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Abstract

Clinical studies suggest that women are more likely than men to relapse to alcohol drinking in 

response to stress, however the mechanisms underlying this sex difference are not well understood. 

A number of preclinical behavioral models have been used to study stress-induced alcohol intake. 

Here we review paradigms used to study effects of stress on alcohol intake in rodents, focusing 

on findings relevant to sex differences. To date, studies of sex differences in stress-induced 

alcohol drinking have been somewhat limited, however, there is evidence that amygdala-centered 

circuits contribute to effects of stress on alcohol seeking. In addition, we present an overview of 

inflammatory pathways leading to microglial activation that may contribute to alcohol-dependent 

behaviors. We propose that sex differences in neuronal function and inflammatory signaling in 

circuits centered on the amygdala are involved in sex-dependent effects on stress-induced alcohol 

seeking and suggest that this is an important area for future studies.

Introduction

The consequences of chronic alcohol use represent a major personal, public health and 

financial burden. Historically, men have had higher rates of problematic alcohol use than 

women (Schulte et al. 2009). However, the trend for an increase in alcohol use disorders 

(AUD) among women is alarming, and recent analyses suggest an increase in problematic 

drinking in women in the United States of more than 80% over the past 10 years (Grant et 

al. 2017). While pharmacological treatments are available for AUD, they were developed 

exclusively or primarily with samples of men, (Anton et al. 2006) and none of the 

currently approved treatments are known to target the multiple factors that differentially 

maintain drinking in women. AUD is characterized by physical dependence and neuronal 

perturbations induced by repeated alcohol exposure. Withdrawal from alcohol leads to a 
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number of negative effects, including changes in mood and induction of negative affect, but 

also has life-threatening consequences, including seizure and coma. Many AUD therapies 

focus on alcohol intake but other co-morbid conditions, such as depression, perpetuate the 

use of alcohol, likely as an attempt to cope with psychiatric symptoms. Not surprisingly, 

multiple studies have demonstrated strong co-morbidity between AUD and psychiatric 

disorders (https://pubs.niaaa.nih.gov/publications/arh26-2/81-89.htm), including generalized 

anxiety disorder, depression and post-traumatic stress disorder, all of which can contribute to 

harmful drug and alcohol use. Of particular concern is the fact that women are more prone to 

negative-reinforcement drinking (NRD), and thus, stress-related drinking relapse, compared 

to men (Nolen-Hoeksema and Hilt 2006). Because stress sensitivity and rates of anxiety 

disorders are twice as high in women than in men (Remes et al. 2016) and lifetime anxiety 

predicts poorer drinking outcomes in women (Farris et al. 2012), it is critical to identify the 

mechanisms by which neurobiological circuits that regulate these behaviors can contribute to 

NRD and alcohol consumption.

Clinical (Keren et al., 2014; Logrip et al., 2018; Peltier et al., 2019) and preclinical (Pelloux 

et al., 2005; Cozzoli et al., 2014; Peñasco et al., 2015; Bertholemey et al., 2016; Shaw et al., 

2020) studies demonstrate heightened susceptibility to stress-induced drinking in females. 

Animal models can recapitulate the effects of sex and stress on alcohol intake. For example, 

exposure to a stressor can increase ethanol intake in mice, with female mice increasing 

their alcohol intake more rapidly than males (Cozzoli et al., 2014). These animal models 

provide the possibility of examining the underlying mechanisms of stress induced changes in 

alcohol-related behaviors and exploring sex differences in these mechanisms.

This review will provide an overview of the different animal models used to decipher the 

connection between stress and alcohol intake and how sex differences can modulate this 

interaction. Based on the established role of the amygdala in stress-relevant behaviors, we 

will then provide an overview of the role of neuronal networks centered on the amygdala 

in alcohol-related behaviors and explore how perturbation of amygdala activity by alcohol 

could alter these behaviors. Finally, given the increasing body of evidence that inflammatory 

pathways in the brain are recruited in response to both stress and alcohol exposure (Crews 

et al. 2017), we will provide an overview of the possible role of microglia, a key cellular 

component of the brain inflammatory response, in reshaping the neuronal networks that 

contribute to, and perpetuate, alcohol use. The goal of this review is to identify critical lines 

of research needed to gain a greater understanding of stress-induced alcohol use, and to 

evaluate sex differences in some of the critical mechanisms underlying these behaviors.

Rodent models of alcohol use and relevance for stress-induced drinking

Several studies have investigated the effects of stress on alcohol intake and preference in 

rodent models, and the results differ based on species, strain, type of stressor, and the timing 

of stress and alcohol exposure in the experimental design (Spanagel et al., 2014; Weera & 

Gilpin, 2019). However, only a limited number of rodent studies have considered potential 

sex differences in how stress can alter alcohol seeking behaviors. Preclinical studies of 

sex-dependent effects of stress on alcohol drinking could shed light on the biological 
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mechanisms underlying female-specific increases in human alcohol drinking to cope with 

stress and negative affect (Peltier et al., 2019).

To model stress-induced increases in alcohol intake and preference in rodents, the first 

consideration is the route of administration and the duration of exposure to ethanol. 

Rodents typically do not self-administer ethanol in sufficient amounts to induce behavioral 

intoxication or to reach physiologically relevant blood alcohol concentrations measured in 

human drinkers. Several strategies have therefore been proposed to promote robust alcohol 

intake in rodents, including selective breeding of alcohol-preferring rodent strains and/or 

manipulation of schedule of access to alcohol (Becker, 2012; Becker & Ron, 2014).

Classical behavioral approaches to volitional administration of oral ethanol include access 

to an ethanol solution through an operant task (Heidbreder et al., 2007; Lopez & Becker, 

2014; Sparta et al., 2009) or home cage drinking of an oral ethanol solution. Access to 

ethanol solutions can either be unlimited throughout the duration of the experiment (Crabbe 

et al., 2010; García-Pardo et al., 2017; Hwa et al., 2011), intermittent between days (Bloch 

et al., 2020; Hwa et al., 2011; Warnault et al., 2013), or limited to specific times of the 

day (Becker, 2012; Olney et al., 2018; Rhodes et al., 2005; Thiele & Navarro, 2014). These 

approaches differ in the extent of alcohol intake and blood alcohol levels achieved, with 

intermittent and limited access models allowing a much higher level of intoxication than 

unrestricted access (Hwa et al., 2011; Rhodes et al., 2005). Depending on the experimental 

design, however, reaching maximal alcohol intake in the absence of stress exposure could 

be counterproductive if the goal is to assess how stress can increase intake. In addition, the 

availability of choice between water and ethanol can provide stronger construct validity for 

the human condition, compared to models in which alcohol intoxication is reached because 

no other fluid is available (Cannella et al., 2019).

The nature and frequency of stress exposure is another factor that can be varied across 

experiments. Studies exploring stress-induced alcohol consumption have involved physical 

restraint (Farook et al., 2009; Marianno et al., 2017; Walker et al., 2015), social defeat 

(Newman et al., 2018; Norman et al., 2015), exposure to predator odors (Cozzoli et al., 

2014; Hwa et al., 2011; Shaw et al., 2020), forced swim (Morais-Silva et al., 2015), 

footshocks (Breit & Chester, 2016; Cozzoli et al., 2014), pharmacologically-induced stress 

(Bertholomey et al., 2016; King and Becker, 2019; Ballas et al., 2021), or a combination of 

these stressors (Cozzoli et al., 2014). Interestingly, in male rats, forced swim and footshocks 

appear to elicit greater stress-induced alcohol drinking when compared to physical restraint, 

although this difference is not seen in mice (Noori et al., 2014). Importantly, stressors 

may differentially activate the hypothalamic-pituitary-adrenocortical (HPA) axis in male and 

female animals (Albrechet-Souza et al., 2020; Babb et al., 2013; Bland et al., 2005; Cozzoli 

et al., 2014), and thus the potential for sex-specific sensitivity to particular stressors and their 

effects on alcohol drinking should be an important point of consideration.

Human data strongly suggest that the interactions between stress and alcohol intake are 

bidirectional (Peltier et al., 2019): stress can prime individuals for subsequent alcohol 

seeking (Childs et al., 2011), while alcohol can also increase responsivity to stress (Becker 

& Koob, 2016; Bertholomey et al., 2016). Given the complex interactions between stress 
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exposure and alcohol intake, complementary behavioral approaches have been developed to 

model different dimensions of the human condition. Several rodent models have focused 

on stress as a trigger for relapse in stress-induced alcohol seeking (Lê and Shaham, 

2002). These studies have shown that a variety of stressors, notably footshocks (Lê et al., 

1998, Lê et al., 2011), predator odor (King and Becker, 2019) or the α2-adrenoceptor 

antagonist yohimbine (Ballas et al., 2021; Bertholomey et al., 2016; Borruto et al., 

2021; King and Becker, 2019; Lê et al., 2011), can robustly reinstate alcohol seeking in 

rodents previously trained in operant self-administration of alcohol that have subsequently 

undergone extinction. Importantly, these stress-induced reinstatement tests are done in the 

absence of an alcohol reinforcer. While these operant approaches can more accurately 

capture the effect of stress on alcohol seeking as a model for human relapse during 

abstinence, animal models that explore alcohol drinking in the home cage have the 

advantage of exploring how stress can alter alcohol drinking in the absence of cue- or action-

triggered intake (Becker et al., 2011). In particular, home cage studies provide opportunities 

to study how drinking alcohol after stress exposure can ameliorate neuroadaptive imbalances 

arising from prior exposure to both alcohol and stress, and thus can be helpful in the 

mechanistic study of negative reinforcement drinking with relevance to relapse as well.

Only individuals who have learned that alcohol can reduce a negative affective state would 

be more likely to drink alcohol to alleviate stress (Heilig et al., 2010; Noori et al., 

2014; Spanagel et al., 2014). Thus, animal models of stress-induced increases in alcohol 

intake require a history of prolonged ethanol exposure coupled with repeated exposures to 

stressors. For instance, male mice increase ethanol intake after repeated cycles of stress, 

but only if previously trained to consume high levels of alcohol, as can be achieved 

with chronic-intermittent exposure (CIE) (Anderson et al., 2016; Lopez et al., 2016) or 

a scheduled high-alcohol consumption paradigm (Finn et al., 2018). These two models 

incorporate cycles of binge alcohol intoxication followed by repeated withdrawal periods 

that dramatically increase alcohol intake compared to other paradigms (Holleran and Winder 

2017). Withdrawal is thought to promote negative reinforcement drinking via alterations of 

the HPA axis (Blaine & Sinha, 2017; Koob, 2003; Rasmussen et al., 2000), thus having 

the potential to increase stress-induced drinking. Furthermore, a review by Becker and 

colleagues (Becker et al., 2011) noted that chronic exposure to stress is more likely to 

enhance alcohol drinking in rodents when compared to acute stressors. Interestingly, stress-

induced effects on alcohol intake are only evident when the stress is removed in time 

from the availability of alcohol (Noori et al., 2014), potentially due to the time needed for 

stress-induced changes in neuroplasticity to alter alcohol seeking behavior (Spanagel et al., 

2014). Taken together, these data suggest that the timing and frequency of both stress and 

alcohol exposure are likely to be critical parameters for modeling stress-induced alcohol 

drinking in rodents.

Not surprisingly, the limited number of preclinical studies that have explored stress-induced 

alcohol intake differ fundamentally in stress-alcohol timing and frequency, as is summarized 

in Table 1. Most of the studies that introduce the stressor prior to alcohol exposure focus on 

how stress occurring early in development determines future alcohol intake and preference 

during late adolescence and adulthood. Most of the studies done in adult rodents, in contrast, 

introduce alcohol exposure before repeated bouts of stress exposure. Nonetheless, only a 
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small number of published studies have used both male and female rodents within the same 

experimental design (Table 2).

A study done by Cozzoli and colleagues (Cozzoli et al., 2014) trained male and female 

mice using a restricted alcohol drinking schedule, in which mice could either drink alcohol 

or water in a daily 2-hour window. On selected days, mice were subjected to one of the 

following stressors: restraint, tail suspension, predator odor, footshocks or tail pinches, 

which were applied immediately prior to their drinking period. Of these stressors, only 

predator odor caused an increase in ethanol intake, with female mice showing a faster 

increase in intake compared to males (24 hours post stress vs 48 hours post stress; Cozzoli 

et al., 2014). Another study exposed male and female juvenile mice to predatory odor 

stress prior to introducing intermittent access to alcohol and water in their home cage 

several weeks later (Shaw et al., 2020). Although this study did not report any sex-specific 

changes in stress-induced alcohol drinking, male mice that had been stressed continued to 

drink alcohol longer compared to unstressed controls, even when alcohol reinforcement was 

devaluated by the addition of quinine (Shaw et al., 2020). Finally, a study done by Peñasco 

and colleagues (Peñasco et al., 2015) shows that periods of alcohol withdrawal and restraint 

stress in adult rats trained to drink alcohol result in a female-specific increase in alcohol 

intake, but only in those rats also exposed to maternal separation during adolescence. This 

study highlights that the timing and duration of stress and alcohol exposure are likely to be 

critical for identifying sex-specific increases in stress-induced alcohol drinking.

Overall, despite many advances in modeling stress-induced alcohol drinking in rodents, 

little attention has been placed on whether these behavioral models capture female-specific 

increases in alcohol intake after stress exposure, a phenomenon now well documented 

in humans (Peltier et al., 2019). It is therefore important to fine-tune existing behavioral 

approaches to capture this sex-specific dimension. A preclinical model that recapitulates the 

increased sensitivity to stress-induced drinking in females will be necessary for mechanistic 

explorations of the molecular, cellular and circuit-level basis for sex differences in alcohol 

intake.

Role of the amygdala in stress-induced alcohol intake

While behavioral models are beginning to show that female rodents may drink more in 

response to stress (Cozzoli et al., 2014), the neurocircuitry underlying sex differences in 

alcohol intake are mostly unknown (Becker and Koob 2016). The amygdala is likely to be 

involved in stress-induced alcohol intake, and potentially in sex-dependent differences in 

alcohol drinking, because it plays a pivotal role in the control of a wide range of behaviors 

related to stress, anxiety, fear, and alcohol intake. Importantly, the basolateral amygdala 

(BLA) underlies the complex control of behaviors that are related to both aversive (stress) 

and rewarding (acute alcohol intake) stimuli (Baxter and Murray 2002; Janak and Tye 2015; 

Crouse et al., 2020). Early investigations into the BLA suggested that the amygdala can 

rapidly detect negative emotional states and external stimuli to produce behavior that is 

adaptive to potential threats (Brown and Sharpey-Schafer 1888; Klüver and Bucy 1937; 

Weiskrantz 1956).
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Neurons in the BLA and central amygdala (CeA) arise from distinct cell lineages. In the 

BLA, the majority of neuronal cells are excitatory projection neurons that are inhibited by 

a smaller number of local inhibitory interneurons (Janak and Tye 2015). BLA glutamatergic 

neurons project in part to the CeA (Roberto et al. 2012; Janak and Tye 2015), a striatal-like 

structure that is almost entirely composed of GABAergic inhibitory neurons, including 

both local interneurons and inhibitory projections to downstream regions such as the locus 

coeruleus (LC), bed nucleus of the stria terminalis (BNST), and periaqueductal grey (PAG) 

(Roberto et al. 2012; Spampanato et al., 2011; Janak and Tye 2015; Gilpin et al. 2015). 

Within the CeA, inhibitory neurons in the centrolateral (CeL) region act as a gate on activity 

of the centromedial (CeM) anxiety-promoting projection neurons (Ciocchi et al. 2010). 

Further, direct activation of the CeA by the BLA makes it the main output nucleus of the 

amygdala that drives neuroendocrine responses to stress (Sah et al. 2003).

The amygdala is a sexually dimorphic brain structure influenced by sex hormone signaling 

(Równiak et al. 2015; Price and McCool 2022). The balance of estrogen and androgen 

signaling can be disturbed by alcohol intake, which may contribute to maladaptive alcohol 

use (Morales et al. 2018;Dozier et al. 2019; Fulenwider et al. 2019; Lorrai et al. 2019; 

Scott et al. 2020; Priddy et al. 2017;Ford et al. 2004; Bertholomey and Torregrossa 2019). It 

should be noted that there are some discrepancies among animal models as to whether 

alcohol exposure alters the estrous cycle. In female rhesus monkeys, ethanol did not 

influence menstrual cycle length, including changes to the follicular or luteal phases, or 

progesterone levels (Dozier et al. 2019). In contrast, a study in female rats found that long 

durations of chronic intermittent ethanol intake disrupted the estrous cycle, and with longer 

exposure, there was an increased proportion of females in diestrus I and II compared to 

control females (Morales et al. 2018). With respect to effects of estrous cycle on alcohol 

intake, several studies show that non-human primates exhibit significantly higher alcohol 

intake during the luteal phase when compared to the follicular phase of the menstrual 

cycle (Dozier et al. 2019; Fulenwider et al. 2019; Lorrai et al. 2019; Scott et al. 2020; 

Priddy et al. 2017). Similarly, several lines of research show that estrogen levels are 

positively correlated with increased ethanol consumption (Bertholomey and Torregrossa 

2019; Vandegrift et al. 2017; Molina-Martínez and Juárez 2020; Kerstetter et al. 2012; 

Larson and Carroll 2006; Hilderbrand and Lasek 2018; Juárez et al. 2002). For example, 

gonadectomized female rats show decreased binge drinking; however, when supplemented 

with 17beta-estradiol, ethanol consumption increased (Ford et al. 2004; Bertholomey and 

Torregrossa 2019). Conversely, gonadectomized males decreased alcohol self-administration 

when given replacement testosterone (Bertholomey and Torregrossa 2019).

A number of mechanisms may contribute to estrogen effects on alcohol intake. For example, 

ethanol-induced firing of VTA dopamine neurons is decreased when estrogen receptors 

are blocked in brain slices from female mice in diestrus (high estradiol), suggesting 

that estrogen heightens ethanol sensitivity of dopamine neurons (Vandegrift et al. 2017). 

Further, the response of dopamine neurons to ethanol was greater in ovariectomized mice 

following estradiol replacement (Vandegrift et al. 2017; Vandegrift et al. 2020). In addition 

to differences in activity of the dopamine system, estradiol has anxiolytic effects in female 

rodents (Koss et al. 2004; Tian et al. 2013) that are mediated through ERɑ and Erβ estrogen 

receptors (Österlund et al. 1998). Notably, there are regional differences in expression of 
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these estrogen receptor subtypes, with high levels of ERɑ mRNA in BLA, while the CeA 

predominantly expresses ERβ (Österlund et al. 1998). Of note, ERβ is highly expressed 

in inhibitory, PV-expressing neurons in female rats in the amygdala, basal forebrain, and 

hippocampal regions (Blurton-Jones and Tuszynski 2002). Finally, amygdala ER expression 

levels are influenced by estradiol concentration (Österlund et al. 1998), likely contributing to 

differential responses across the estrous cycle.

In addition to gonadal hormones, allopregnanolone, a potent neurosteroid that increases 

GABA-A receptor signaling, can also increase alcohol consumption with differing effects 

across sex and species. Allopregnanolone can increase ethanol intake in male rodents and 

female monkeys (Sinnott et al. 2002; Rowlett et al. 1999; Grant et al. 2008; Grant et al. 

1997; Dozier et al. 2019; Genazzani et al. 1998). Following chronic ethanol exposure in 

male monkeys, both tissue and circulating serum levels of allopregnanolone are significantly 

decreased in the amygdala, whereas, in a similar study of female monkeys subjected to 

chronic ethanol exposure, serum levels of allopregnanolone were unaffected (Beattie et 

al. 2017; Dozier et al. 2019). However, in a human clinical study of adolescent females, 

there was a significant increase in circulating allopregnanolone levels following alcohol 

intoxication (Torres and Ortega 2003). Taken together, these results emphasize the need for 

further research on the effects of steroidal hormones on the development and expression of 

AUD across sexes.

While steroid hormones can contribute to alcohol intake, numerous studies in males across 

animal species have found that alcohol acts primarily on GABA-A receptors (GABAAR), 

potentiating receptor activity and enhancing inhibitory neurotransmission (Mihic 1999, Diaz 

et al. 2011, Floyd et al. 2004, McCool et al. 2003). Indeed, stress can increase ethanol self-

administration via perturbation of the GABA system in male rats (Ostroumov et al., 2016). 

These interactions are particularly critical in the BLA. In male rats ethanol administration 

enhances GABA signaling onto BLA pyramidal cells, and can reduce anxiety-like and 

alcohol-seeking behaviors (Butler et al., 2014). However, physiological studies in rats have 

identified a decrease in inhibitory postsynaptic currents (IPSCs) after ethanol application 

to BLA slices (Zhu and Lovinger 2006; Ornelas and Keele 2018), suggesting alcohol 

decreases GABA signaling in the BLA. A single prolonged stress session alone did not 

result in significant sex differences in IPSCs recorded from male and female rat BLA slices; 

however, there were significant sex differences in neuronal excitability of BLA neurons 

when a single prolonged stress session was combined with ethanol exposure that was bath 

applied during recording (Ornelas and Keele 2018). Specifically, decreased neuronal spike 

firing was observed following ethanol application in BLA slices from female rats that were 

exposed to stress in-vivo (Ornelas and Keele 2018). Meanwhile, BLA slices from male 

rats that previously underwent stress showed a decreased hyperpolarization-activated, cyclic 

nucleotide-gated cation current (Ih) in response to acute ethanol application (Ornelas and 

Keele 2018). These results suggest that the neuronal network within the BLA is not only 

different in male and female animals, but that synergistic effects between stress and alcohol 

in this brain region could differ by sex.

Effects of alcohol in the amygdala are not limited to the BLA and are also observed in the 

central amygdala (CeA) and the bed nucleus of the stria terminalis (BNST or “extended 
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amygdala”). Importantly, both the BLA and CeA send projections to the BNST (Miles 

and Maren 2019). There are striking similarities between the micro-circuitry of the BNST 

and the CeA and both are striatal-like in structure (Dong et al., 2000; Kash 2012). The 

BNST has been implicated in an increased drive to consume alcohol and also responds 

to stressful stimuli (Kash 2012). The Winder group has shown that there are extensive 

molecular adaptations and significant synaptic plasticity in the BNST following chronic 

alcohol exposure in male mice (Healey et al., 2008; Kash et al. 2009; McElligott and Winder 

2009). The NMDA subclass of glutamate receptors (NMDAR) is activated by ethanol, and 

NMDARs in the ventral BNST become sensitized during acute withdrawal from chronic 

alcohol exposure in male mice in vivo (Kash et al. 2009). Chronic intermittent ethanol 

(CIE) exposure increased the probability of glutamate release in the stria terminalis of both 

male and female rats, with males starting to show a difference at 3 days of CIE, whereas 

it took 7 to 10 days of CIE to see the same effect in females (Morales et al. 2018); 

however, no sex difference was observed in withdrawal-induced anxiety in an elevated plus 

maze test after 3 days of CIE. These results indicate that a different synaptic mechanism 

drives expression of withdrawal-induced anxiety, possibly involving changes in activity of 

GABAergic interneurons (Morales et al. 2018).

Several studies have found that in brain regions where GABAB receptors are expressed, 

such as the CeA, neurotransmission is potentiated by ethanol (see Fig. 1). Conversely, in 

the hippocampus, blocking GABABRs is required to observe alcohol-induced GABAergic 

transmission in male mice and rats (Roberto et al. 2003; Ariwodola and Weiner 2004; 

Nie et al. 2009), consistent with the idea that the ability of alcohol to facilitate 

GABA neurotransmission might be limited by GABABR-mediated presynaptic feedback 

(Ariwodola and Weiner 2004). Acute alcohol application to male rat BLA and CeA slices 

potentiates GABAergic transmission through pre- and post-synaptic mechanisms (Roberto 

et al., 2003), while decreasing glutamatergic activation (Roberto et al., 2012). Following 

chronic ethanol exposure in male ethanol-preferring rats, NMDARs are upregulated, leading 

to greater CeA excitability ex vivo (Obara et al. 2009). This is also true in other brain 

regions such as the hippocampus, where acute alcohol application inhibits glutamatergic 

transmission by decreasing transmission via NMDA and AMPA receptors, whereas chronic 

alcohol exposure up-regulates NMDA receptor-mediated transmission in male rats ex vivo 
and in vitro (Kalluri et al. 1998; Carpenter-Hyland et al. 2004; Carpenter-Hyland and Judson 

Chandler 2007). A compelling study that examined both male and female rats subjected 

to stress and then alcohol found that there were increased GABAergic miniature inhibitory 

postsynaptic currents (mIPSCs) and increased cytokine levels in CeA slices (Steinman et 

al. 2021). Interestingly, female rats that were exposed to stress in a familiar environment 

showed greater mIPSC frequency in the CeA, whereas males that were exposed to stress 

in either a novel or a familiar environment showed greater mIPSC amplitude (Steinman et 

al., 2021), suggesting that increases in GABAergic transmission may occur in CeA in both 

females and males, but through different mechanisms. These studies support the hypothesis 

that acute alcohol intake increases GABAergic transmission (Fig. 1), resulting in its ability 

to decrease behaviors relevant to anxiety; conversely, following chronic alcohol consumption 

glutamatergic transmission is enhanced and GABA transmission is decreased, leading to 
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increased excitation/inhibition balance in a number of brain regions including the BLA and 

CeA, resulting in increased anxiety.

There are several sex differences in the types of interneurons found in amygdala subregions; 

for example, a higher density of calcium binding proteins (calbindin (CB)+ and parvalbumin 

(PV)+) has been observed in the BLA of female guinea pigs compared to males (Równiak 

et al. 2015). Furthermore, immunohistochemical studies in female rats identified a higher 

density of PV+ interneurons during diestrus and decreased density during proestrus (Blume 

et al. 2017). Because chronic ethanol consumption can increase the time spent in diestrus 

(Morales et al. 2018; Österlund et al. 1998; Blurton-Jones and Tuszynski 2002; Blume et al. 

2017), future studies will be needed to determine whether a correlation exists between the 

total number of interneurons co-expressing PV and ERß and how this could underlie ethanol 

consumption.

GABAergic and glutamatergic mechanisms are necessary for the development and 

perpetuation of alcohol intake. There may be important differences in signaling mechanisms 

between sexes, although sex differences in glutamate and GABA signaling following alcohol 

use have not been studied as extensively. In one study, CeA neurons in male rats were shown 

to be sensitive to alcohol-induced inhibition of glutamatergic inputs to the structure, whereas 

female rats showed reduced sensitivity to alcohol-mediated inhibition of the CeA (Logrip 

et al., 2017). Thus, the interaction between neurons in different amygdala subregions could 

regulate alcohol consumption, with different interactions dominating in male and female 

animals.

In addition to changes in GABA signaling, epinephrine and norepinephrine (NE) levels 

are increased during withdrawal in individuals with AUD. A review of the literature 

has led to the hypothesis that noradrenergic signaling in the amygdala is modulated by 

both chronic alcohol use and by anxiogenic stimuli (Glavin 1985; Morilak et al., 2005). 

For example, several days of ethanol exposure can increase levels of NE and stress 

hormones such as cortisol in rats (Patterson-Buckendahl et al., 2005); however, a recent 

study found that alcohol does not stimulate the noradrenergic system directly, but instead, 

corticotropin releasing factor is required to increase norepinephrine release in the CeA 

of male rats following alcohol exposure (Hedges et al. 2020). Reducing noradrenergic 

tone may reduce stress-induced relapse to alcohol-seeking (Smith and Aston-Jones 2008). 

Clinically, guanfacine (an adrenergic receptor agonist) has shown efficacy in reducing 

smoking- and cocaine-induced relapse induced by stress, and can improve outcomes for 

patients with AUD (Fox et al., 2014; McKee et al., 2015). Guanfacine can decrease anxiety- 

and depression-related behaviors in mice, with similar behavioral effects in male and female 

animals, although sex differences in neuronal activation were observed in the BLA (Mineur 

et al., 2015). Reducing NE globally can also decrease ethanol preference in 2-bottle choice, 

ethanol conditioned place preference, and total ethanol consumption (Fitzgerald 2013). 

However, sex-dependent mechanisms through which the noradrenergic system mediates 

changes in alcohol intake following stress have not been studied systematically. Table 3 

summarizes recent studies on the effects of the combination of alcohol and stress on synaptic 

and molecular processes. The studies summarized in Table 3 were mostly carried out using 

male rodents, highlighting the need to include both female and male animals to identify 
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potential sex-specific differences in the effects of stress and alcohol on the underlying 

neurocircuitry in brain areas relevant to AUD.

Contribution of microglia to stress-induced alcohol intake

Extensive human clinical studies have highlighted the role of inflammation in the etiology 

of stress and AUD. Several studies have demonstrated an increase in peripheral cytokine 

levels in subjects with AUD, particularly interleukin-6 (IL-6) and tumor necrosis factor α 
(TNFα), both of which are associated with alcohol craving and other affective changes, 

suggesting a potential link between inflammation and AUD-related behaviors (Laso et 

al., 2007; Gonzalez-Quintela et al., 2008; Heberlein et al., 2014). Research has shown 

alterations of immune-related genes in the brains of individuals with AUD (Lewohl et al., 

2000; Mayfield et al., 2002; Liu et al., 2006; Crews et al., 2013; Vetreno et al., 2021); of 

particular note are increases in expression of microglial markers (He & Crews, 2008), as 

well as genetic and epigenetic alterations in microglia (Ponomarev et al., 2012; Brenner et 

al., 2020). Similarly, depression is associated with increased markers of microglial activation 

(Torres-Plata et al., 2014), and positron emission tomography (PET) studies have revealed 

alterations in brain inflammation in vivo in subjects with major depressive disorder (MDD: 

Holmes et al., 2018; Li et al., 2018; Richards et al., 2018) and AUD (Hillmer et al., 2017; 

Kalk et al., 2017; Kim et al., 2018).

Several studies have identified sex-specific effects of stress and alcohol consumption on 

microglial number and function. While some studies have shown heightened microglial 

responses to stress in females (Gildawie et al., 2020; Bekhbat et al., 2021), others have 

shown increased susceptibility in males (Woodburn et al., 2021); these differences may be 

due to differences in timing and type of stressor. As shown in Table 4, several preclinical 

studies have identified alcohol-induced increases in microglial number and activation in 

male rodents, as demonstrated through expression of Iba1, a marker upregulated in activated 

microglia (Sasaki et al., 2001), phagocytic markers CD68 (Kurishima et al., 2000) and 

CD11b (Ehlers, 2000), and the chemokine receptor Cx3Cr1 (Jurga et al., 2020), as well as 

measurements of cell morphology and binding of PET ligands to TSPO, a mitochondrial 

protein associated with neuroinflammation (Notter et al., 2018). Less work has included 

females, but there are data to suggest that alcohol consumption has heightened inflammatory 

effects in females, including upregulation of microglia-related genes, cytokines, and 

chemokines (Pascual et al., 2017), as well as increases in microglial number and activation 

(Barton et al., 2017). Thus, sex differences in immune function may underlie sex differences 

in AUD and the heightened susceptibility of women to stress-induced drinking. Women have 

higher levels of IL-6 (O’Connor et al., 2007; Chapman et al., 2009) and binge-drinking-

induced endotoxin (Bala et al., 2014), which are associated with social disconnection and 

depressed mood (Moieni et al., 2015). Furthermore, autoimmune diseases are more prevalent 

in women (Whitacre, 2001); these data point to the possibility of increased immune activity 

in women that may prime heightened reactivity to challenges such as psychosocial stress and 

alcohol consumption.

The preclinical literature highlights microglia as key mediators of the brain’s response to 

stress and alcohol consumption (see Fig. 2). Microglia are the brain’s resident macrophages; 
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in their resting state, they display a ramified morphology and monitor the brain environment. 

Detection of a toxin or stressor triggers classical activation, in which microglia transform 

into a more ameboid morphology, upregulate expression of various pro-inflammatory 

factors, and work to phagocytose debris and dead cells (Fig. 2). Once the threat has been 

addressed, microglia transition into an anti-inflammatory, alternative activation state (Block 

et al., 2007; Colton et al., 2009).

In addition to playing a role in phagocytosis, microglia can also alter synaptic structure 

and function in the CNS (Tremblay and Majewska 2011; Tremblay et al., 2011). At 

baseline, microglia are physically associated with neuronal synapses, and react dynamically 

to changes in the microenvironment (Nimmerjahn et al. 2005). Microglia play a critical 

role in synaptic pruning via chemokine (C-X3-C motif) ligand 1 (Paolicelli et al. 2011; 

Paolicelli and Gross 2011). The mechanisms by which synapse number is regulated in vivo 
remain to be elucidated, but in vitro experiments suggest that microglia control synaptic 

activity by regulating synapse number (Schafer et al., 2012). Thus, microglial activation 

could contribute to reorganization of neuronal networks via synaptic pruning.

While acute microglial activation is likely adaptive, and the classic activation phenotype is 

necessary for maintenance of a healthy brain, prolonged activation of microglia results in 

oxidative stress and ultimately, neurotoxicity (Block et al., 2007; Colton, 2009; Franco 

& Fernández-Suárez, 2015). Alcohol and stress both activate microglia, and chronic 

exposure to either can drive persistent microglial activation, causing hypersensitivity of the 

neuroimmune system and dramatic neurodegeneration (Crews et al., 2017). Microglia tend 

to be more responsive in females compared to males, both at baseline (Schwarz et al., 2012) 

and in response to binge alcohol consumption (Pascual et al., 2017; Barton et al., 2017), 

suggesting that the transition to maladaptive microglial signaling could be more pronounced 

in females.

Alcohol induces activation of microglia via toll-like receptor 4 (TLR4; Fernandez-Lizarbe et 

al., 2009; Alfonso-Loeches et al., 2010; Crews et al., 2011; Fernandez-Lizarbe et al., 2013). 

Subsequent activation of nuclear factor κB (NF-κB) stimulates release of TNFα and other 

pro-inflammatory cytokines, which drive apoptosis in surrounding neurons (Crews et al., 

2006; Boyadjieva & Sarkar, 2010; McClain et al., 2011; Walter & Crews, 2017). Sustained 

TLR4 activation due to chronic alcohol consumption prolongs microglial activation, 

shifting the brain into a state of maladaptive microglial signaling (Alfonso-Loeches et al., 

2010; Vetreno & Crews, 2012). Another mechanism of alcohol-induced neurodegeneration 

occurs through the release of reactive oxygen species (ROS) from activated microglia 

(Boyadjieva & Sarkar, 2013; Qin & Crews, 2012a). The increase in neuronal death due 

to inflammation and oxidative stress disrupts cortico-limbic circuitry and may contribute 

to further alcohol consumption driven by heightened anxiety and deficits in executive 

function (Crews et al., 2011). In fact, pharmacological inhibition of microglial function 

can reduce alcohol consumption (Agrawal et al., 2014; Israel et al., 2021), while ethanol 

drinking induces upregulation of immune regulatory pathways in males (females were 

not investigated). These signaling cascades should therefore be investigated as potential 

mechanisms underlying sex-related differences observed in the neuroimmune response to 

alcohol (Finn et al., 2018).
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Gonadal hormones likely contribute to sex differences in neuroimmune signaling. While the 

expression of estrogen receptors (ERs) on microglia and the anti-inflammatory effects of 

estrogen signaling have been well-documented (Johann & Beyer, 2013; Acosta-Martínez, 

2020), the role of androgen receptors (ARs) remains unclear. Immunocytochemical analyses 

found ER and AR expression in microglia of male rats, but only after brain injury (García-

Ovejero et al., 2002); however, an ex vivo study measuring receptor expression by PCR only 

identified ER transcripts (but not AR) in male and female microglia at baseline and showed 

that ER expression was downregulated after an immune challenge (Sierra et al., 2008). This 

discrepancy could be due to technical differences (Sierra et al., 2008), as other studies have 

shown ER expression in microglia using PCR or immunocytochemical measurement in cell 

culture (Baker et al., 2004; Liu et al., 2005; Bruce-Keller et al., 2008).

Estrogens and androgens exert anti-inflammatory effects by regulating microglia (Baker 

et al., 2004; Barreto et al., 2007; Yang et al., 2020) which may also contribute to the 

neuroprotective effect of estrogen (Liu et al., 2005). Furthermore, estrogen can inhibit 

microglial reactive oxygen species (ROS) production, phagocytic activity, and release of 

TNFα (Bruce-Keller et al., 2000; Liu et al., 2005; Acosta-Martínez, 2020). One study found 

that simvastatin, a lipophilic statin with estrogenic activity, reduces depressive-like behavior, 

upregulates ER expression, and inhibits microglial activation in ovariectomized rats (Menze 

et al., 2021). Another study found that both estrogens and androgens reduce microglial 

complexity at baseline in males, and that estrogens are necessary for stress-induced 

microglial remodeling in females (Bollinger et al., 2019). Although preclinical research 

suggests a facilitatory effect of estrogens on alcohol drinking in females, and an inhibitory 

effect of androgens in males (Finn, 2020), further studies are needed to understand the 

relationship between gonadal hormones, microglia, and alcohol-related behavior.

Microglial activation by ethanol relies, at least in part, on GABA signaling (Domercq et al. 

2013), and human microglia express GABAA receptors (Domercq et al. 2013). Furthermore, 

rodent studies suggest that accumulation of microglia in the hippocampus correlates with 

decreased GABA transmission and greater neuronal excitability, as measured by induction 

of long-term potentiation (LTP; Nistico et al. 2013). Microglial motility is also modulated 

by NE and inflammation increases α2AR expression on microglia, shifting microglial 

responses to NE release (Gyoneva and Traynelis 2013).

Research in male rodents has demonstrated that, like alcohol exposure, stress leads to 

activation of microglia, increasing release of pro-inflammatory cytokines and ROS and 

leading to neuronal death (Lu et al., 2014; Cheng et al., 2019). However, it remains unclear 

whether this also occurs in females (Bollinger, 2021). In males, microglial inhibition can 

reverse the depressive effects of stress and promote neurogenesis (Han et al., 2019). Stress 

(Frank et al., 2007) and alcohol (Qin & Crews, 2012b) can both activate microglia in males, 

making them hypersensitive to subsequent inflammatory stimuli. Furthermore, studies of 

male rodents have shown that alcohol and stress interact to enhance microglial activation 

(Walter et al., 2017), whereas inhibiting microglial activity can reverse the escalation in 

drinking and in anxiety-like behavior associated with alcohol dependence (Warden et al., 

2020). Thus, chronic alcohol consumption can make the male brain more susceptible to 

stress-induced inflammation and vice versa, potentiating subsequent neurodegeneration, 
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which in turn drives further emotional dysregulation and alcohol consumption (see Fig. 2). 

However, more research is needed to understand the neuroimmune effects of stress and 

alcohol in females.

Conclusions

Sex differences in stress-induced alcohol intake contribute to increased relapse to alcohol 

drinking in women. Several preclinical behavioral studies have demonstrated sex differences 

in stress-alcohol interactions, suggesting that rodent models can be useful in identifying 

mechanisms underlying sex-specific contributions to alcohol drinking. Limited access 

drinking paradigms coupled with repeated stress exposure appear to be most useful 

in studying stress effects on alcohol intake in rodents. Female rodents appear to be 

more sensitive to stressors in these drinking paradigms than males, although not many 

studies have used both sexes. Physiological studies have demonstrated some differences 

in ethanol effects on GABA and glutamate signaling in amygdala that could contribute 

to sex-dependent effects of alcohol. In addition, female animals are more likely to mount 

a neuroimmune response to stress and show microglial activation in response to alcohol. 

These observations suggest potential mechanisms for sex differences in stress-induced 

microglial perturbations, alcohol use and stress-induced alcohol intake. One hypothesis is 

that microglia are activated by ethanol exposure, reshaping neuronal dendritic arborization 

in several brain areas including the amygdala, leading to greater sensitivity to stress and 

increasing subsequent alcohol intake. Chronic activation of neuroinflammatory networks and 

microglia leading to neurodegeneration could lead to permanent deficits in the balance 

between GABA and glutamate signaling in these networks, leading to even greater 

sensitivity to alcohol-related behaviors. Future work should focus on identifying activity 

in brain systems that is most divergent across sexes in response to alcohol intake, whether 

sex differences in microglial activation contribute to stress-induced drinking behavior, and 

whether treatments that target the immune system may be more efficacious for women with 

AUD. This will involve additional model development to identify the patterns and timing of 

exposure to stress and alcohol that reveal sex differences in physiology and behavior.
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Figure 1. Hypothesized signaling in the BLA and CeA relevant to alcohol use disorder.
A) Following acute alcohol exposure there is a transient increase in inhibitory signaling 

onto excitatory pyramidal neurons in the BLA, leading to dampening of glutamatergic 

transmission. The CeA, in turn, receives decreased innervation from the BLA, leading to 

increased inhibitory output from the CeA. B) Following chronic ethanol exposure there is a 

decrease in GABAergic transmission from the interneurons in the BLA onto the pyramidal 

excitatory neurons of the BLA. There is also increased glutamatergic transmission within 

the BLA resulting from an increase in the AMPA/NMDAR ratio. Despite a decrease in 

CEL interneuron signaling, glutamatergic neurons in CeA receive greater input from PKCd+ 

interneurons from the CeM. The inhibitory output from the CeA is therefore dampened 

leading to an increase in alcohol seeking and anxiety.

Abbreviations: PFC: Prefrontal Cortex; BLA: Basolateral Amygdala; CEA: Central 

Amygdala; CEL: Centrolateral Amygdala; CEM: Centromedial Amygdala PV+: 

GABAergic parvalbumin-expressing interneurons; PKCd+: GABAergic protein kinase C 

delta-expressing interneurons; PN: Pyramidal Neurons; vHPC: Ventral hippocampus; BNST: 

Bed nucleus of stria terminalis; NAC: Nucleus accumbens; HYP: Hypothalamus; DVC: 

Dorsal vagal complex; VTA: Ventral tegmental area; PAG: Periaqueductal grey; PVT: 

Paraventricular nucleus of the thalamus
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Figure 2. Alcohol-mediated changes in microglial markers and activity.
A) At rest, GABAA receptors, TLRs, and ERs are expressed on microglia. Resting 

microglia express several markers, including phagocytic markers such as CD11b, CD45, 

and CD68, and the pruning marker CX3CR1. B) Alcohol activates microglia via GABAA 

receptors and TLRs; stress also results in microglial activation. The increase in activated 

microglia results in phagocytosis and synaptic pruning, which drives neurodegeneration. 

This coincides with release of ROS and pro-inflammatory cytokines such as TNFα, which 
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also contribute to neurodegeneration. Enhanced neurodegeneration results in long-term 

changes in excitation/inhibition balance in brain areas such as the amygdala, contributing 

to emotional dysregulation and increased stress responses, leading to potentiation of alcohol 

consumption and further driving microglial activation. Estrogens acting through ERs inhibit 

microglial activation and the associated signaling cascades.

Abbreviations: ER: Estrogen Receptor; TLR: Toll-like Receptor; GABAA: GABA-A 

Receptor; ROS: Reactive Oxygen Species.
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TABLE 1 -

Stress Exposure prior to Alcohol Drinking

Study Species, 
Strain

Sex Stressor Frequency 
and Length of 
Stress 
Exposure

Time 
between 
Stress 
and 
Alcohol

Alcohol Access Frequency and 
Length of 
Alcohol 
Exposure

Stress-
induced 
alcohol 
intake?

Pelloux et al. 
(2005)

Mice 
(CD1)

M/F Tail suspension Once, 6 mins 7 days Continuous, 
TBC, 
increasing 
alcohol % every 
8 days (3–20%)

Daily, 40 days Yes

Cruz et al. 
(2008)

Mice 
(CFW)

M Maternal 
separation

Daily, 14 days 45 days Limited, 2 hr 
(DID)
Operant 
responding, 30 
min

Daily, 10 days
Daily, 20 days

Yes 
Yes

Peñasco et al. 
(2015)

Rats M/F Maternal 
separation + 
Withdrawal + 
Restraint stress

Once, 24 hrs
2× 7 days, 1 
wk apart
Daily, 30 mins

18 days Continuous, 
TBC
Continuous, 
TBC
Continuous, 
TBC

Daily, 22 days
Daily, 4 days 
post stress
Daily, 3 days 
post stress

No
No
Yes

Norman et al. 
(2015)

Mice 
(CFW)

M Social defeat Daily, 10 days 10 days Continuous, 
TBC
Intermittent, 
TBC + Operant 
responding (FR 
and PR) 30 min

Daily, 20 days
3x a week, 35 
days.
Daily, 35 days

Yes
Yes
Yes

Skelly et al. 
(2015)

Rats 
(Long-
Evans)

M Social isolation Continuous, 6 
weeks

8 weeks Intermittent, 
TBC

3x a week, 6 
weeks

Yes

Bertholomey et 
al. (2016)

Rats 
(Sprague 
Dawley)

M/F Corticosterone 
in drinking 
water

Continuous, 
20 days

10 days Operant 
responding 
(PR), 1hr

Daily, 21 days Yes

Newman et al. 
(2018)

Mice 
(C57BL/6
J)

M Social defeat Daily, 10 days 10 days Continuous, 
TBC
Intermittent, 
TBC

Daily, 10 weeks
3x a week, 10 
weeks

Yes
Yes

Shaw et al. 
(2020)

Mice 
(C57BL/6
J)

M/F Predator odor Daily, 15 days 12 days Intermittent, 
TBC

3x a week, 4 
weeks

No

TBC: two-bottle choice; DID: drinking in the dark.
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TABLE 2 -

Alcohol Drinking prior to Stress Exposure

Study Species 
Strain

Sex Alcohol Access Frequency and 
Length of Initial 
Alcohol Exposure 
prior to Stress

Stressor Frequency and 
Length of Stress 
Exposure

Stress-
induced 
alcohol 
intake?

Farook et al. 
(2009)

Mice 
(C57BL/6J)

M Continuous
TBC

Daily, 7 days Physical 
restraint

Daily for 5 days Yes

Edwards et 
al. (2013)

Rats 
(Wistar)

M Limited, 30 min, 
two-choice 
operant

Daily, 15 days Predator odor Once, 15 min Yes

Cozzoli et al. 
(2014)

Mice 
(C57BL/6J)

M/F Limited
2 hr (DID)

Daily, 15 days One of each: 
Tail suspension
Physical 
restraint
Predator odor
Foot shock
Tail pinch

Each stressor applied 
at least 5 drinking 
sessions apart.

Yes 
(for 
predator 
odor and 
foot shock)

Walker et al. 
(2015)

Mice 
(C57BL/6J)

M Continuous
TBC

Daily, 3 weeks Physical 
restraint + 
Forced swim

Daily, 7 days
Daily, 2 days

No
No

Anderson et 
al. (2016)

Mice 
(C57BL/6J)

M Continuous
TBC
Intermittent
TBC
Limited, 2 hr 
(DID)
Intermittent and 
limited (TBC, 2 
hr) 
+alcohol vapor

Daily, 7 days
3x week, 1 week
Daily, 1 week
3x week, 6 weeks
Daily, 16hrs, 4 
days

Forced swim
Forced swim
Forced swim
Forced swim

3x week, for 4 weeks
Same as above
Daily, for 4 weeks, 
Same as above - cycle 
repeated 4 times on 
alternate weeks

No
No
No
Yes

Lopez et al. 
(2016)

Mice 
(C57BL/6J)

M Limited, TBC, 2 
hr (DID)
Limited, TBC, 2 
hours (DID) + 
alcohol vapor 
exposure

Daily, 6 weeks
Daily, until stable
Daily, 16hrs, for 4 
days

Physical 
restraint
Social defeat
Forced swim
Social defeat
Forced swim

Daily, 5 days
Daily, 5 days
Daily, 5 days
Daily, 5 days, 
repeated 4x on 
alternate weeks
Daily, 5 days, 
repeated 4 x on 
alternate weeks

No
No
No
No
Yes

Manjoch et 
al., 2016

Rats 
(Sprague-
Dawley)

M Continuous TBC Daily, at least 7 
days

Predator odor Once, 15 min
Re-exposed to context 
2×15 min

Yes
Yes

Finn et al., 
2018

Mice 
(C57BL/6J)

M/F Intermittent 
limited (single 
sipper, 30 min), 
then, continuous 
TBC

Every 3rd day, 7 
sessions total
Daily, 3 weeks

Predator odor Every 2–3 days, 30 
min, 4x.

Yes

TBC: two-bottle choice; DID: drinking in the dark.
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Table 3 -

Synaptic and molecular effects due to alcohol and stress

Study Species 
Strain

Sex Alcohol Access Stress Brain Region Alcohol/Stress Affect Manipulation and 
effect

Sillaber et al. 
2002

Crhr1 KO 
mice

M TBC, continous, 
40+ days

FST, SD Hippo +, Amy 
−, NaC+

↑ NMDA- NR2B NA

Edwards et al. 
2013

Wistar rats M TBC, 30 mins, 7 
days

PO mPFC+, 
dmPFC+, 
CeA+, BLA+

↑ pERK NA

Delis et al. 
2013

Drd2 KO 
mice

M TBC CMS Global 
expression of 
Drd2 +/− and 
Drd2−/−

Drd2+/− and −/− 
↑consumption when 
exposed to stress. Drd2 
+/+ ↑etoh when not 
stressed

NA

Walker et al. 
2015

Rxfp3 KO 
mice

M TBC CMS/RS
/FST

global Rxfp3 KO mice reduced 
ethanol preference after 
stress

NA

Ostroumov et 
al. 2016

Rats 
(Long-
Evans)

M OESA RS VTA In Vivo: ↓ DA Neruon 
firing 
In Slice: shift to 
GABAA Signaling

GABA and DA 
pharmacological 
manipulation

Ornelas and 
Keele 2018

Rats 
(Sprague 
Dawley)

M/F in slice bath 
solution etoh

SPS BLA+ In Slice: ↓ spike 
firing in BLA in 
F hyperpolarization 
activated current ↓ M

NA

Morales et al. 
2018

Rat 
(Sprague 
Dawley)

M/F CIE (Vapor 
inhalation)

Withdr-
wal

MT −
ST +
BLA +

In Slice: changes in 
presynaptic glutamate 
release in vivo: change 
in estrus cycle and 
anxiety

Electrophysiology 
paired pulse in ST 
and BLA

Padula et al. 
2020

Mouse 
(C57BL/6J
)

M CIE, TBC FST BLA+ systemic - KCa2.1–
2.3 channel activator 
decreased drinking

Domi et al. 
2021

Rats 
(Wistar)

M Punishment-
resistant self-
administration, 
TBC

FS CeA(PKCd+) ↑ CeA (PKCd+) cell 
expression in rats 
drinking despite stress

hm4Di in CeA 
PKCd+ cells 
decreased drinking

Steinman et 
al. 2021

Rats 
(Wistar)

M/F TBC FS in 
FAM 
and 
NOV

CeA+ ↑ CeA GABAergic 
mIPSC 
↑ cytokine levels

NA

Abbreviations: CIE: chronic Intermittent ethanol, TBC: two bottle choice, OESA: operant ethanol self admin, PO: predator odor, RS: restrain 
stress, SPS: single prolonged stress, CMS: chronic mild stress, FST: Forced swim test, FS: Foot shock, FAM: familiar, NOV: novel, F: female, 
M: male, BLA: basolateral amygdala, CeA: central lateral amygdala, Rxfp3: relaxin family peptide receptor 3, Drd2: dopamine receptor 2, PKCd: 
protein kinase C delta, KCa2.1–2.3: calcium activated potassium type 2, mPFC: medial prefrontal cortex, dmPFC: dorsal medial prefrontal cortex, 
hm4Di: human muscarinic 4 receptor designer receptor CNOactivated inhibitor, mIPSC: miniature inhibitory post synaptic current

+ indicates tested and found effects, - indicates tested but found no effects. Arrows indicated increasing or decreasing respectively

Psychopharmacology (Berl). Author manuscript; available in PMC 2023 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mineur et al. Page 34

TABLE 4 –

Effects of Alcohol & Stress on Microglia in Rodents

Study Species, Strain Sex Alcohol Access Stressor Effects on Microglia

Fernandez-Lizarbe et 
al., 2009

Mice 
(C57BL/6J)

F 3d 4 g/kg IP none Increased microglial activation 
(CD11b IR)

Alfonso-Loeches et 
al., 2010

Mice 
(C57BL/6J)

F 5mo continuous TBC none Increased microglial activation 
(CD11b IR)

McClain et al., 2011 Rats (Sprague-
Dawley)

M 4d 5 g/kg IG every 8h none Increased microglial activation 
(morphology)

Ehrlich et al., 2012 Rats (Sprague-
Dawley)

M 12mo continuous drinking none Increased microglial activation (Iba1 
and CD11b IR)

Qin & Crews, 2012b Mice 
(C57BL/6J)

M 10d 5 g/kg IG none Increased microglial activation (Iba1 
IR)

Marshall et al., 2013 Rats (Sprague-
Dawley)

M 4d 5 g/kg IG every 8h none Increased microglial number (Iba1+ 
cells) and activation (TSPO ARG; 
CD11b IR)

Zhao et al., 2013 Rats (Sprague-
Dawley)

M 25d intermittent IG none Increased microglial activation 
(CD11b IR)

Marshall et al., 2016 Rats (Sprague-
Dawley)

M 4d 5 g/kg IG every 8h
Second 4d binge 7d later

none Increased microglial activation 
(CD11b IR); decreased microglial 
number (Iba1+ cells)
Further increase in microglial 
activation; increased microglial 
number

Avila et al., 2017 Mice 
(C57BL/6J)

M 3w continuous drinking none Increased microglial activation (Iba1 
IR)

Barton et al., 2017 Rats (Long-
Evans)

M/F 4d 5 g/kg IG none Increased microglial number (Iba1+ 
cells) and activation (morphology) in 
females only

Walter & Crews, 
2017

Mice 
(C57BL/6J)

M 3, 4.5, or 6 g/kg IG none 4.5 or 6 g/kg increased microglial 
gene expression (Iba1 and CD68 
mRNA)

Walter et al., 2017 Rats (Wistar) M 5 g/kg IG 1h before stress
25d intermittent 5 g/kg IG 42d 
before stress

2h restraint + 
partial water 
immersion

Increased microglial activation 
(CD11b IR)
Increased microglial activation 
(CD11b IR)

Lowe et al., 2020 Mice 
(C57BL/6J)

F 42d continuous drinking none Increased microglial activation 
(morphology) and decreased 
phagocytic activity (Iba1/CD68 
colocalization)

Marshall et al., 2020 Rats (Sprague-
Dawley)

M 2d 5 g/kg oral gavage
4d 5 g/kg oral gavage

none Decreased microglial number (Iba1+ 
cells), increased microglial dystrophy 
(morphology)
Decreased microglial number (Iba1+ 
cells), increased microglial dystrophy 
(morphology)

Socodato et al., 2020 Mice, C57BL/6J M 10d 1.5 g/kg oral gavage none Increased microglial number 
(Cx3CR1+ cells, Iba1+ cells) and 
activation (CD11b IR, CD45 IR, 
morphology, Iba1 PE)

Tournier et al., 2020 Rats (Wistar) M 14d intermittent 3 g/kg IP none Increased microglial activation 
(TSPO VT)

Warden et al., 2020 Mice 
(C57BL/6J)

M 4w intermittent TBC none Increased microglial number (Iba1+ 
cells)

Psychopharmacology (Berl). Author manuscript; available in PMC 2023 July 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mineur et al. Page 35

Study Species, Strain Sex Alcohol Access Stressor Effects on Microglia

West et al., 2020 Rats (Long-
Evans)

M/F 3w 4 g/kg IG every 7d
8w 4 g/kg IG every 7d

none No changes
Increased microglial number (Iba1+ 
cells) and activation (morphology)

Aranda et al., 2021 Rats (Wistar) M 9w intermittent self-
administration, 2w abstinence, 
3w reinstatement

none Increased microglial activation (Iba1 
IR and morphology)

Lee et al., 2021 Mice 
(C57BL/6J)

M 28d continuous TBC 28d social 
isolation

Alcohol potentiated stress-induced 
increases in microglial number 
(Iba1+ cells) and activation 
(morphology)

Abbreviations: ARG: autoradiography; IG: intragastric; IR: immunoreactivity; PE: protein expression; TBC: two-bottle choice; VT: total volume of 

distribution
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