
(F1,6BP), catalysed by phosphofructokinase (PFK, cofactor Mgþþ),
consuming one ATP molecule. It is the commitment step of glycolysis,
as, if the reaction proceeds beyond this point, it must proceed through
the entire pathway. Deactivation of PFK leads to F6P accumulation
which is freely converted back to G6P, as per Le Chatelier’s principle
[42], and inhibits hexokinase (Figure 1_B.1). The two types of PFK; PFK
1 and PFK 2 in humans have the same substrate but yield F1,6BP and
F2,6BP, respectively. PFK2 has additional phosphatase activity along
with the kinase activity. The PFK enzyme is allosterically inhibited by
ATP, citrate and upregulated by AMP and F2,6BP (Figure 1_C). The
feed forward stimulation in liver promotes the activity of PFK using
F2,6 P.
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The first energy production step (step 6 in the pathway, payoff phase)
is the conversion of glyceraldehyde 3-phosphate (G3P) to 1,3-
bisphosphoglycerate (1,3BPG), which is catalysed by glyceraldehyde-
3-phosphate dehydrogenase (GAPDH), an oxidoreductase enzyme.
This reaction converts a Nicotinamide adenine dinucleotide (NAD)
molecule to NADH, which can be further utilised in electron transport
chain to produce ATP. Further, 1,3BPG is converted to 3-
phosphoglycerate (step 7 in pathway) which produces an ATP mole-
cule from adenosine diphosphate (ADP). This reaction is catalysed by
phosphoglycerate kinase (cofactors Mgþþ, Mnþþ).
The final step of glycolysis, conversion of phosphoenol pyruvate to
pyruvate (step 10 in the pathway) is catalysed by the pyruvate kinase
(PK) (cofactors Mgþþ, Kþþ) enzyme. This is an irreversible regu-
latory reaction. Elevated levels of ATP and alanine create negative
feedback to inhibit PK. Fructose 1,6 bisphosphate stimulates this
enzyme in the absence of ATP. In liver cells, an additional L isozyme of
PK is present along with the M isozyme (L-liver, M-muscle) but the L
form is predominant. The L form is controlled by phosphorylation,
which deactivates the molecule (Figure 1_D). During starvation, this
enzyme isoform phosphorylates to avoid taking in glucose.
The net energy produced by glycolysis is two ATP molecules (four
produced, two consumed) and two reduced NAD molecules. In addition
to glucose catabolism and energy production, glycolysis produces
several relevant molecules essential for cell sustenance. G6P can enter
the pentose phosphate pathway, producing several pentose sugars
and NADPH for cholesterol and fatty acid synthesis. G6P is a starting
point for glycogen synthesis. G3P produces glycerol, essential for
production of triglycerides and phospholipids. Glycolysis is directly and
indirectly involved in the biosynthesis of several amino acids, which are
the building blocks of proteins.
In the quiescent state, the glycolytic rate is at the basal level (Pasteur’s
effect) [43] and the majority of the ATP produced is by mitochondrial
oxidative phosphorylation pathway (OxPP). However, during cell pro-
liferation, the OxPP rate drops, and high glycolytic rate is observed.
This leads to drop in NAD/NADH ratio which is compensated by con-
verting pyruvate to lactate, oxidising NADH to NAD (Figure 1_A) [43].

3. MEDICAL RELEVANCE AND THERAPIES

Glucose is generally considered the main carbon source, and the
glycolytic pathway significantly impacts cellular metabolism and pro-
liferation [44]. Glycolysis dysfunction plays a key role in diabetes and
obesity [10], cancer [45], neurodegenerative diseases such as
amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s disease
[46,47].
Diabetes is caused by the improper functioning of the glycolysis, due
to compromised cellular signalling. Insulin secretion is regulated by
glycolysis [10], and hepatic glucose production (HGP) was shown to be
an effective way to maintain euglycemia [48e50]. Type-1 diabetes
insulin insufficiency leads to a decrease in glycolysis rate, whereas
type-2 diabetes hyperinsulinemia leads to an increased rate of
glycolysis in liver, pancreatic beta cells and adipose tissue [10].
Hexokinase-2 (HK2) influenced by insulin [51,52] plays an essential
role in diabetes [52,53] and was reduced specifically (28 � 0.5% and
31 � 4% diabetic, 40 � 0.5% and 47 � 7% control at 0.11 and
11.0 mM/L of glucose, respectively [54]) in the skeletal muscles of
type-2 diabetic patients [54,55]. Under hyperinsulinemic conditions
(450 pmol m�2. min�1 for 3 h [55]; 40 and 240 mU.m�2. min�1 [56]),
upregulation of HK2 activity in muscles and adipose tissues was
observed in obese and normal patients (93 � 20 control 1, 194 � 37
control 2, 127 � 35 obese [55] and 5 � 0.08 control, 4.33 � 0.66
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obese (averages of soluble/particulate and both hyperinsulinemic flow
rates) [56]), but was reduced in type-2 diabetic patients (9 � 18 [55];
3.10 � 0.10 [56]). Genetic mutation, leading to loss of function of
glucokinase [57e59], decreased glucose phosphorylation and
decreased insulin secretion [60], was observed in ‘maturity onset
diabetes of young’ patients. Glucokinase activity was reduced in obese
type-2 patients by about 50% [61] which were later reported to exhibit
active glucokinase mutation leading to hypoglycaemia [62,63]. An
independent risk factor for the development of type-2 diabetes can be
the elevated levels of lactate in plasma (27% aetiologic fraction) [64].
The pyruvate and lactate interconversion rates (diabetic 46 � 9 to
108� 31 and control 21� 3 to 50� 13 mmol/min/kg) were observed
to be significantly elevated, probably due to impaired glucose oxidative
pathway in type-2 diabetes [65]. A single gene or protein cannot
explain the complete pathophysiology of diabetes, hence insights into
the dynamics of glucose catabolism rate could provide an extra layer of
detail for categorising the disease features which may aid in its
therapy [39].
Glucose is the only source of energy to the brain, which performs
differential aerobic respiration to satisfy its rapid energy demands,
undertaking intermittent biosynthesis of metabolites and maintain the
redox states [66]. Aerobic glycolysis fulfils the energy requirement of
the membrane bound ATP dependent processes, such as the pumping
action of NAþ/K þ ATPase [67,68]. This process is not restricted to
Figure 1: Schematic representation of Glycolysis pathway and the regulatory enzymes. (
phase and payoff phase respectively. Yellow curved arrows represent the energy consumpt
regulatory enzymes are highlighted with green background. The energy production during
with TCA cycle) are represented with yellow stars. Circles emerging from different nodes
(B.1) The inhibition of PFK leads to accumulation of F6P which goes into homeostasis wit
isozyme of hexokinase, glucokinase with low affinity to glucose is represented with a thin
respective enzyme is indicated in purple. The regulation of the enzymes in beta cells and li
(C) Two PFK enzymes in the glycolytic pathway are represented and the effect of the regula
is represented by the thicknesses of the arrows. (D) Final regulatory steps of the pathwa
isoform leads to deactivation of the enzyme and the effect of the regulatory molecules is
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brain and was observed in human red blood cell membranes [69],
skeletal muscle [70], vascular smooth muscle [71], and neurons [72].
One primary reason for opting such an inefficient process generating
only two over thirty ATP molecules is the rate of production. The higher
rate of glycolysis over OxPP accommodates the small, rapidly changing
energy requirements by the cell/organ [73]. Brain glucose-
hypometabolism [74], glucose-accumulation [75] and reduced glyco-
lytic pathway flux [75] was observed in Alzheimer’s disease (AD) pa-
tients [47,76] and the well documented link between AD and diabetes
can also be plausibly explained by brain hyperglycemia [47], higher
levels of the apolipoprotein E gene (ApoE2) making the brain more
resistant to AD due to increased glycolytic robustness [47]. Glycolytic
dysfunction in peripheral cells was also observed in other neurode-
generative diseases (Huntington’s disease, Parkinson’s disease and
amyotrophic lateral sclerosis) indicating that the pathology of the
disease is not limited to nervous cells and strengthening the notion of
glycolytic dysfunction as a common pathway leading to neuro-
degeneration [9,47]. A dynamic sense of glycolytic rate to differentiate
the normal from the abnormal could benefit in disease prevention, anti-
ageing strategies and to unravel the mystery of the most essential
organ, the brain!
Mature erythrocytes lack nuclei and mitochondria, making glycolysis
the sole pathway for ATP production [77]. Although rare, the most
common glycolytic abnormality in erythrocytes is PK deficiency [78]
A) 10 steps of glycolytic pathway. Brown and green arrows represent the preparatory
ion and production nodes. The enzymes involved in each node are written in red and the
quiescence and proliferation from cytoplasm (glycolysis) and mitochondria (blue ovals
of the pathway represent the precursor molecules which end up in different pathways.
h G6P. The excessive accumulation of G6P leads to inhibition of hexokinase. (B.2) The
arrow. Both the enzymes phosphorylate glucose to G6P. The effect of PFK inhibition on
ver is represented by the regulatory molecule and its effect is represented by an arrow.
tory molecules is indicated in purple. The different rates of activity of both the enzymes
y with two isoforms of the pyruvate kinase are represented. The phosphorylation of L
represented in purple.

ss article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 3

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Review
resulting in lack of energy, abnormal membrane function, potassium
and water leakage from the cell, increase of calcium concentration
and ultimately to cell rigidity, loss of flexibility, early susceptibility to
splenic sequestration which collectively leads to haemolysis [78].
Other enzyme abnormalities linked to hexokinase, phosphoglycerate
kinase, phosphoglucose isomerase, phosphofructokinase, aldolase,
triosephosphate isomerase, etc., have also been identified but are
scarce [79].
The role of glycolysis is significant in cancer research, as tumour cells
perform glycolysis at a rate which is wten times higher than normal
cells. A comprehensive understanding of glycolysis can foster cancer
detection, identification, classification, and cure by identifying drug
targets. In the 1920s, Warburg observed that tumour cells consume
surprisingly large amounts of glucose, compared to normal cells [43].
Multiple mechanisms leading to this phenomenon such as mito-
chondrial DNA mutation, nuclear DNA mutation, oncogenic trans-
formation and the influence of the microenvironment around a tumour
are reported [80e82]. The phenomenon is being exploited using flu-
orodeoxyglucose positron emission tomography (FDG-PET) for the
detection of tumours [83]. Studies on proliferating lymphocyte cells
demonstrated that around 90% of the pyruvate was being converted to
lactate, concluding that the Warburg effect is not specific to tumour
cells [84e87]. Increased activity of hexokinase (79% breast cancer
patients [88]), lactate dehydrogenase A (in 61.8% mixed stage gastric
carcinoma patients with 56.3% survival rate compared to 78.4%
survival rate in low activity patients [89]) and glyceraldehyde-3-
phosphate (2.5 fold under hypoxia for 24 h in MFC-7 cells [90]) in
tumours and cancer cell-lines was reported [88e90]. Inhibiting cancer
cell proliferation, apoptosis induction and reversing multidrug resis-
tance can be achieved by silencing the overexpressed enzymes such
as lactate dehydrogenase A and PK [91e93]. However, these enzymes
are multifunctional. For instance, hexokinase and enolase are critical in
transcription regulation [94,95] and glucose-6-phosphate isomerase
might affect cell motility [96]. Hence, identification of novel tumour
features and drug targets which are distinct from normal cells is crucial
for the disease therapy. The glycolysis pathway dynamics can be used
for classification and drug discovery for different cancer phenotypes.
The Warburg effect and subsequent rewiring of cellular metabolism
was also observed during atherosclerosis [97], whereby vulnerable
human atherosclerotic lesions exhibit an enhanced expression of
glycolytic markers compared to stable plaques [98]. The main risk
factors for atherosclerosis include vascular endothelial cell (VEC) injury,
lipid deposition, inflammatory and immune dysfunction, the former
being considered one of the main triggers driving the occurrence and
development of subclinical atherosclerosis [99,100]. Several seminal
studies have provided compelling evidence that VECs are highly
glycolytic, in both healthy and dysfunctional activated states [101].
VECs in healthy vessels are quiescent and actively maintain blood flow,
vascular tone, and transport across the vessel wall. However, in
response to extracellular events, VECs can become activated and
induce angiogenic or pro-inflammatory signals [101]. Activation is
accompanied by changes in cellular metabolism that provide energy
and metabolic intermediates that fuel important biological processes
including angiogenesis, inflammation and barrier function [102]. VECs
can become adhesive and adopt a prothrombotic phenotype that or-
chestrates a vascular inflammatory response, including leukocyte
recruitment and increased vascular permeability [99]. In these path-
ological conditions, the glycolytic process is compromised, leading to
metabolic processes being activated to compensate for ATP shortage
and to increased oxidative stress, cell dysfunction, as well as cell death
[103,104]. Upon activation, VEC metabolism becomes disordered,
4 MOLECULAR METABOLISM 66 (2022) 101635 � 2022 Published by Elsevier GmbH. This is
represented by increased glycolysis and expression level and activity of
fatty acid synthase [103]. These enhance the proliferation, migration,
and inflammation of VECs, leading to VEC dysfunction and vascular
disease.
Similar studies of the metabolism of vascular smooth muscle cells
(vSMCs) have revealed an important role for glycolysis in athero-
sclerosis [105]. During the development of an atherosclerotic plaque,
the accumulation of SMC-like cells following de-differentiation of
medial vSMCs and/or partial myogenic differentiation of resident
vascular stem cell progenitors is accompanied by enhanced aerobic
glycolysis [106]. Thus, modulating VEC and vSMC metabolism via
antiglycolytic therapies may be a potential therapeutic target for
atherosclerosis.

4. GLYCOLYSIS MONITORING TECHNIQUES

For an excellent general review of methodologies employed in moni-
toring metabolic processes, in vitro and in vivo, the reader is referred to
the work of Duraj et al. [107]. Techniques to monitor the glycolysis
process either as a static snapshot or dynamic process, can be cat-
egorised as either top-down or bottom-up approaches [108]. The
bottom-up approach tries to understand individual components or a
smaller network of the system, whereas the top-down approach ho-
listically targets the entire system using high-throughput techniques to
obtain a large dataset [108]. Both approaches rely on advanced
computational methods to model the behaviour of the system, which
will be discussed in section_5. For a mode extensive and detailed
discussion of the techniques, the reader is directed to excellent re-
views of statistical/physiochemical modelling [109] and modelling from
top-down and bottom-up approaches [108].
In what is considered a bottom-up approach, monitoring the extra-
cellular acidification rate (ECAR) in live cells using simple biochemical
assays, in a kinetic spectrophotometric mode can be used to decode
the dynamics of glycolysis pathway [110]. The ECAR assay can be
coupled to the O2 consumption assay in the same experiment to
quantitatively derive and subtract the CO2 acidification as the detection
elements in both assays fluoresce at different wavelengths [111]. This
assay is non-destructive and provides a dynamic profile of glucose
metabolism which can be used for statistical and physiochemical
modelling [112,113]. (Figure 2) represents the data obtained from one
of such dynamic experiments obtained from Agilent Seahorse instru-
ment [114]. The glycolysis rate is at basal level when no glucose is
added, while the cell relies on oxidative phosphorylation for ATP de-
mand [114]. Upon addition of glucose, the cell reduces its oxygen
consumption and the glycolytic rate increases. If the mitochondrial ATP
production is blocked (oligomycin) the cell relies solely on glycolysis for
ATP demand and the glycolysis rate increases to its full capacity [114].
The glycolytic rate drops to basal level if a competitive inhibitor, 2-
deoxyglucose is added. Mitochondrial respiration also contributes to
the extracellular acidification to some extent, which is represented in
(Figure 2_C) [114].
Alternatively, targeting specific enzymes/metabolites in the pathway
provide more specific details of the pathway intermediates [115].
Radioactive ((2-deoxy-d-[1,2e3H]-glucose); (2-deoxy-d-[1e14C]-
glucose); (2-deoxy-2-(18F)-fluoro-D-glucose)) or fluorescent (2-[N-(7-
nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose); glucose an-
alogues can provide a reliable quantitative estimate of glucose entering
the glycolytic pathway in a cell [115]. Alternately, the activity of rate
limiting glycolytic enzymes can be determined by quantifying their
catalytic products in vivo [115]. The simplicity and the fact that these
assays can be coupled with several activators/inhibitors make them
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 2: Representative figure for the dynamic monitoring the OCR and ECAR in C2C12 myoblast cells using Agilent Seahorse instrument. The OCR (A) and ECAR (B) were
monitored dynamically using Agilent Seahorse instrument in C2C12 cells in the basal condition (without any glucose) and the sequential addition of 10 mM glucose, 2 mg/ml
oligomycin (ATP synthase inhibitor/glycolysis stimulator) and 10 mM 2DG (competitive inhibitor of hexokinase and phosphoglucoisomerase). (C) Respiratory (blank column) and
glycolytic (blue column) proton production rate (PPR) form the ‘A’ and ‘B’ experiment. Coloured wedges indicate glycolysis in basal condition (blue) and glycolytic capacity (green)
with their difference as glycolytic reserve. The data is an average of 6 replicates. Reproduced with permission from [114].
extremely useful in pharmaceutical research and development [111].
The data from these assays is suitable for physiochemical and to some
extent statistical modelling [116]. Unfortunately, the cell must be lysed
to quantify/harvest the metabolites/enzymes at fixed time-points to
obtain in situ pathway dynamics. Furthermore, the biochemical assays
are not sensitive enough for single-cell analysis.
Positron emission tomography (PET) uses radiolabelled tracers for
static and dynamic imaging but its use has been largely limited to drug
development and clinical research [117]. Sequential and simultaneous
PET and magnetic resonance imaging (MRI) have emerged in recent
years as kinetic imaging strategies with high clinical importance [117].
In this technique, a positron-emitting isotopic compound is non-
invasively injected intravenously in trace quantities and its bio-
distribution is used to infer the physiological and biochemical pro-
cesses such as glycolysis [117]. The potential benefit of kinetic
analysis has been demonstrated for a number of tracers such as 18-F-
labelled 2-deoxy-2-D-glucose (18F-FDG; tumour detection, response
monitoring, tumour detection estimates) [118e120], 18F-DOPA
(tumour-grade differentiation) [121], 18F-FMISO (tumour hypoxia
response to therapy) [122], 18F-FLT (brain tumour progression, glioma
therapy response modelling) [123,124]. This technique can potentially
be used for in situ kinetic analysis in humans for diagnostics using
statistical and physiochemical modelling with a downside of requiring
radiolabels.
MOLECULAR METABOLISM 66 (2022) 101635 � 2022 Published by Elsevier GmbH. This is an open acce
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Green fluorescent proteins (GFP) are often used to study protein
localisation, dynamics and interactions in single living cells [125,126].
They can be tagged to virtually any protein to form a fluorophore
[125,127], and advancement in GFP biology has aided in optimised
expression for a wide range of cell types [128], several variants of
which have already been developed to tag and monitor different pro-
teins simultaneously [129,130]. Microscopic techniques such as
fluorescence recovery after photobleaching (FRAP), fluorescence
resonance energy transfer (FRET) and fluorescence correlation spec-
troscopy (FCS) have also evolved in laser scanning microscopy [128]
and dynamic imaging can be performed to obtain large kinetic data
sets for statistical as well as physiochemical modelling. A represen-
tation of confocal microscopy and FRAP dynamic imaging with pon and
histone2B proteins, tagged with GFP and RFP, respectively, in mitoti-
cally dividing drosophila sensory organ precursor cell is shown in
(Figure 3) [131]. Although it can be monitored dynamically, the tech-
nique is limited by the fact that it only visualises what has been
labelled, which assumes an a priori knowledge of the process to be
monitored, and/or multiple probes for a more systemic understanding.
More systemic approaches, which can be considered top-down,
employ different omics techniques, including genomics [132,133],
transcriptomics [134e136], proteomics [137,138] and metabolomics
[139], by which the entire genome, transcriptome, proteome, and
metabolome of the system can be analysed as a snapshot of the
ss article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 5
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Figure 3: Fluorescence microscopy of GFP-Pon protein (green) and Histone2B-RFP protein (red) in live drosophila sensory organ precursor cell to monitor the localisation of pon
protein during mitotic cell division. Yellow arrowheads indicate cortical blebbing, blue arrowheads indicate random accumulations of GFP-Pon, and the white arrowhead indicates
early GFP-Pon crescent; NEBD stands for nuclear-envelope breakdown. Reproduced with permission from [131].

Review
quenched system using high-throughput techniques [140e142].
These techniques are usually used in a targeted manner, focusing on
specific aspects of a systemic response, such that they can also be
considered bottom-up approaches [143e145].
Next generation sequencing has emerged as a powerful tool in sci-
entific research and diagnostics, making use of fragmented nucleotide
sequences to cost effectively construct a sequencing library of millions
of nucleotide strands simultaneously in a short span of time with high
accuracy [146,147]. The small sequenced fragments are then aligned
using complex computer simulations to obtain complete or targeted
genome/transcriptome sequences [146,147]. Genomic data can be
used to accurately draw the pathway map (physiochemical modelling)
for the whole cell while the quantitative transcriptomic data can be
used for statistical modelling [148]. Predicting the phenotype from
genotype is complex and the correlation is not yet clear. Schwann-
häusser et al. established that the mRNA expression level was the best
predictor of protein levels and could explain 40% of protein level
variability in mouse fibroblast cells, while protein stability had a minor
role [149]. However, this may not be universally the case, as another
study in embryonic stem cells reported that changes in protein levels
are not accompanied by changes in corresponding mRNA expression
level [150]. Schwannhäusser et al. further indicated that, under
different conditions, rate constants may vary and the protein stability
might have a bigger role at single cell level or as a result of any
perturbation [149] as protein degradation is involved in regulation of
many cellular processes [151]. Although, the cellular genome does not
change much during the lifetime of the organism, the cellular tran-
scriptome is highly dynamic and depends on the state of the system.
Several approaches for a wider range of systems at single and multi-
cellular levels are already developed for dynamic transcriptome anal-
ysis [152e155], but by the nature of the analytical technology, these
approaches are destructive and rely on quenching the systemic in-
formation at pre-fixed states.
Single-cell genomics rely on the numerous approaches [156e158] for
genome amplification so there is enough for sequencing, to get in-
sights into the genome evolution, e.g. in cases such as cancer, and to
understand the genomic basis of a specific phenotype, which is missed
in bulk sequencing of a population [159,160]. Similarly, single-cell
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transcriptomics requires addition of an extra step of converting the
transcripts into cDNA using reverse transcriptase which can be
amplified and sequenced [160]. Alternatively, RNA hybridisation
probes attached with fluorescent compounds can be used for specific
sequence identification and use of different RNA probes can aid in
building comprehensive transcriptome [161,162]. Single-cell tran-
scriptomics is preferred over single-cell proteomics due to the ease of
amplification over the difficulties associated with protein amplification
and finds applications in studying gene dynamics, RNA splicing and
cell typing [160].
The cellular proteome/metabolome defines the cellular phenotype. The
proteomics and metabolomics approaches employ high-throughput
analytical tools such as mass spectrometry (MS) or nuclear mag-
netic resonance spectroscopy (NMR) [163]. Quantitative detection of
molecules/metabolites aid in statistical/physiochemical modelling and
to determine the relative activity of the pathway. The proteomic data
can be complicated for pathway flux analysis, due to the different
layers of enzymatic regulation (post-translational modifications, allo-
steric control, etc.) and the lack of in vivo kinetic parameters for many
enzymes [164]. Modern metabolomics approaches utilise stable iso-
topic tracers of hydrogen, carbon, nitrogen, oxygen, and sulphur
incorporated in the primary carbon source. As pathways have unique
carbon transitions, analysing the location of the stable isotope in the
amino acids produced can reveal the chosen pathway. Despite these
developments, there remain physical limitations, as only a small
subset of metabolites can be quantified [165,166]. These limitations
can be metabolite related (low abundance, low stability), instrumental
(identical retention in chromatography and MS) [166] and experimental
metabolism quenching, as high metabolome turnover rates are on the
sub-second timescales [167] and the quenching methods induce
leakage in cells [168e170]. Metabolic flux analysis describes the true
flux through the pathway at a given state, but to get a dynamic view of
the system which would describe the systems transition through
different states at a molecular level would require a wide array of
experimentation [171] which would again encounter the above
mentioned challenges. Visualising the dynamics of the single-cell
metabolome and proteome is possible using time-lapse microscopy
or using time-resolved omics experiments [172e174].
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For single-cell proteomics, several strategies are applied which entail
either tagging the proteins of interest with a specific antibody attached
to a distinctive fluorophore [175,176], quantum dot [177], etc., or
tagging the genome with a fluorescent protein, to be analysed using
fluorescence microscopy [178,179]. Alternatively, the proteins can be
tagged with rare metal isotopes for mass cytometry [180,181]. Major
steps for single cell proteomics by MS (SCoPE-MS) based analysis are
sample preparation, separation and detection. To deal with the protein
amplification issue, several groups focus on oocytes or very early
cleavage cell stage, due to their large size and abundance of proteins
[182e184] while some working on mammalian cells (10e15 mm
diameter) combine carrier-cells and single-cell barcoding [185,186].
The second generation of SCoPE-MS [187], SCoPE2 [188,189] further
increase throughput of sample preparation over 100 fold by minia-
turising sample preparation step such as MAMS (Micro-Arrays for MS)
which achieves high speed aliquoting by exploiting differences in
wettability among recipient sites and surrounding areas [190]. Sample
preparation can involve several steps to purify the proteins to some
extent and then further separate them via different chromatographic
techniques, before detection by MS/MSeMS. Although transcriptomics
and proteomics have the same purpose, transcriptomics does not
consider post-translational regulation.
Several fluorescence microscopy-based strategies can be used for
single-cell metabolomics studies, such as usage of fluorescent pro-
teins which illuminate when bound to the metabolite [191]. Not
requiring fluorescent proteins for metabolites of interest and the
detection sensitivity in the femtomole range, MS has been most
frequently used for single-cell metabolomics [192]. Single-cell
metabolomics using mass spectroscopy is progressing rapidly as the
challenges are accepted and creatively explored by an increasing
community and the continuous effort are moving the field towards
more sensitive techniques with higher throughput, quantitative abilities
and decreased technical variability [193,194]. The future development
is directed towards techniques with high-throughput, high-sensitivity
for molecules with low abundance/low ionisation efficiency, good
replicability for single-cell metabolite detection [193]. The metab-
olomics profile illustrates how the cell adapts to environmental
stresses at a molecular level, providing a dynamic understanding of the
cell [191].
Given the complex nature of cells and the interactions within the
different levels of central dogma (geno-pheno-envirotype in-
teractions), combinatorial/multi-omics/pan-omics have emerged
which can extend the scope of harvested information to elucidate the
interactions between biological entities for precision medicine and
biomarker discovery [195,196]. Proteogenomics harness the ad-
vantages of both genotype and phenotype by identifying/quantifying
translated nucleotide sequences to generate candidate proteins to
discover single amino acid variants (SAAV), splice proteoforms and
additionally genome re-annotation to discover novel coding se-
quences which have found significant applications in precision
medicine [197,198]. Epigenetics, on the other hand, deals with
changes in the biochemistry, not by modifications in the genomic
sequence, but by methylation, acetylation, phosphorylation, ubiq-
uitylation, sumolyation, chromatin modifications, etc., which are
responsible for several illnesses, behaviours, and other health in-
dicators [199]. A wide array of multi-omics platforms are now
available as databases and data processing toolboxes [200].
Although these sophisticated systemic strategies have come a long
way, further development is required to establish in situ, non-
destructive, label free approaches which can aid in dynamic sub-
cellular analysis.
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5. IN SILICO MODELLING

I. silico modelling approaches describe a system in terms of simple
mathematical equations to mimic the behaviour of the system [201] as
described by the top down and bottom up approaches described in
section_4 [108].
Modelling from the bottom up requires detailed datasets covering the
full dynamic range of each reaction to define the behaviour of the
system [108]. Homeostatic control in vivo does not allow the gathering
of such detailed datasets, and hence the bottom-up approach relies on
in vitro with cell and cell-free experiments to fit the parameters [108].
Often, models based on in vitro cell-free enzyme kinetics analysis draw
from repositories of kinetic data to fulfil the data requirement [108], but
trying to understand the in vivo metabolism dynamics in terms of
in vitro cell-free kinetics of the constituent enzymes can generate
erroneous results due to the discrepancy between the in vitro cell free
rates and in vivo fluxes [202].
The semi-quantitative indices analysis using dynamic PET and MRI
imaging can be used for kinetic modelling [117]. Dynamic imaging of
GFP generates large, kinetically complex data sets which can be
analysed with computational models to quantify biophysical properties
of molecules and even processes [203]. This approach of computa-
tional cell biology can be used to kinetically monitor the essential
pathways, mechanisms and controls of biological processes in real-
time [203].
The systems biology approach of ‘metabolic flux analysis’ (MFA), also
known as ‘fluxomics’, is a physiological counterpart of different omics
techniques. MFA is an end result of the multiomics interplay which
holistically describes the operation of the entire system by inferring the
complex model from the available in vivo data [108]. Largely based on
13C tracers [164], MFA has developed over the last three decades from
a black box balance approach of a few reactions [204] to simultaneous
measurement of hundreds of metabolic fluxes [205], including
reversible and parallel reactions [206]. Flux balance analysis (FBA),
13C-fluxomics and 13C constraint based FBA are different approaches
of MFA and can be used in measuring dynamic, stationary and semi-
stationary metabolite fluxes [164]. In principle, given the mathematical
complexity of kinetic models, these are more challenging to construct
and rely on approximate kinetic formalisms for parameter fitting [207e
209]. This approach uses simplified equations which often result in
loss of kinetic details, thermodynamic consistency and prevent iden-
tification of novel regulatory mechanisms [108].
The emergence of open source resources such as Cell Designer [210],
which enable biochemical pathway models to be simply drawn, but
also kinetically modelled by the user, have made the approaches much
more accessible. Model/Graphical representation by Systems Biology
Markup Language (SBML) [211] and Systems Biology Graphical No-
tation (SBGN) [212] means that the user defined models can be
interfaced with many other databases, for pathway enrichment [213], a
technique becoming increasingly popular in predictive toxicology
[214]. Once validated with experimental data under different condi-
tions, the models can accurately predict cellular metabolism at
different steady states [215,216]. Numerous tools for steady state
kinetic modelling are freely available [217e222].
Modelling approaches can be differentiated as statistical and physi-
ochemical modelling. Statistical modelling is employed when difficult
to manage, abundant data is available, but the insight into the structure
of system is sparse i.e., components of the system, their interaction
and regulation. As no assumption can be made about the underlying
mechanism of the system due to the lack of structure, the objective of
modelling is to identify relevant variables or dimensions in the system
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[109]. This type of modelling employs statistical tools to connect
different layer of data and gap filling. These models, however, rely on
the predictability of the dimension considered to be significant e.g. a
principal component analysis. Genome scale modelling falls under this
method. Several statistical tools such as KEGG mapper, Metab-
oanalyst, etc. Are freely available for statistical modelling
[217,222,223]. Berndt et al. modelled murine liver cancer cells using
shotgun proteomics approach by LC-MS/MS [224]. They found sig-
nificant upregulation of PFK (L isoform) and GAPDH enzymes. A twofold
increase of the isoforms A and C of fructose-bisphosphate aldolase
which preferentially contribute to glycolytic rate unlike the isoform B
which contributes to gluconeogenic rate were observed [224]. Kelly
et al. developed a kinetic model of hepatic glycolysis to observe the
effect of the extracellular environment on the cytosolic free NAD/NADH
in a cell culture [225]. From the data obtained from the model, they
concluded that cytosolic the NAD/NADH ratio is maintained by two key
enzymes GADPH and lactate dehydrogenase (LDH) [225].
Physicochemical models can be viewed as the translation of a
pathway map into a mathematical form. These models predict spe-
cific biomolecular transformations such as covalent modifications,
intermolecular associations and localisation as mathematical equa-
tions based on a prior knowledge of pathways for which components
and connectivity are well established [226e230]. The equations
describe the identifiable processes such as catalysis and assembly
with physical interpretations of parameters such as concentration,
binding affinity and reaction rate [231]. Modelling begins with
identifying the elements in the model and generation of a schematic
describing the interactions between them. These interactions are
further translated into equations which require certain assumptions
to be made for visualising the dynamics of the equations. Although
the models assume how the interactions take place, they also aid in
rapid hypothesis testing and model validation [109]. Ordinary and
partial differential equation can be used for both deterministic and
stochastic modelling. ODEs are most common for deriving simple
mechanistic or empirical equations. Mass action kinetics, rate law
(Michaelis Menten models, Hill kinetics), power law, lin-log approx-
imations and thermokinetic considerations can be used to represent
the effect of involved variables [109]. Maier et al. described a dy-
namic model for HepG2 cells by quantifying 25 extra and intra-
cellular metabolites by 13C labelling and intermittent metabolite
quantification from parallel cultures using high performance liquid
chromatography (HPLC), liquid chromatography-mass spectroscopy-
mass spectroscopy (LC-MS-MS) and gas chromatographyemass
spectroscopy (GCeMS) [232]. The negative control of GAPDH and
positive control of OxPP over glycolytic flux [232] supported the hy-
pothesis of GAPDH and Warburg effect as potential targets for tumour
treatment [232]. Yarmush et al. modelled steatotic HepG2 cells
during defatting for applications in fatty liver transplant [233] by
measuring 28 extracellular metabolites and intracellular triglycerides
using HPLC and commercially available assay kits [233]. They
observed that the glycolytic flux was high while the extracellular
glucose consumption was very small compared to glycogenolysis,
indicating that glycolysis and fatty acid co-oxidation might co-exist in
steatotic HepG2 cells [233].

6. FUTURE PERSPECTIVES: LABEL FREEMICROSPECTROSCOPIC
ANALYSIS

Vibrational spectroscopic microscopy has emerged as a label-free
alternative to currently employed techniques, which can provide mo-
lecular specific signatures of biological processes and function at a
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cellular and subcellular level. The spectrum comprises contributions
from each molecular bond and is a “signature” or “fingerprint” which
is characteristic of a material, or changes associated with a physical or
chemical process. In complex samples, notably biological cells or
tissue, the spectroscopic signature incorporates characteristics of all
constituent functional groups of lipids, proteins, nucleic acids and other
specific biomolecules and metabolites [24,234] (Figure 4 [235]).
Infrared (IR) absorption and Raman scattering are the most common
forms of vibrational spectroscopy, and both provide a molecule
fingerprint, although through different fundamental physical principles.
IR absorption is the result of electric dipole transition between vibra-
tional states, whereas Raman spectroscopy is based on an inelastic
scattering process caused by the polarisability change of a molecule
[24]. The OH group has a particular strong IR absorption, whereas it is
a relatively weak Raman scatterer, and therefore the latter is often
promoted for in vivo applications, or live cell imaging [28]. Raman is
often conducted at visible or near IR wavelengths, and therefore, in
microscopic mode, can have spatial resolution of<1 mm, whereas the
longer wavelengths of the IR (5e20 mm) limit its spatial resolution.
Additionally, certain molecules such as amino acid residues, SeS
disulphide bridges, CeS linkages from proteins and nucleic acids
are better highlighted in Raman spectroscopy compared to IR spec-
troscopy [24].
Using Raman and/or IR microspectroscopy, quantitative spectroscopic
changes attributable to the biochemical processes occurring during
cell culture and mitosis [236,237], proliferation [238], differentiation
and activation [239e241], adhesion [242], death [243] and invasion
[244] have previously been documented. Confocal Raman micro-
spectroscopy has been demonstrated to provide detail at a subcellular
level, of fixed or live cells, in 2D and/or 3D culture environments [245e
247], as shown for the example of a Raman microspectroscopic map
of an A549 human lung cancer cell, analysed by K-means clustering
(Figure 4_I), which differentiates the nucleolar (yellow) regions of the
nucleus (purple), which is in turn differentiated from regions of the
cytoplasm (blue), according to their characteristic mean spectra
(Figure 4_II) [248]. The analysis also unambiguously identified the
presence of polystyrene nanoparticles (green) in the cytoplasm of the
cell, identified by its characteristic spectrum (Figure 4_III). Similar
studies have demonstrated the detection of cellular mitochondrial
distribution [249] and phagosomes [250]. Label free analysis can
identify signatures of subcellular phenomena not evident in a labelled
approach, as for example the mechanistic role of accumulation of the
chemotherapeutic agent doxorubicin in the nucleolus of cells [251],
and potentially guide the identification of new biomarkers of cellular
events. Thepphilpou et al. have reviewed the applications of different
modes of vibrational spectroscopy for cellular analysis [252], and the
reader is also referred to the graphical summary of the different
methodologies in the work of Paraskevaidi et al. [253].
Critically, however, the analysis and interpretation of the spectral re-
sponses remains a challenge, even in the hands of “specialists”. By
their very nature, label free techniques register all species within the
sampling area, and identification of specific responses requires
multivariate analytical techniques to data-mine the differential signa-
tures, which are characteristic of cell injury events or response
pathways. The characteristic spectral response can have (additive)
contributions of increased or decreased concentrations of any or all
constituent biomolecules, but also more complex contributions due to
conformational, environmental (pH etc.) changes, and it is apparent
that a novel combinatorial approach based on identification of the
(differential) spectroscopic signatures rather than specific bands
associated with specific biomolecules, may be more appropriate. The
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Figure 4: : I) (A) Microscopic image of an A549 lung cancer cell, showing the reduced area identified for spectral mapping. (B) K-Means cluster map of the Raman profile of the
same reduced area. II) K-means spectra of clusters 3 (Adrepresenting nucleoli), 6 (Bdrepresenting nucleus), 1 and 4 (C and D, both from the cytoplasm). Spectra are offset for
clarity. III) K-means spectrum of Cluster 5 (A), compared to the Raman spectrum polystyrene nanoparticles (B). Spectra are offset for clarity. (Reproduced with permission from
[248]).
spectroscopic signature is, in itself, characteristic of the key cellular
event, and can be used to identify and quantify it, in a “spectralomics”
approach [36]. The evolution of the characteristic signatures may
therefore be used to characterise the cellular pathway. The reported
reproducibility of subcellular signatures of drug uptake, mechanisms of
action and cellular response [36,251,254e257], as well as nano-
particle trafficking and toxicity [37,258e261], in multiple cell lines
suggests that such an approach to label free characterisation of
cellular processes according to characteristic spectroscopic signatures
is feasible. Munck introduced similar terminology of the “spectral
phenome”, in the discussion of the near IR spectroscopic analysis of a
barley endosperm mutant model, evaluated by chemometrics [204],
although metabolic pathways were not explicitly explored.
Although it cannot be considered truly label free, several studies have
demonstrated that stable isotope labelling can be utilised in Raman
spectroscopy for in situ monitoring of a kinetic process. Xu et al. used
deuterated glucose and deuterated naphthalene as sole carbon
sources for Escherichia coli and Pseudomonas sp. Cultures, respec-
tively, and demonstrated that the Carbon-Deuterium vibration at
w2700 cm�1 could be used to semi quantitatively and sensitively
monitor the metabolism of the carbon sources, although the kinetics of
the process were not explicitly monitored spectroscopically [262].
Zhang et al. used a similar technique based on simulated Raman
scattering (SRS), which images the metabolic dynamics of newly
synthesised macromolecules in a cell according to the signatures of C-
D bonds derived from a deuterated glucose precursor [263]. They
described the utility of this technique to visualise temporally separated
glucose populations by using spectral differences of glucose iso-
topologues [263]. With a detection limit of 10 mM of C-D bonds, this
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technique is effective for tracing functional utilisation of glucose
derived anabolic products over the conventional glucose imaging
techniques which are limited to monitoring glucose uptake or catab-
olism activity [263]. Noothalpati and Shigeto explored ergosterol
biosynthesis as a model system in single living fission yeast cells using
stable isotope labelled Raman microspectroscopy to establish the
technique for in vivo metabolic analysis [264]. Their study revealed the
intrinsic spectra and relative abundances of all isotopomers of
ergosterol, partially or fully substituted with 13C, when the spatially
resolved Raman spectra was analysed by multivariate spectral data
analysis [264]. Li et al. showed the application of stable isotope
labelling and single cell Raman spectroscopy to link the food chain
from 13C-glucose carbon substrate to E. coli microbe up to Caeno-
rhabditis elegans predator in a quantitative and non-destructive
manner [265]. Similarly, spatiotemporal and functional relationships
between proteins and lipid droplets was dynamically visualised by 13C
incorporation and in vivo time-lapse Raman imaging to illustrate the
potential in proteome visualisation at intervals of 1 h over time periods
of up to 40 h, without fluorophore tagging in single fission yeast cells
[266]. Weber et al. explored the utility of Raman microspectroscopy
coupled with stable isotope probing for monitoring the growth rates of
heterologous bacteria at single-cell resolution, based on the 13C- and
12C-isotopologues of the amino acid phenylalanine [267], identifiable
by the strong phenylalanine ring breathing modes 966 and
1,002 cm�1). Using a robust curve fitting process for precise decon-
volution of partially overlapping peaks, the identified peaks provided an
accurate reporter probe for quantification of cellular isotope fractional
abundances (fcell) for complex

13C-labelled carbon source assimilation
in E. coli in time-course experiments. The fcell and bacterial growth
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rates were validated using isotope ratio mass-spectroscopy and optical
density measurements respectively.
Analysis of the evolution of spectral profiles in cells has not been
common, although kinetic, mechanistic approaches to analysis of or-
ganisms and organs have become well accepted in pharmaco kinetics/
dynamics [268] and systems biology [269,270]. Mukherjee et al. used
Raman mirospectroscopy to monitor effects of culture conditions in
bacterial growth, although the spectral analysis was large based on
peak ratios [271]. Mair et al. demonstrated that oscillatory kinetics of
many glycolytic intermediates of yeast can be analysed by time
resolved FT-IR spectroscopy [272]. Consecutive FT-IR-spectra of
Saccharomyces carlsbergensis yeast extract were taken over a period
of 1e2 h. The yeast spectra at all time points were least squares fitted
with linear combinations of spectra of standard solutions of glycolytic
intermediates (G6P, F6P, F1, 6P2, PEP, Pyr) and related compounds
(ATP, ADP, AMP, NADH, NAD, trehalose, glycogen, ethanol, glycerol,
phosphate), such that the kinetics of glycolytic intermediates could be
extracted from the reconstructed spectra (Figure 5).
Poonprasartporn and Chan conducted an FTIR spectroscopic study of
live HEP2G cells, grown in either normal glucose (3.8 mM) or high
glucose (25 mM) medium and compared their spectroscopic profiles
after incubation times of 24, 48 and 72 h [273]. In the normal glucose
treated cells, increases in the absorbance of bands associated with
nucleic acid PO2� phosphate stretching and symmetric stretching of
COO�, from fatty acids, amino acids and carboxylate metabolites. In
contrast, the high glucose treated cells exhibited a clear reduction of
the PO2� stretching mode band after 24 h, and further spectral
changes in the region w1000e1200 cm�1 after 48 and 72 h, linked
to the glycogen and ATP:ADP ratio. The study supports the use of the
technique for monitoring metabolic processes in cells, and a more
recent study from the same authors compared the effect of two anti-
diabetic drugs on insulin resistant HEPG2 cells [274]. The analysis
mainly focused on the glycogen peaks at 1150, 1080 and 1020 cm�1,
which served as spectroscopic markers of cellular response to insulin.
They discovered that the spectral changes were highly specific to the
drug applied and were able to differentiate between the spectral
Figure 5: Extraction of the kinetics of glycolytic intermediates with low concentra
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profiles of normal and insulin resistant cells, the lack of response to
insulin and the restoration of insulin resistance upon drug treatment in
the resistant cells.
Pleitez et al. demonstrated the potential of mid-infrared optoacoustic
microscopy (MiROM) for label-free, bond-selective, live-cell metabolic
imaging for spatiotemporal dynamic monitoring of lipids, proteins and
carbohydrates [275]. MiROM, based on mid-IR vibrational excitation
and positive-contrast detection, offers greater sensitivity in the
fingerprint spectral regions as compared to modern vibrational spec-
troscopic approaches which measure a reduction of transmission or
reflected light intensity [276e279], as evident from the lower limit of
detection (LOD) (2.5 mM for DMSO and 1.5 mM for albumin) using laser
powers in hundreds of microwatts (330 mW for DMSO and 500 mW for
albumin), thereby significantly lowering the risk of phototoxicity to the
cells [280]. They demonstrated MiROM could efficiently differentiate
lipids (2,853 cm�1), proteins (sum of amide I (1,700 and 1,600 cm�1)
and II (1,550 cm�1)), and carbohydrates (sum of 1,081 and
1,084 cm�1) to generate MiROM micrographs [275]. They further
explored its potential for dynamic cellular analysis and used the
optoacoustic contrasts to generate box plots to quantify the phenome
at fixed time points to observe its dynamics [275]. Further, lipid and
protein dynamics during isoproterenol (ISO) induced lipolysis in white
and brown adipocytes was also showcased [275]. Lipid (2,857 cm�1)
and protein (1,550 cm�1) were recorded every 5 min before and after
addition of isoproterenol [275]. The lipid content slowly increased
indicating lipogenesis until the lipogenesis was induced which induced
nearly linear decrease in lipid content [275]. The study is significant for
single-cell analysis, as differential lipolysis rates were observed in both
white and brown adipocytes while some cells even remained unaf-
fected [275].
Accurately data mining the characteristic signatures of the subcellular
interactions and processes represents a challenge. Multivariate curve
resolution-alternating least squares (MCR-ALS) has been proposed as
a more flexible approach to study the evolution of cellular processes
[281]. MCR-ALS models the temporal evolution of the spectral dataset
by considering a set of components whose concentrations evolve at
tion from the reconstructed spectra (Reproduced with permission from [272]).
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different rates and have characteristic spectral features. MCR-ALS
iteratively fits the target spectrum by least squares fitting multiple
components, either provided a priori, based on previous or external
information of the system, or estimated using techniques such as
Singular Value Decomposition (SVD) [282]. Then, an initial estimation
of concentration matrix or spectra is made by using information about
the chemical components involved or using other methods such as
Evolving Factor Analysis (EFA) [283]. Perez-Guaita et al. have previ-
ously demonstrated the application of MCR-ALS to gain insight into the
pharmacodynamics and biochemical changes associated with drug
exposure in an in vitro cellular model, as measured using Raman
microspectroscopy [284], and a multimodal combination of Raman and
Infrared microspectroscopies [285]. MCR-ALS uses external informa-
tion and constraints to guide the iterative process, which can include
initial estimates of the spectra of the starting point and intermediate
constituents of the pathway, which can each be constrained to ensure
that they contribute non negatively, and collectively constrained to
ensure “closure”, or mass balance, in the hope of reducing the am-
biguity of the result and leading to chemically interpretable solutions.
One such constraint involves the introduction of kinetic equations to fit
the evolution of the components to known chemical relations within the
system, in a so-called hard-soft modelling approach. The approach
has previously been used to model the evolution of spectra of very
simple reactions (e.g., A- > B) [286], but more recently Perez-Guaita
et al. have demonstrated that it is possible to constrain the least
squares fitting procedure by a set of ordinary differential equations
[30]. The approach was validated using the example of cellular uptake
Figure 6: (A) Kinetic evolution of simulated drug uptake and binding (dark blue), and cellul
spectral signature of drug binding (cyan) and of the subsequent cellular response (green),
extracted after 50 iterations, (E) evolution of the kinetic constraint constants over 200 ite
employed in the MCR-ALS model. (Reproduced with permission from [30]).
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and binding of the chemotherapeutic drug doxorubicin, in vitro cell,
accurately reproducing the spectroscopic profiles and uptake rates in
simulated models (Figure 6).
The hard-soft MCR-ALS approach opens up the possibility of data
mining the label free Raman microspectroscopic responses of a
cellular metabolic process described by a phenomenological rate
equation, or systems biology approach. Such a framework of label free,
subcellular Raman microspectroscopic analysis, combined with a ki-
netic, mechanistic modelling approach, to underpin chemometric
analysis protocols, provides a basis for the unambiguous interpretation
of the evolution of the characteristic spectroscopic signatures. Note
however, that these spectroscopic signatures, for example of the
interaction of an intercalating agent in the nucleus of a cell, may be
constituted by contributions of chemical moieties from multiple
different biomolecules, or changes to them, and is a characteristic
signature of the cellular event or process, rather than of any specific
biomarker(s). The approach potentially lays the foundation for a
spectralomics paradigm of label free high content spectroscopic
analysis of cellular function, providing a holistic view of the cellular
processes to augment conventional labelled and omics approaches.
The combinatorial approach could guide identification of key biomarker
targets for more in depth labelled and omics approaches, and, in its
own right, could find future applications in preclinical drug screening
and toxicology among others. However, it should be noted that the
exploration of the techniques for such complex evolution of bio-
chemically complex systems is very much in its infancy. The contin-
uous evolution of novel and hybrid label free spectroscopic approaches
ar response (green), (B) Raman spectrum of the drug, doxorubicin (dark blue), simulated
(C) predicted kinetic evolution of the MCR-ALS components, (D) MCR-ALS components,
rations of the MCR-ALS algorithm, (F) initial and final (after 200 iterations) constants
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promises increased capacity to rapidly screen cellular and subcellular
processes in real time. Coherent Raman spectroscopic techniques
promise large area screening at up to video rates [279,287], while the
development of quantum cascade laser sources which are tunable
across the mid IR region of the spectrum have given rise to hybrid
techniques such as atomic force microscopy detected IR spectroscopy
(AFM-IR) [288,289], as well as photoacoustic [290], and photothermal
techniques, the most recent incarnations of which enable simulta-
neous measurement of IR and Raman on the same spot [291].
Nevertheless, it is crucial to demonstrate that techniques such as
MCR-ALS and other multivariate datamining technique can reliably
extract the signatures of interest, and that they can be interpreted in
terms of their biochemical origin.
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