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Abstract

The understanding of the neural control of appetite sheds light into the pathogenesis of eating 

disorders, such as anorexia nervosa and obesity. Both diseases are a result of maladaptive 

eating behaviors (overeating or undereating) and associated with life-threatening health problems. 

The fine regulation of appetite involves genetic, physiological and environmental factors which 

are detected and integrated in the brain by specific neuronal populations. For centuries, the 

hypothalamus has been the center of attention in the scientific community as a key regulator of 

appetite. The hypothalamus receives and sends axonal projections to several other brain regions 

that are important for the integration of sensory and emotional information. These connections 

ensure that appropriate behavioral decisions are made depending on the individual’s emotional 

state and environment. Thus, the mechanisms by which higher-order brain regions integrate 

exteroceptive information to coordinate feeding is of great importance. In this review, we will 

focus on the functional and anatomical projections connecting the hypothalamus to the limbic 

system and higher-order brain centers in the cortex. We will also address the mechanisms by 

which specific neuronal populations located in higher-order centers regulate appetite and how 

maladaptive eating behaviors might arise from altered connections among cortical and subcortical 

areas with the hypothalamus.
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Introduction

An ethologic framework underpinning the control of feeding and other innate behaviors was 

set forth by Tinbergen decades ago, but their neural substrates were largely uncharacterized 

(1). Recent technical advances have led to the identification of molecularly defined neural 

circuits regulating feeding and the interoceptive and sensory inputs that modulate their 

activity. A deeper understanding of these neural mechanisms is of intrinsic importance and is 

also likely to shed light on the pathogenesis of maladaptive eating behaviors underlying both 

obesity and eating disorders.

A key role of the hypothalamus in feeding was first shown in studies reporting that ablation 

of specific nuclei dramatically alters food intake and body weight in animals (2–4). Lesions 

of the ventromedial hypothalamus result in obesity, while lateral hypothalamic lesions lead 

to inanition (2–4). Recent studies have focused on other hypothalamic nuclei (i.e. arcuate 

nucleus) and extrahypothalamic brain regions (i.e. cortex and subcortex) which receive 

orexigenic and anorexigenic signals to regulate appetite. Classic studies on decerebrate 

rodents showed that some of the motor components of feeding can be performed with just 

a brainstem (5). Nonetheless, higher-order brain regions were necessary for the complex 

regulation of feeding and recent studies have showed that environmental factors integrated 

by these centers play a substantial role in the regulation of feeding. From an anatomical 

point of view, the hypothalamus receives and sends axonal projections to several higher-

order brain regions that are important for the integration of sensory information. These 

connections are particularly important for the control of appetite, ensuring that appropriate 

behavioral decisions are made depending on the individual’s environment. Thus, the 

mechanisms by which higher-order brain regions contribute to the coordination of eating 

behavior is of great importance.

In this review, we will focus mostly on rodent studies that address the functional and 

anatomical projections connecting the hypothalamus, a key feeding center, to higher-order 

brain centers in the cortex and subcortex (See Figures 1 and 2). We will also address 

the mechanisms by which these neuronal populations and inputs from higher-order centers 

regulate appetite. Last, we will address how maladaptive eating behaviors might arise from 

altered connections among cortex and subcortical areas with the hypothalamus and how 

these may relate to comorbidities with other psychiatric disorders.

1. Role of Limbic Systems in Regulating Food Intake

The term “limbic”, Latin for “border”, was termed by Paul Pierre Broca in 1878 when he 

described the cingulate and the parahippocampal gyri as regions at the border between the 

cerebral hemispheres and the brainstem (6). However, this term was only associated with a 

specific function by James Papez in 1937, when he proposed that this collection of regions 

play a role in the control of emotions (6). Subsequently, other brain regions such as the 

hippocampus, amygdala, and lateral septum were included as limbic areas. Although each 

of these has specific specialized functions, each is also involved in the regulation of several 

behaviors, including food intake.
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1.1- Hippocampus—The hippocampus has a long literature associated with learning, 

memory and spatial navigation, but also plays a role in regulating food intake. An 

early report showed that electrical stimulation of the hippocampus inhibited performance 

in a conditioned feeding task (7) suggesting an inhibitory role for the hippocampus 

both on arousal and hunger. Later studies demonstrated that nonselective damage to the 

hippocampus in rodents and humans were able to elicit hyperphagia (8–10). Indeed, a 

study on the behavioral patterns of patient H.M., who exhibited anterograde amnesia due 

to bilateral hippocampal damage, reported problems in satiety regulation (8). Despite this, 

the role of the hippocampus in appetite was still unclear due to the fact that many of these 

patients, including H.M, had widespread lesions that often extended to other brain regions 

regulating appetite.

Space and time are directly represented in the hippocampus (11,12), and accordingly, 

an association between space and reward is essential for effective foraging. In 2019, 

Trouche and colleagues showed a direct connection from the dorsal hippocampal CA1 

region to nucleus accumbens that modulates place-reward memories(13). Additionally, 

hippocampal Drd2-dependent projections to the septum regulate food-place associations 

(14). These findings suggest the existence of circuits that integrate information about 

neuronal representations of space to link reward to specific locations and regulate food 

intake. Other studies suggest a role for the hippocampus in the representation of non-spatial 

information also relevant for eating behavior. Studies have shown that hippocampal neurons 

change their activity in the presence of natural olfactory cues and mechanical gastric 

distension (14–18). These reports suggest that the hippocampus might not only serve 

as a cognitive map important for spatial navigation but can also represent sensory and 

interoceptive information and link it to that map.

Infusion of specific neuropeptides, like ghrelin and glucagon-like peptide-1 (GLP-1), into 

the hippocampus modulate food intake in rodents (19–21). Studies using genetic tools 

to modulate specific cell-types within the hippocampus have identified specific neuronal 

populations within the ventral hippocampus and dorsal hippocampus that regulate food 

intake, avoidance behavior and food-place memory, via projections to the septum (14,22). 

Further evidence has also raised the possibility that both dorsal and ventral hippocampus 

regulate appetite via indirect and direct connections to the lateral hypothalamus (14,22,23). 

Overall, these studies suggest that the hippocampus serves as a gatekeeper, and exerts a 

prominent inhibitory role on appetite.

1.2- Amygdala—The role of the amygdala in appetite regulation was first described 

in the 1960’s with reports demonstrating alterations in food intake in dogs or rodents 

after bilateral lesions of the amygdala (24,25) Amygdala neurons regulate appetite through 

its direct and indirect connections to the hypothalamus. Classic work from Krettek and 

Price (26), together with recent analyses, have defined anatomical projections from the 

amygdala to the dorsomedial, ventromedial and lateral hypothalamus. These hypothalamic 

areas regulate aggression, appetite and stress responses, thus suggesting that the amygdala is 

important for the regulation of many innate behaviors, including food intake. This, in fact, 

raises the possibility that the amygdala might play a general role in determining the selection 

of a specific behavior.
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The amygdala is one of the major targets of the hippocampus (27) and for this reason, 

has been recently invoked as playing a role to associate cues with food reward. The 

amygdala receives information regarding the spatial and sensory representations built by 

the hippocampus and integrates that with the salient value of that experience (28,29). Indeed, 

the amygdala was recently shown to serve as an integrator of hedonic, visceral and external 

signals, tuning innate behaviors such as feeding through negative or positive feedback onto 

its targets in the cortex, subcortex, hypothalamus and brainstem (30–36).

Several populations and neuropeptides have been demonstrated to participate in the 

regulation of appetite and eating behavior by the amygdala, among them Pnoc-, Htr2a-, 

and Pkcd-expressing neurons (30,34,37,38) and the neuropeptides neurotensin and orexin 

(36,39). The exact mechanisms by which these populations exert its effects onto specific 

brain areas and how they communicate with each other and hypothalamus to regulate 

appetite in health and disease are still unclear and represent an important area for future 

research.

1.3- Lateral Septum—The lateral septum (LS) is one of several nuclei within the 

septal area and can be further subdivided into rostral, ventral and caudal regions. Early 

lesion studies suggested several possible functions for the LS, including aggression, 

emotional control, social behavior and food consumption. The LS receives inputs from the 

hippocampus, amygdala and entorhinal cortex, among others, and sends a major projection 

to the hypothalamus, raising the possibility that this nucleus serves as a conduit between 

higher structures and the hypothalamus to control innate behaviors. Thus, much like 

the amygdala, LS may function as an integrator of representations built by hippocampal 

neurons.

Early lesioning studies of the LS led to aggression, suggesting that it played a role in 

emotional self-regulation (40,41). The term “septal rage” or “septal syndrome” was often 

used to describe the profound alterations of emotional state after septal lesions. These initial 

reports also noted that animals with septal lesions showed enhanced predatory behavior, 

raising the possibility that it also plays a role to regulate food intake (42,43).

Specific neurons in the LS sense stressful stimuli and regulate fear (44), anxiogenic (45,46) 

and eating behaviors (47–49). GABAergic LS neurons expressing neurotensin modulate 

food intake via projections to the lateral hypothalamus specifically in response to stressors 

that elicit active escape (47). Pharmacologic experiments revealed a broad network of 

other receptors and signaling pathways in the LS that also appear to be involved in the 

regulation of appetite. For example, several studies have shown that septal infusions of 

substance P (50), urocortin (51), GLP-1 (52,53), alpha(1)-adrenoceptors (54), neuropeptide 

Y (55), growth hormone secretagogue receptors (56) (GHSRs), mu opioid receptors (57) 

and CRF2 receptors (48) reduce food intake. While there may be some overlap with 

neurotensin neurons in the LS (47), molecular profiling has suggested that there are several 

distinct appetite-suppressing populations (47). In aggregate, these studies suggest that the LS 

integrates visceral, spatial and sensory information with emotional experiences (hedonic or 

aversive) and relays this information to hypothalamus and other brain regions to control food 

intake.
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2. Cortical control of eating behavior

Evidence that the cerebral cortex can regulate food intake dates to the 1950’s when it was 

shown that spreading depression through the cortex disrupts eating and drinking, likely 

through attenuation of lateral hypothalamic activity (58,59). In 1970, Huston and Bures also 

showed that a single wave of spreading cortical depression could elicit voracious eating and 

drinking in satiated rats following an initial attenuation (60). These studies suggested that 

the cortex might exhibit control over hypothalamic circuits regulating feeding and have been 

followed by numerous studies showing specific effects of several different cortical regions.

2.1 Prefrontal Cortex—The prefrontal cortex is arguably the most differentiated 

structure among mammals (61–63). Nonetheless, despite these major differences, abundant 

evidence indicates that prefrontal areas play an important role in regulating food intake 

across species. In rodents, areas referred to as the prefrontal cortex typically comprise 

the infralimbic, prelimbic and cingulate cortices and direct effects on food intake have 

consistently been found for each. In mice, stimulation of dopamine receptor-1 neurons 

in the prelimbic/infralimbic cortex, as well as their axon terminals in the basolateral 

amygdala (BLA), which in turn projects to the hypothalamus (64), elicit consumption, 

whereas inhibition decreases food intake. This stimulation did not increase water intake, 

indicating that this response is specific for food (65). Furthermore, stimulation of mu-opioid 

receptors in the infralimbic region elicits both increased food consumption and hyperactivity 

(66), which is antagonized by NMDA receptor blockade in the lateral hypothalamus (67). 

However, global inactivation of the infralimbic region using GABA agonists had no effect 

on food intake (66,68), suggesting that different populations within the infralimbic cortex 

may have dissociable effects on eating behavior.

Projections to the prelimbic/infralimbic region also have effects on food intake. For 

example, Glp1r signaling in the hippocampus elicits hypophagia, which is mediated by 

NMDA receptors in the prelimbic/infralimbic region (19), while inactivation of the central 

amygdala (CeA) decreased dopamine release in the infralimbic/prelimbic area during the 

presentation of a meal (69). The act of eating itself also has direct effects on neural activity 

in the prefrontal cortex. For example, in fasted mice, eating in conjunction with lever 

pressing leads to dopamine release in both the cingulate and infralimbic cortices.

In humans, the prefrontal cortex also plays an important role in eating, self-regulation and 

the cognitive control of cravings. For example, eating disorder patients have increased 

impulsivity and trouble self-regulating their responses to food rewards (70). Studies 

involving repetitive transcranial magnetic stimulation (rTMS) are also informative. rTMS 

is a type of brain stimulation protocol in which strong magnetic fields exert net excitatory 

and/or net suppressive effects on neuronal populations within the cortex. Excitatory 

stimulation in the dlPFC using rTMS reliably increases the ability to avoid attention capture 

by calorie dense foods, thus inhibiting consumption and improving cravings in healthy 

subjects and patients diagnosed with eating disorders (i.e. bulimia (71) and obesity (72)). 

Conversely, experimental studies using a suppressive stimulation protocol (low frequency 

stimulation) using rTMS in the dlPFC show increases in consumption of calorie dense foods, 

especially when there are in the presence of facilitative cues (73). These studies, using 
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either excitatory or suppressive stimulation protocols, strongly suggest a role for dlPFC 

in top-down modulation of food cravings and eating behavior, specifically with respect to 

ingestion calorie dense foods. Taken together, these findings suggest that the prefrontal 

cortex plays a dynamic and bidirectional role to control food intake. Further studies are 

needed to determine the specific information it processes, the precise functional role that 

specific neural populations play, and their neural targets.

2.2 Insular Cortex—In humans and rodents, the insular cortex (also known as the 

insula) is comprised of three regions, granular, dysgranular and agranular. The granular 

and dysgranular regions tend to receive projections from visceral inputs, whereas limbic 

afferents tend towards the agranular portion (74). Despite this, functional studies do not 

support a clear distinction between these subregions as there are extensive local connections 

among them (75). In rodents, the insula is also divided both anatomically and functionally 

into three areas along the rostral-caudal axis, the anterior “gustatory cortex”, posterior 

“visceral cortex” and a middle region whose function is less clear but may integrate signals 

from the other two. Because the insula receives inputs from peripheral organs involved in 

both ingestion and digestion, and also directly encodes tastants, a role for the insula to 

regulate food intake has long been postulated (76,77).

In contrast to prefrontal areas, which appear to have an effect on baseline feeding, studies 

have demonstrated insula inhibition has no effect on homeostatic feeding (defined as normal 

feeding in the home cage) (30,68,78,79). Instead, the insula has been shown to have an 

effect on eating in response to environmental cues (30) or palatable food (68). These effects 

on food intake are mediated by insular cortex connections to subcortical structures, such 

as the CeA (30). Indeed, the amygdala, striatum, thalamus and hypothalamus are the main 

subcortical structures that receive insula projections (30,80). A number of studies have also 

shown that activation of the insular cortex using optogenetic stimulation leads to decreased 

food intake (80,81), although whether these effects are physiologic is unclear. In addition, 

the insular cortex also plays a role in regulating conditioned taste aversion, which is a 

learned response that leads to the avoidance of foods that were previously associated with 

malaise (82,83). This suggests that the insula encodes both attractive and aversive stimuli 

and in turn adjusts a consummatory response either positively or negatively depending upon 

the precise effect of the learned cues.

Recent studies suggest that the insula constructs a representation of hunger and thirst states 

over time that is independent of direct hypothalamic input (84). When considered alongside 

the studies showing that the insula also links exteroceptive cues to reward responses and 

food intake (78), this suggests that the insular cortex integrates both interoceptive and 

exteroceptive information to provide top-down control of eating behavior via projections to 

limbic structures.

2.3. Orbitofrontal cortex (OFC)—Findings in rodents, primates and humans have 

shown that the OFC encodes reward values in the brain, with individual neurons decoding 

visual, olfactory and gustatory stimuli which then guide behavioral choices to optimize 

reward value (85,86). Pioneering experiments in monkeys demonstrated that single neuron 

activity and self-stimulation of OFC neurons is attenuated in sated animals (87,88). 
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Functional imaging in humans has also demonstrated a role for the OFC in rating the 

pleasantness of food (89). The possibility that subjective value is encoded within this 

cortical region is also suggested by studies showing that a highly palatable, energy-dense 

diet, which causes obesity in rodents, leads to morphological changes in the OFC, with 

alterations of resting membrane potential and decreased inhibitory transmission onto OFC 

neurons (90). Another report (86) showed that a subset of OFC neurons shows increased 

activity in response to high-calorie food rewards, and that activation of those neurons 

increased licking of those rewards. It should be noted, that consumption of liquid rewards 

may involve different pathways than those that lead to intake of chow or other solid foods. 

Interestingly, these neurons were distinct from OFC populations encoding social stimuli, 

suggesting that there is specificity at the cellular level for distinct behaviors (86).

Taken together, these studies suggest that the OFC plays a role in eating behavior by 

assigning reward values to food, thereby guiding behavioral choices. Interestingly, rodent 

studies have focused primarily on the lateral OFC (85,86,90), although human imaging 

studies have distinguished between the lateral OFC, which is primarily involved in the 

evaluation of punishers and medial OFC, which regulates reward values of reinforcers (91). 

Overall, the data suggests that the OFC could contribute to obesity by biasing consumption 

towards highly palatable and rewarding foods, but this will need to be confirmed in further 

studies. The OFC is connected to many brain regions including the amygdala (92) and 

the hypothalamus (92), but these projections have mostly been investigated in emotional 

contexts (93, 94), not yet in the context of food intake.

3. Orexigenic and Anorexigenic Signals Regulating Appetite in Cortical and Subcortical 
Structures

The hypothalamus has long been considered to tune eating behavior in response to 

orexigenic and anorexigenic signals that arise from the periphery (i.e. leptin, GLP-1, ghrelin) 

and from the brain (i.e. melanocortins). Among these signals, many act directly in cortical 

and subcortical regions, either arising from the ventricles and acting via volume transmission 

(i.e. GLP-1) or arising from local neurons (i.e. NPY). These neurons signal via both classical 

neurotransmitters (i.e. GABA or glutamate) and neuropeptides and their specific receptors. 

In this section we will focus on the most intensively studied orexigenic and anorexigenic 

signals acting in subcortical and cortical structures to regulate appetite and other related 

behaviors.

NPY is a classical hypothalamic neuromodulator first described in the 1980s (95). Initial 

findings identified hypothalamic NPY as an important regulator of appetite, body weight 

and other physiologic functions (95,96). Later, the observation that NPY is also expressed in 

extrahypothalamic brain areas, especially in interneurons, highlighted the importance of this 

neuropeptide in affective behaviors. For example, NPY is produced in the hippocampus and 

controls hippocampal activity through Y1 and Y2 receptors to regulate anxiety, stress and 

memory (97–99). NPY infused in the LS can induce anxiety and defensive behaviors via Y2 

receptors, though the source of the septal NPY is not clear (100,55). In the central amygdala, 

NPY is produced locally by neurons that promote obesity in stressful environments (101). 

NPY is also expressed at high levels in cortical interneurons, and this NPY signaling, similar 
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to its effects in hippocampus, can regulate anxiety and memory (102,103). The role of 

cortical NPY in appetite is therefore still unclear and requires further studies.

Melanin-concentrating hormone (MCH) is made by a subpopulation of neurons in the 

LH which act to induce food intake. Indeed, intracerebral injections of MCH increases 

food intake and decreases energy expenditure in rodents, leading to obesity. Hypothalamic 

MCH neurons project broadly throughout the brain including direct projections to the 

hippocampus where they regulate memory consolidation (104–106). These effects on 

memory are also important for eating behavior by associating episodic experiences to 

reward, which affects food-seeking (106). MCH signaling also contributes to changes in 

food intake by regulating impulse control (107), dysfunctions of which are associated with 

overeating in humans (108).

GLP-1 is mainly produced by endocrine L cells in the gut and in neurons in the nucleus of 

tractus solitarius that directly project to the hypothalamus, LS and amygdala (109). It is yet 

unknown whether these brainstem projections to the LS and amygdala are able to regulate 

any aspect of eating behavior. Hippocampal and LS neurons also express GLP1R and GLP-1 

signaling in this brain area has been shown to regulate food intake (19,20,47,52,53). In 

the insular and orbitofrontal cortex, GLP-1 increases activity deficits and alters palatable 

food intake in humans (110). GLP-1 administration in humans also increases connectivity 

between the hypothalamus and the orbitofrontal cortex (110). It is still unclear whether the 

source of this GLP-1 input is endocrine or neural (109).

Ghrelin is a peptide mainly produced by the stomach and it exerts its bodily function 

through the growth hormone secretagogue receptor. Ghrelin is another key regulator 

of nutrient sensing, meal initiation, and appetite. When infused into the amygdala or 

hippocampus, ghrelin modulates spatial learning and anxiety (111–113). In the hippocampus 

and LS, ghrelin also regulates appetite (56,113–115). However, a knockout of ghrelin or the 

enzyme that octanoylates it, required for its bioactivity, show a defective response to extreme 

malnutrition (116).

Leptin (117), arising from adipose tissue, acts centrally on the hypothalamus and additional 

evidence suggests that it may also have direct and indirect effects on many other brain 

areas, including the hippocampus, insular, prefrontal, cingulate, retrosplenial, entorhinal, 

auditory, ectorhinal, perirhinal and somatosensory areas of the cortex (118). However, 

the role of leptin in many of these areas is still unclear. In the hippocampus, leptin 

receptors are densely expressed in the granule layer (118) and leptin has important effects in 

memory, synaptic plasticity and appetite as well as eliciting an anti-depressive effect when 

infused locally (119–121). Imaging studies of hypoleptinimic women with hypothalamic 

amenorrhea given short-term leptin treatment show activity changes in the insular cortex, 

dorsolateral prefrontal and medial prefrontal cortices when viewing food during a fast, 

though it is unclear whether this is a direct effect (122). Similarly, ghrelin administration 

in fed subjects led to increased activity in amygdala, hippocampus, orbitofrontal cortex and 

insular cortex while viewing pictures of food (123).
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Overall, these findings imply that many neuromodulators controlling appetite have direct 

effects on hypothalamus but may also directly and indirectly recruit higher-order brain 

regions typically involved in learning, memory and executive functions. Here again, more 

research is needed to determine the role that these neuromodulators play in cortical regions 

and many other subcortical areas.

4. Maladaptive Eating Behavior in Psychiatric Disorders

The finding that higher-order brain regions regulate eating behavior via neuromodulators 

and descending projections provides an opportunity to consider the pathogenesis of 

maladaptive eating behaviors such as in eating disorders patients. Many of the brain regions 

discussed above have a known role in psychiatric disorders such as depression, anxiety 

and obsessive-compulsive disorder (OCD). High morbidity between maladaptive eating 

behaviors and these psychiatric disorders, along with the increased awareness of the role of 

higher-order brain regions in regulating food intake suggest that there may be a relationship 

between altered eating and mental health disorders.

For example, the comorbidity between depression, anxiety and anorexia nervosa and bulimia 

nervosa is strikingly high. As many as 50% of patients with anorexia and bulimia nervosa 

report a comorbid anxiety disorder, and anywhere from 20%−80% of patients will report at 

least one major depressive episode (124–126). Most studies indicate that anxiety typically 

precedes the onset of eating disorder symptoms (125,127,128), whereas depression typically 

presents either before or after its onset. It is therefore difficult to draw conclusions 

regarding whether eating disorders are a consequence of affective symptoms, particularly 

for depression. Despite this, it seems clear that there is a relationship between anxiety and 

eating disorders, even if the precise nature of the relationship remains elusive.

There is also a correlation between depression and obesity, which now accounts for over 

42% of adults in the United States. Major depression in adults predicts greater body mass 

index (BMI), particularly in females (129), and obesity leads to about a 55% increase in 

developing depression (130). While obesity is associated with depression, the opposite is 

true following weight loss among patients on a diet or following bariatric surgery (131). 

This relationship is reciprocal, as decreased physical activity and maladaptive food choices 

made during depressive episodes may also contribute to the development of obesity (132). 

Interestingly, leptin-deficient mice exhibit higher depressive-like behaviors on a forced 

swim test than control mice, which is reversed by leptin treatment. Leptin treatment also 

improved depressive-like behaviors in control mice. Similarly, diet-induced obese mice 

exhibit high depressive-like behaviors (133,134), which is associated with plasticity-related 

changes in brain reward regions such as the nucleus accumbens (135). It is thus possible 

that chronically low leptin levels, which signals under-nutrition (for that individual), leads 

to negative emotional sequelae, particularly depression, that are often reported after diet 

induced weight loss and recidivism.

That depression and anxiety are associated with weight disturbances may reflect the 

effects of stress on food intake. In rodents, acute stress decreases food intake (47,135) 

whereas chronic stress has variable effects. While unpredictable chronic stress decreases 

consumption as part of a “fight or flight” response (136), chronic predictable stress has been 
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shown to increase consumption of palatable food (135). Similarly, in humans, stress effects 

on food intake depend on the severity and duration of the stress (136,137). Importantly, 

stress appears to predispose to both obesity (136,138), and anorexia nervosa (139,140).

Children with autism spectrum disorder are at an elevated risk for obesity (141), although 

the precise cause of this association is unclear. In some mouse models of autism, high fat 

diet increases social deficits and cognitive rigidity (142), and similar increases are seen in 

wild-type mice fed a high fat diet (143). Interestingly, one study showed that activation of 

Agrp neurons, which normally leads to increased food consumption, leads to repetitive and 

stereotyped behaviors when food is not present (144). Together, these findings indicate a 

correlation between behaviors associated with autism and metabolic disturbances, of which 

further research is warranted.

Lastly, anorexia nervosa shares a strong genetic relationship with obsessive-compulsive 

disorder, suggesting shared underlying mechanisms between the two disorders (145,146) 

that merits further investigation.

Summary

Food intake is under both homeostatic and non-homeostatic control. Under the influence 

of descending inputs, subcortical systems are tuned to satisfy metabolic needs in often 

changing environmental conditions. Additionally, cognitive and affective factors can regulate 

food intake and the evidence suggests that this is the result of top-down modulation of 

homeostatic circuits. The tightly balanced communication between cortical and subcortical 

regions provides downstream feedback to regions that regulate appetite, energy balance 

and motor control, such as the hypothalamus and the brainstem. On the other hand, 

cortical systems regulate subcortical systems to tune emotional responses. While patients 

that develop eating disorders report difficulties in self-regulation and are usually diagnosed 

with secondary psychiatric disorders, such as obsessive-compulsive disorder, anxiety and 

depression, the mechanisms by which neuropsychiatric conditions influence these circuits is 

unclear and represent an opportunity for future investigation.
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Fig 1. Cortical and Subcortical connections to Hypothalamus.
Efferent and afferent projections from the hypothalamus to many cortical and subcortical 

structures are summarized in this figure. Many of these projections are important in 

the regulation of hypothalamic activity and appetite control. OFC: orbitofrontal cortex; 

IC: insular cortex: HPC: hippocampus, HY: hypothalamus, PFC: prefrontal cortex, ACC: 

anterior cingulate cortex; LS: lateral septum; BNST: bed nucleus of stria terminalis; Amy: 

Amygdala.
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Fig 2. Coordination of eating behavior by multiple brain regions.
Together with the hypothalamus, the insular cortex and other brain regions receive 

interoceptive information from peripheral organs. This information is processed along with 

environmental, sensory and emotional information by other cortical and subcortical areas, 

ultimately leading to changes in food intake. The hypothalamus ultimately projects to 

midbrain and brainstem areas controlling behavior (VTA: ventral tegmental area; PBN: 

parabrachial nucleus; PAG: periaqueductal gray; NTS: nucleus tractus solitarius). Many of 

the cortical (ACC: anterior cingulate cortex, PFC: prefrontal cortex, OFC: orbitofrontal 
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cortex, IC: insular cortex) and subcortical (HPC: hippocampus, LS: lateral septum, BNST: 

bed nucleus of stria terminalis; Amy: Amygdala) are reciprocally connected and control 

information outflow.
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