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Abstract

Inhalation is the most relevant route of volatile organic chemical (VOC) exposure; however, 

due to unique challenges posed by their chemical properties and poor solubility in aqueous 

solutions, in vitro chemical safety testing is predominantly performed using direct application 

dosing/submerged exposures. To address the difficulties in screening toxic effects of VOCs, 

our cell culture exposure system permits cells to be exposed to multiple concentrations at 

air-liquid interface (ALI) in a 24-well format. ALI exposure methods permit direct chemical-to-

cell interaction with the test article at physiological conditions. In the present study, BEAS-2B 

and primary normal human bronchial epithelial cells (pHBEC) are used to assess gene 

expression, cytotoxicity, and cell viability responses to a variety of volatile chemicals including 

acrolein, formaldehyde, 1,3-butadiene, acetaldehyde, 1-bromopropane, carbon tetrachloride, 

dichloromethane, and trichloroethylene. BEAS-2B cells were exposed to all the test agents, while 

pHBECs were only exposed to the latter four listed above. The VOC concentrations tested elicited 

only slight cell viability changes in both cell types. Gene expression changes were analyzed using 

benchmark dose (BMD) modeling. The BMD for the most sensitive gene set was within one order 

of magnitude of the threshold-limit value reported by the American Conference of Governmental 

Industrial Hygienists, and the most sensitive gene sets impacted by exposure correlate to known 
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adverse health effects recorded in epidemiologic and in vivo exposure studies. Overall, our study 

outlines a novel in vitro approach for evaluating molecular-based points-of-departure in human 

airway epithelial cell exposure to volatile chemicals.
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Introduction

Well-designed in vitro exposure models require less time and fewer resources compared 

to traditional in vivo toxicity testing, and in some cases better mimic human biological 

relevance. Still, air pollutants and inhaled toxicants remain one of the most difficult human 

exposures to replicate in an in vitro laboratory setting. Inhaled volatile organic chemicals 

(VOC) are particularly challenging to test reliably in vitro, given difficulties in generating 

the appropriate test agent atmospheres, relevance and transferability of the cell or tissue 

models used, and compatibility with high-throughput screening approaches. VOC inhalation 

exposure is prevalent in both occupational and environmental settings, representing a 

significant risk to human health (Alabdulhadi et al. 2019; Cheng et al. 2019; Chiang et 

al. 2010). Currently, approximately one fourth of chemicals nominated for study in the 

U.S. Environmental Protection Agency’s (EPA) chemical substance inventory are volatile/

semi-volatile or are not soluble in DMSO or water and cannot be tested using traditional 

in vitro methods for evaluating chemical safety (USEPA 2020b). In vivo rodent inhalation 

toxicity testing for VOCs has been the gold standard for regulatory agencies but may provide 

limited relevance to human health effects due to differences in human physiology, such 

as rodents primarily being obligate nasal breathers (Bates and Irvin 2003; Harkema 1991; 

Harkema et al.). Additionally, biological effects of VOCs cannot be confidently evaluated 

in high-throughput test systems that use submerged cultures due to solubility problems and 

evaporation from the culture wells. Poorly soluble test agents have minimal contact with 

the cells in a direct-dosing application, further complicating the process of determining 

delivered dose to the cells. These issues have led to the exclusion of VOCs from testing 

within the Toxicity Forecaster (e.g. ToxCast) screening program and prevented generation 

of data from that collection of assays for use in risk assessment (Judson et al. 2010). Thus, 

new approach methods (NAMs) that include in vitro exposure technology for VOCs and 

associated assays for evaluating biological activity of VOCs in human cells, such as high-

throughput transcriptomics, are necessary to provide comprehensive information regarding 

these data poor chemical species (Harrill et al. 2021).

To circumvent the difficulties in toxicity screening of volatile test agents, we developed 

a cell culture exposure system (CCES) that permits cells to be exposed to multiple 

concentrations of test agent at air-liquid interface (ALI) in a 24-well format. ALI exposure 

methods permit direct chemical-to-cell interaction at physiological conditions, providing 

a more environmentally realistic airway exposure condition, as compared to submerged 

cultures (Doyle et al. 2004; Dvorak et al. 2011; Ebersviller et al. 2012). Our previous 

studies utilizing the CCES established a consistent capacity to deliver high concentrations 

Speen et al. Page 2

Toxicol Sci. Author manuscript; available in PMC 2023 June 28.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



of volatiles to ALI cell culture inserts (Zavala et al. 2017; Zavala et al. 2018). A variety of 

in vitro biological effects data can be analyzed in ALI cultures exposed to VOCs using the 

CCES, including measures of cell viability, release of soluble factors, and gene expression. 

In comparative studies, ALI exposures have been shown to be a good representation of the in 
vivo airway epithelial transcriptome (Baldridge et al. 2015; Dvorak et al. 2011). Therefore, 

high-throughput transcriptome profiling using RNA-Seq or targeted RNA-Seq may provide 

insight into the molecular mechanisms of toxicity for VOCs. Further, the ability of the CCES 

to conduct concurrent exposure to six concentrations of a test agent through serial dilution 

allows for a concentration-response assessment to be conducted in a single experiment. By 

implementing a novel multiple concentration exposure system, we can apply EPA-developed 

NAMs for dose-response modeling of in vitro data.

Using the CCES exposure design, our data is amenable to transcriptomic benchmark 

dose (BMD) analysis as outlined in previously published methods for integrating BMD 

estimates with genomic data and the National Toxicology Program approach to genomics 

dose-response modeling (NTP 2018; Thomas et al. 2007; Thomas et al. 2011; Thomas et al. 

2013). Research utilizing TempO-Seq high-throughput transcriptomics (HTTr) analysis has 

produced technically and biologically reproducible concentration-response modeling data 

(Gwinn et al. 2020; Harrill et al. 2019; Harrill et al. 2021). These previous studies show that 

transcriptome-based BMDs accurately predict points of departure (PoD) and mode of action 

(MoA) for both VOCs and non-VOCs (Jackson et al. 2014; Johnson et al. 2020; Thomas et 

al. 2007). Optimized analytical protocols utilizing BMDExpress2 consider transcriptomics 

data at the level of individual genes, as well as at the level of aggregated gene set collections 

to identify the most sensitive cellular responses to chemical exposure (Filipsson et al. 

2003; Phillips et al. 2019; Thomas et al. 2007; Yang et al. 2007). For the first time, our 

experimental design implements HTTr BMD analysis techniques with in vitro ALI VOC 

exposures.

Over the course of the study, we tested eight widespread VOCs in BEAS-2B cells with 

four of those test agents (1-bromopropane, carbon tetrachloride, dichloromethane, and 

trichloroethylene) repeated in primary human bronchial epithelial cells (pHBECs). To stay 

within relevant concentrations and below overt cytotoxicity, the highest concentration tested 

was targeted as 10-fold higher than the occupational threshold limit value (TLV®). TLVs 

are protective occupational exposure limits as determined by the American Conference 

of Governmental Industrial Hygienists (ACGIH) committee review of existing published 

and peer-reviewed literature. (ACGIH 2018). In addition to evaluating changes to cell 

viability, the primary endpoint focused on using TempO-Seq to identify changes in gene 

expression at both the gene and aggregate gene set level to determine the biological pathway 

altering concentration (BPAC) for each test agent. Finally, we utilized ACGIH TLVs and 

in vivo toxicity data from EPA Integrated Risk Information System (IRIS) assessments 

as benchmarks for comparison to in vitro transcriptional PoDs. The study reported in 

this manuscript characterizes the impact VOCs have on human airway epithelial cells 

and establishes HTTr and BMD analysis as a primary diagnostic tool for ALI gas and 

vapor exposures. The novel approach also supports a recent research focus on in vitro 
methodologies to support traditional in vivo toxicity testing (USEPA 2014).
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Materials and Methods:

BEAS-2B Cell Culture

The BEAS-2B cells used are a non-diseased, viral transformed human bronchial epithelial 

cell line acquired from ATCC (Manassas, VA, CRL-9609). Prior to cell culture, T75 flasks 

(Corning, One Riverfront Plaza, NY, 430641) and 6.5 mm Transwell® Inserts (Costar, 

Corning, NY, 3470) were coated with 100 μg/mL bovine collagen (PureCol Collagen 

[Advanced Biomatrix, San Diego, CA, 5005] diluted in Ultrapure Molecular (nuclease 

free) Water [Invitrogen, ThermoFisher Scientific, Rockford, IL, 10977023]) for 2 h at room 

temperature, followed by a water rinse. To prepare the cells for exposure at ALI, cells were 

thawed from pre-passaged frozen vials, grown on a T75 flask at 37°C 5% CO2 incubator 

conditions. The cells proliferated while submerged in Keratinocyte Growth Medium (KGM) 

(Keratinocyte Basal Medium (KBM) [Lonza, Walkersville, MD] plus KGM Gold Bullet 

Kit [Lonza, Walkersville, MD, 00192151]) with 25 mM HEPES Buffer (Sigma-Aldrich, 

St. Louis, MO) or Bronchial Epithelial Growth Medium (BEGM) (Bronchial Epithelial 

Basal Medium (BEBM) [Lonza, Walkersville, MD, CC-3171] plus BEGM Bullet Kit 

[Lonza, Walkersville, MD, CC-3170]. The utilized media type was switched to the latter 

(BEGM) for the experiments with dichloromethane, trichloroethylene, carbon tetrachloride, 

and 1-bromopropane due to vendor formulation changes and availability. Cells were grown 

for a minimum of two subsequent passages after thawing. Cells were passaged when 

approximately 75% confluent and new flasks seeded at 1 × 106 cells. The 6.5 mm inserts 

were seeded at 2–5 × 105 cells/insert and were maintained for 48–72 h before being used 

for exposure as a fully confluent monolayer. All apical media was removed at least 5 days 

before using BEAS-2B cells for exposure to the test agent. No FBS was used in the culture 

of BEAS-2B cells which were observed to have normal basal respiratory cell morphology at 

ALI.

Primary Human Bronchial Epithelial Cell Culture

Primary human bronchial epithelial cells (pHBEC) were obtained via bronchial brushing 

from healthy, non-smoking donors aged 21–40 years using a previously published method 

(Dailey and McCullough 2021a; 2021b; McCullough et al. 2014). Donors gave their consent 

after being informed of procedures and associated risks. This study utilized cells from 

12 healthy non-smoking donors, 10 male and 2 female donors between age 26–41. The 

consent and collection protocol were approved by the University of North Carolina School 

of Medicine Committee on the Protection of the Rights of Human Subjects and by the US 

Environmental Protection Agency. After collection, pHBECs were seeded at approximately 

1 × 106 cells and cultured in BEGM (BEGM Bullet Kit, Lonza, Walkersville, MD CC-3170) 

on plastic T75 tissue culture flasks and expanded until the third passage. For all exposures, 

cells were lifted using trypsin-EDTA (Gibco 25300062) and plated on uncoated 6.5 mm 

diameter (24-well format) Transwell™ inserts (Costar, Corning, NY, 3470) at a density 

of 1 × 105 cells/insert depending on the donor. Each insert of cells was initially grown 

submerged with 1:1 DMEM-H (Gibco, 11995–065) and BEGM with complete bullet kit of 

growth supplements, 50 μg/mL of bovine pituitary extract (Lonza) and 1.5 μg/mL Bovine 

Serum Albumin (Sigma, A9418) on both the basolateral and apical compartments. The 

pHBECs were then expanded and grown for 2–4 days until they reached confluency as 
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previously described (Dailey and McCullough 2021a; Ross et al. 2007). The cells were then 

placed at ALI by removing all apical medium and replacing the basolateral medium with 

the base media described above, supplemented with 100 nM retinol. The pHBECs continue 

to differentiate for at least 21 days before being used in an exposure. Previous research 

categorizing the pHBECs we use show a columnar pseudostratified cell layer with both cilia 

and mucin producing cells present after day 21 of ALI culture (Ross et al. 2007). All initial 

pHBEC tissue culture procedures took place at EPA’s Human Studies Facility. Cells were 

transported to the EPA Research Triangle Park campus located approximately 15 miles away 

and allowed to recover for at least 20 h prior to exposure.

Cell Culture Exposure System

Beginning 2 h prior to test agent exposure, designated cells were prepped for exposure 

by performing an apical wash with Dulbecco’s Phosphate-Buffered Saline (DPBS) (Gibco, 

Grand Island, NY) and replacing the basolateral compartment with 0.5 mL of fresh media 

with 25 mM HEPES Buffer. Cells remained in the incubator (37°C, 5% CO2) to recover 

for 2 h before being placed in the Cell Culture Exposure System (CCES) to undergo test 

agent exposures. The CCES was developed at EPA’s Inhalation Toxicology Facility and 

is comprised of a base module that accommodates a 24-well tissue culture plate with 6.5 

mm diameter Transwell® inserts (patent pending). The CCES was developed to simulate an 

inhalation exposure chamber design. It supplies air under positive pressure and exhausts air 

under negative pressure to provide a known concentration of test article over a specific time. 

The design allows for air flow control (slightly positive pressure) at each set of four wells 

on a 24-well cell culture plate while also allowing for six concentrations with replicates 

(four replicate wells per concentration) for each exposure regimen. The inlet nozzles are 

positioned 2 mm above each of the inserts. The previous study characterizing the CCES 

showed a uniform distribution of gasses across inserts receiving a single concentration 

(Zavala et al. 2018). Two CCES modules are used simultaneously. One CCES module 

receives the test agent at six different concentrations while the other CCES module 

received filtered humidified dilution air and evaluated as a sham exposure control. The 

CCES modules (base and top plates) were machined out of anodized aluminum, while the 

distribution manifolds and inlet nozzles were machined out of stainless steel and Swagelok 

fittings. Figure 1A shows the dynamic headspace generator, while Figure 1B provides a 

basic schematic of the entire CCES including the dilution manifold and exposure module 

chambers used for these experiments. A uniform air flow distribution was maintained 

through each nozzle so the cells in each Transwell® insert was exposed to either humidified 

air or diluted test agent at a flow rate of 12.5 mL/min/well. Optimal exposure temperature 

(37°C), relative humidity (85%) and air flow rates were tested and validated for the CCES 

in previous studies designed to optimize low variability in delivered material to the replicate 

wells. (Zavala et al. 2017; Zavala et al. 2018). Cells were exposed to the test agent at ALI for 

2 h before being transported back to the incubator (37°C, 5% CO2) for 4 h prior to sample 

collection and analysis. A 2 h exposure to the test agent was optimized to avoid stressing 

cell cultures in initial tests using the CCES for this pilot study. All sample collection and 

assays were run 4 h post-exposure to complete a 6 h timepoint to reflect both standard in 
vivo inhalation exposure regimes of 4 to 6 h of exposure and high-throughput screening 
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studies. A sham exposure control cell culture plate which received only humidified air and 

an incubator control plate were tested in parallel with the plate which received the test agent.

Test Agent Selection and Generation

As part of this pilot study, we selected eight test agents (Table 1) that are relatively common 

industrial chemicals and have a substantial body of research, including epidemiologic and 

in vivo inhalation exposure studies. Additionally, all the test agents herein have been 

assessed and assigned occupational exposure limits by professional associations such as 

the American Conference of Governmental Industrial Hygienists (ACGIH). We utilized 

the ACGIH TLV to determine the concentration range tested, starting at 10-fold higher 

than the recommended TLV. A preliminary range finding experiment was conducted in 

BEAS-2B cells in order to confirm the highest dose did not exceed 50% loss of cell viability. 

Each chemical was generated based on laboratory specifications as the state which it was 

procured from the manufacturer. Acrolein, acetaldehyde, and 1,3-butadiene were obtained 

at a certified gas concentration with the balance being air or nitrogen. 1-Bromopropane, 

dichloromethane, trichloroethylene and carbon tetrachloride were obtained from the vendors 

as liquids with certification of analysis for purity. Formaldehyde was generated from solid 

paraformaldehyde. All vendor information, purity, and specifics to generation methods are 

listed in Table 1.

The gaseous test agents were used as purchased and the liquid and solid test agents were 

generated using our in-house dynamic headspace generator, consisting of a sealed vessel 

(unjacketed pressure filtering reactor, P/N-6384–235; Ace Glass, Vineland, NJ) contained in 

a warming oven (Heratherm general protocol oven P/N-51028873; ThermoFisher Scientific, 

Waltham, MA) held at a chemical specific temperature. The sealed vessel contained a 

reservoir of liquid or solid chemical and had both a carrier gas inlet and outlet that allowed 

the fixed carrier flow to transport the volatilized chemical vapors. The test agent was 

then diluted by our in-house compressed air system which provides breathing-quality air, 

according to the ASTM standards. This pressure-regulated air was delivered to three mass 

flow controllers, allowing the dilution of test agent (gas or vapor) to be accurately metered 

and delivered to the first dilution tee on the CCES dilution manifold.

The CCES dilution manifold added the desired quantity of humidified air (80–85% RH at 

37°C), to the generated test agent at six points to facilitate a half-log dilution concentration 

curve (Fig 1b). During exposure, real-time concentrations were measured at each dilution 

nozzle pair prior to exposing the cells directly (Fig 1a). Concentrations were determined by 

injecting a 1 mL sample from each chamber inlet nozzle on a Hewlett Packard 5890II or 

Agilent 6890 gas chromatograph (GC) with a Supelco SBP-624 capillary GC column (30 m 

× 0.53 mm) coupled to flame ionization detector (FID) or electron capture detector (ECD). 

Both GCs used hydrogen as the carrier gas at a flowrate of 10 mL/min. The inlets, detectors 

and oven temperatures were test agent specific and were chosen to give a retention time (RT) 

of six minutes or less to allow two samples per inlet nozzle and quality control samples. 

A graphical representation of the actual GC-measured concentrations and the dynamic 

headspace generator nominal concentration based on dilution are recorded in Supplemental 

Figure 1.
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CellTiter-Glo Luminescent Cell Viability Assay

Cell viability was measured by determining the amount of adenosine triphosphate (ATP) 

synthesized inside the cells using the Promega CellTiter-Glo Luminescent Cell Viability 

Assay Kit (Promega, Madison, WI). Total cell material was lysed, and ATP was collected on 

an opaque Corning 96-well plate (Corning, NY) using the reagents from the kit (CellTiter-

Glo® Substrate (lyophilized), and CellTiter-Glo® Buffer) and the cell growth media 

associated with the designated cell type being analyzed. Luminescence was then detected 

using a SpectraMax® i3 Multi-Mode Microplate Detection Platform plate reader (Molecular 

Devices, San Jose, CA). An ATP standard curve was used as a positive control and as a 

quality control parameter to quantify the amount of ATP present based on the luminescence 

values. This control was made by combining stock ATP standard (Sigma-Aldrich, St. Louis, 

MO) with the working reagent and performing a serial dilution at μM concentrations of 

50, 25, 12.5, 6.25, 3.125, and 0. Data shown are mean ± SEM from 3 separate biological 

replicates. A one-way ANOVA and Fisher’s LSD post-hoc test was used to determine 

statistically meaningful differences compared to the sham control exposed cells (p≤0.05). 

Statistical analysis was conducted using GraphPad Prism software (San Diego, CA).

LDH Measurement of Cytotoxicity

Lactate dehydrogenase (LDH) as a measurement of cytotoxicity was determined by 

sampling the basolateral media from each exposed cell sample 4 h post-exposure. Fifty 

μL of the basolateral medium from each well were transferred in duplicate to a 96-well 

clear polystyrene culture plate (Corning, NY). Additionally, three sets of controls were 

added to the 96-well plate. First, an LDH solution provided as part of the Pierce™ LDH 

kit (Rockford, IL) was utilized as a positive control. Second, blanks were measured using 

the corresponding cell culture media. Finally, a completely lysed insert that represented 

a measure of total (100%) LDH was created by adding lysis buffer to a single incubator 

control replicate. The LDH reaction was performed using the LDH measurement kit, and 

the plate was read in a Spectramax i3 (San Jose, CA) with the absorbance set to read at 

490 and 680 nm wavelengths. After reading the plate, the raw data was exported into an 

excel spreadsheet for analysis. Each sample was blank corrected and calculated as percent 

change from the sham control in relation to the mean of the 100% LDH lysed control inserts. 

Data shown are mean ± SEM from three separate biological replicates. A one-way ANOVA 

and Fisher’s LSD post-hoc test was used to determine statistically meaningful differences 

compared to the sham control exposed cells (p≤0.05). Statistical analysis was conducted 

using GraphPad Prism software (San Diego, CA).

Whole Cell Lysate Collection

An optimized whole cell lysis procedure was used to preserve the RNA of both BEAS-2B 

and pHBEC samples. After a 4 h recovery post 2 h test agent exposure, the two technical 

replicate inserts from each exposure condition were placed on a new 24-well plate (Corning, 

NY). A single replicate insert of the incubator control cells was also preserved for whole cell 

lysis. Prior to adding the lysis buffer, the cells were thoroughly washed twice with DPBS to 

remove any remaining apical mucus or surfactant which may interfere with complete lysis. 

When transferring the BEAS-2B cells or pHBECs, the BioSpyder lysis buffer (Carlsbad, 
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CA) was added to each of the samples and allowed to incubate for 15 minutes at room 

temperature. Each sample was mixed and pipetted into an individual well in the 384-well 

optical imaging plate (Corning, NY). After placing each of the samples into the 384-well 

plate, it was sealed with ThermalSeal RT 2mil Film (Sigma-Aldrich, MO) and stored in a 

−80°C freezer until shipment to BioSpyder for analysis.

BioSpyder TempO-Seq Methodology

Plates were shipped to BioSpyder, Inc. frozen (on dry ice) using overnight priority 

shipping. BEAS-2B and pHBEC lysates were then analyzed by BioSpyder using the 

TempO-Seq human whole transcriptome version 2 (hWTv2) assay (Yeakley et al. 2017), 

which includes 22,537 probes covering 19,703 genes. Lysates were processed as described 

previously (House et al. 2017). In brief, 2 μL of each lysate was hybridized with 2 μL 

of detector oligos from the hWTv2 assay using the following thermal cycler protocol: 10 

min at 70°C, followed by gradual decrease to 45°C over 49 min, terminating with 45°C 

incubation for 16–24 h. Excess oligos were then removed via nuclease digestion (90 min 

at 37°C), and hybridized detector oligos were ligated (1 h at 37°C) following respective 

additions of 24 μL TempO-Seq nuclease and ligation mixes. RNA/DNA duplexes were then 

heat-denatured, and 10 μL of each ligation product were transferred to an amplification 

microplate containing 10 μL of PCR master mix per well. Ligation products were then 

uniquely labeled during product amplification with well coordinate-specific “barcoded” 

primer pairs containing universal adaptors for sequencing. Samples were pooled into 

sequencing libraries, distributed across multiple lanes of a HiSeq dual flow cell and analyzed 

on a HiSeq 2500 Ultra-High-Throughput Sequencing System (Illumina, San Diego, CA). 

The target depth for each test sample was 6 × 106 total sequenced reads.

HTTr data processing

Raw TempO-Seq data were provided by the vendor as individual FASTQ files for each 

sample well and were subsequently processed through a custom bioinformatics pipeline 

previously described (Harrill et al. 2021). Each FASTQ file was aligned to the probe 

sequences in the hWTv2 assay using HISAT2 v2.1.0 (Kim et al. 2015; Kim et al. 2019) with 

spliced alignment disabled. Aligned reads in SAM format were processed with SAMtools 

v1.9 (Li et al. 2009) to compute the number of uniquely aligned reads for each probe. Probe 

counts and associated metadata for each well were stored for analysis using MongoDB 

v3.6.14. Source code can be found at https://github.com/USEPA/httrpl_pilot.

HTTr Quality Control

Sample level quality control (QC) criteria were based on the cell viability results for each 

concentration of the test agents, multiple well-level metrics computed from read mapping 

rate, and count distribution across probes, as previously described (Harrill et al. 2021). To be 

considered for BMD analysis, the thresholds for fraction of viable cells (FrVC) and fraction 

of reads uniquely mapped to probes (FMR) are simple majority cutoffs (≥ 50% of cells 

must be viable; ≥ 50% of reads must uniquely map to probe sequences). The threshold for 

number of uniquely mapped reads (NMR) was set at 10% of target per-sample read depth 

(≥ 600,000 genes). Additional QC metrics outlined in our previous HTTr studies, including 

Ncov5, Nsig80, and GiC were optimized specifically for MCF7 cells in true high-throughput 
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screenings and could not be applied as global threshold levels for this limited pilot study 

design.

BMD Gene Expression Analysis

Transcriptional benchmark dose (BMD) values at the probe level were computed and 

aggregation of BMD values to the gene set level was performed with BMDExpress2 

(Phillips et al. 2019) based on the NTP approach to genomic dose-response modeling 

(NTP 2018) and previously published manuscripts (Harrill et al. 2021). First, probe-level 

concentration response analysis was performed as follows: Probe counts for each test agent 

and corresponding sham exposure controls (subset to samples without QC flags, and probes 

with mean count > 5) were normalized to log2 counts per million (CPM) values using the 

sum of filtered probe counts as the sample depth and addition of a pseudo-count of 1 before 

converting to log scale. For each test agent, probe-level log2 CPM values were input to 

BMDExpress2 using the following optimized parameters: Pre-filtering was used to remove 

probes that cannot pass an ANOVA test (FDR p-value ≤ 0.05) with a maximal fold-change < 

2x across all concentrations. Each probe passing this pre-filter was then fit to eight different 

dose-response models (linear, poly2, power, Hill, exp2, exp3, exp4, and exp5). The best-fit 

model for each probe was selected based on the lowest Akaike information criterion (AIC). 

Models with a goodness of fit p-value < 0.1 and Hill models with k parameter < 1/3 

the lowest positive concentration were excluded from final model selection (Akaike 1974; 

Harrill et al. 2021). The benchmark response (BMR) was set to 1.349 × standard deviation 

of sham exposure control samples, corresponding to 10% tail in a normal distribution. The 

BMD value is the concentration at which the winning model curve crosses the benchmark 

response level (BMR) (Filipsson et al. 2003; Thomas et al. 2007; Yang et al. 2007).

The overall potency of a test agent was further analyzed by aggregating the probe-level 

BMDs from the best fit models to estimate a biological pathway altering concentration 

(BPAC) based on the median BMD value for the most sensitive gene set. For the purposes 

of this study, we used the Molecular Signatures Database v7.2 (MSigDB_C2) collection of 

annotated gene sets. Briefly, probe-level curve-fits were filtered to only those meeting the 

following criteria: best fit model produced convergent BMD, BMDL, and BMDU values; 

BMD < highest measured concentration; BMDU:BMDL ratio < 40; and probe annotated as 

measuring a single gene. If multiple probes corresponding to the same gene had valid curve 

fits under this criterion, the gene-level BMD/BMDL/BMDU were taken as the average of 

all probes with valid curve fits. BMD bounds (i.e. BMDL and BMDU) were computed in 

accordance with the profile likelihood method (Banga et al. 2002; NTP 2018). The BPAC 

was computed as the median BMD for all associated genes passing the above filters in the 

most sensitive gene set. Only gene sets containing at least three valid genes and 5% gene set 

coverage were retained in our analysis(Harrill et al. 2021; NTP 2018). Additional analysis 

was conducted to determine the reason probe-level responses were not always captured in 

gene set results (Figure 4).

Determination of Reference TLV and NOAEL/LOAEL Values

Threshold Limit Values (TLVs) were obtained from the ACGIH® 2018 Guide to 

Occupational Exposure Values. LOAEL and NOAEL values were obtained by examining 
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the most recent risk assessment conducted by EPA or ATSDR. A complete list of examined 

studies and LOAEL/NOAEL values is captured in Table 4. When recording representative 

values in Table 3, acute or sub-chronic inhalation exposures performed in mice or rats 

with respiratory/pulmonary endpoints were prioritized, and the most sensitive finding was 

reported. The 6 h exposures are the most prevalent in vivo study design that can be 

simulated in the CCES optimized full exposure model (2 h test agent exposure, 4 h post). 

In the case of dichloromethane, sub-chronic 13-week respiratory LOAEL and NOAEL 

values were identified. Inhalation trichloroethylene studies were quite limited, but many 

reported changes in auditory and visual function. Immunosuppression LOAEL and NOAEL 

values were selected because pulmonary endpoints were assessed for immunosuppressive 

changes (e.g., function of alveolar macrophages). Both subchronic and chronic inhalation 

studies with carbon tetrachloride were identified, despite no LOAEL and NOAEL values 

subcategorized into organ systems and all be loosely defined as hepatic changes.

Results:

Evaluation of cell viability and cytotoxicity for each test agent

We designed our exposure conditions to elicit no greater than 50% change to cell viability 

when compared to the sham exposure control. As described, cell viability was measured 

by cellular ATP levels in the CellTiter-Glo assay and cytotoxicity was measured by LDH 

release. In general, the same concentrations were tested in both the BEAS-2B and the 

pHBECs. As a baseline, we observed no statistical difference between the sham exposed 

cells and the incubator control cells (Supplemental figure 2). In the four VOCs tested in both 

cell lines, the pHBECs exhibited less change to cytotoxicity and cell viability at the highest 

concentration when compared to the BEAS-2B cells exposed to the same test agent.

Cytotoxicity was measured by LDH present in the basolateral compartment post-exposure 

by percent change relative to the sham control and the 100% lysed cell insert (Figure 

2). Many test agent concentrations tested yielded no significant change in cytotoxicity 

compared to the sham exposure control. However, 1-bromopropane exposure at 10 ppm 

and carbon tetrachloride at 50 ppm induced a statistically significant increase in BEAS-2B 

cytotoxicity. Fifty ppm dichloromethane and 100 ppm trichloroethylene caused a significant 

increase in cytotoxicity in both BEAS-2Bs and pHBECs. All observed significant changes to 

cytotoxicity fell below a 10% change compared to the sham exposure control.

In Figure 3, when measuring percent cell viability compared to the sham exposure control, 

BEAS-2B cells exposed to acrolein, 1-bromopropane, dichloromethane, trichloroethylene, 

and carbon tetrachloride yielded a significant change at the highest tested concentration. 

Concentrations of 10 and 3.125 ppm acrolein caused the largest observed reduction in 

viability for BEAS-2B cells. Acrolein at 3.125 ppm had the most impact, reducing cell 

viability down to below 30%. Again, pHBECs are expectedly more robust and resistant to 

chemical perturbations compared to the BEAS-2B cells and only displayed a significant 

change to cell viability when exposed to dichloromethane and trichloroethylene exposure at 

the highest concentration tested, 500 ppm and 100 ppm respectively.
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BMDExpress Concentration-response Analysis

In Table 2, we report median BMD and BMDL values for the top ten most sensitive gene 

sets meeting our criteria for each test agent and cell type combination tested. Although 

several major inflammatory, stress response, and cell function gene sets were altered in all 

VOCs tested, few common trends and overlapping targets were observed in the topmost 

sensitive gene sets. Ultimately, more chemical test agents need to be tested to reveal the 

relevance and context activation of specific gene sets. Notably, we also did not observe 

any overlapping gene sets between the BEAS-2B cells and pHBECs exposed to either 

trichloroethylene or dichloromethane. In Figure 4, gene level BMDs were calculated for all 

the VOCs tested in both cell types with most probes exhibiting a concentration response 

expression between the highest and second highest concentrations tested. Only those gene 

targets meeting the criteria outlined in the above methods section were considered and 

analyzed at the gene and gene set level. Both 1-bromopropane and carbon tetrachloride 

tested in pHBECs did not pass an ANOVA p ≤ 0.05 FDR cutoff and were not analyzed 

further for gene expression changes or BMD. Although gene level BMDs were generated, 

no gene sets in the MSigDB_C2 collection met our minimum cut-offs for reporting a gene 

set BMD in the case of formaldehyde and acetaldehyde tested in BEAS-2B cells (Figure 

4). We determined that most reported genes were annotated in MSigDB and therefore 

considered in gene set level analysis, calculated to show 95.13% of the unique entrez gene 

IDs considered, were also part of the unique entrez gene IDs included in the MSigDB 

collection. However, these cell type/test agent conditions had a relatively small number of 

probes with concentration-responsive transcription in the dose range tested, resulting in the 

lack of reported gene set BMDs for these cases. To be reported, a gene set must contain at 

least three concentration-responsive gene targets passing the prefilter criteria for inclusion 

and those gene targets must make up at least 5% of the gene set. In the example of BEAS-2B 

cells exposed to carbon tetrachloride, we obtained good annotation coverage with a BMD 

calculated for 584 genes, the majority of which (576) were annotated and mapped to 1429 

different gene sets in MSigDB.

The accumulation plots shown in Figure 5 emphasize the range of response sensitivity for 

each test agent. Generally, the reported BPAC for each reported VOC fall between the 

second and third highest tested chemical concentration. Acrolein elicited the most sensitive 

response in a cholesterol synthesis gene set with a BPAC at 0.586 ppm. Moreover, many of 

the top ten sensitive gene sets recorded BMDs approaching or lower than the ACGIH TLVs, 

indicated by the blue dotted line in Figure 5. Trichloroethylene (Figure 5A) and carbon 

tetrachloride (Figure 5B) both produced a BPAC at concentrations below the TLV.

Discussion

Ultimately, the results presented in this manuscript provide a foundation for using in vitro 
ALI cultures together with human-based gene expression dose response modeling NAMs 

to provide quantitative PODs for VOC exposure. Evaluating in vitro transcriptomics driven 

gene set level BMDs for VOC ALI exposures provided a basis of comparison to both 

human occupational exposure guidelines, such as the ACGIH TLV and in vivo inhalation 

studies (Table 3). ACGIH TLVs were obtained from the 2018 TLVs and BEIs: based on the 
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documentation of the threshold limit values for chemical substances and physical agents & 

biological exposure indices (ACGIH 2018). In most cases, the gene set level BMDs from 

VOC ALI testing were reasonable approximations of the TLVs. Except for 1-bromopropane, 

calculated BPACs fell within five-fold of the TLVs for each respective test agent. A five-fold 

difference represents a significant correlation between our exposure generated BPAC and 

TLV. Previous studies examining the variability of PODs for in vivo experiments show 

higher uncertainty levels and a larger overall POD range between studies (Paul Friedman et 

al. 2019; Pham et al. 2020).

In the example of dichloromethane (TLV of 100 ppm), we report a very similar BPAC of 

142.1 ppm for BEAS-2B and 226.7 ppm for pHBECs. The ACGIH TLV documentation 

on dichloromethane includes inhalation study data associated with lung cancer progression 

in vivo (NTP 1986b). Interestingly, the three most sensitive gene sets for dichloromethane 

exposure in pHBECs (Table 2) are all associated with cell cycle dysregulation and cancer 

progression (Delacroix et al. 2010; Mattioli et al. 2005). The SWEET_KRAS_TARGET 

gene set in particular is associated with the development of lung adenocarcinoma (Sweet-

Cordero et al. 2005). There is additional overlap between the most sensitive gene sets in 

the dichloromethane exposed BEAS-2B data and those identified in gene methylation cohort 

studies (Figueroa et al. 2010). We observed additional concurrence between sensitive gene 

sets and previously reported toxicological effects for VOCs of interest. Acrolein induced 

changes in cholesterol synthesis pathways, which are known targets of oxidative stress 

and acrolein exposure (Moghe et al. 2015). The first and second most sensitive gene set 

collection in 1,3-butadiene exposed BEAS-2B cells, relates to transcription modification 

of known markers for myeloid leukemia NUP98 and LIF (Takeda et al. 2006). The EPA 

hazard summary for 1,3-butadiene highlights epidemiological studies showing association 

between exposure and increased incidence of leukemia (Delzell et al. 1996; Macaluso et 

al. 1996; Struski et al.). Chronic in vivo rat carbon tetrachloride inhalation toxicity studies 

reveal significant fatty changes and hepatic tumor progression, mirroring our most sensitive 

gene set pathway reported in exposed BEAS-2B cells (Nagano et al. 2007a; Villanueva 

et al. 2011). Finally, prevalence of renal, bladder, and lung cancer in trichloroethylene 

toxicity studies is reflected in the top three most sensitive gene sets we report in BEAS-2B 

cells exposed to trichloroethylene and the most sensitive gene set in exposed pHBECs 

(Heidenblad et al. 2005; Krieg et al. 2010; Maltoni et al. 1986; Olsson et al. 2007; Roversi et 

al. 2006).

Broad correlations exist between TLV documentation, known chemical adverse health 

effects, and the determined sensitive gene sets. Taken together, these relationships provide 

context highlighting the practicality and promise of ALI VOC exposure and transcriptomics 

analysis. The representative LOAEL and NOAEL values reported in Table 3 are limited 

to those reported in the EPA IRIS Toxicological Review database (epa.gov/iris) reports. In 

general, the reported LOAEL and NOAEL value is higher than the BPAC calculated in 

our test agent exposures, however, they remain within an order of magnitude difference. 

BPACs for acrolein, carbon tetrachloride and trichloroethylene are all between the reported 

LOAEL and NOAEL values. The congruity of our transcriptome-based BPAC values with 

the TLV documentation and IRIS in vivo inhalation data provides strong evidence that 

our study design and analysis methods yield informative PoDs. It should be noted that, 

Speen et al. Page 12

Toxicol Sci. Author manuscript; available in PMC 2023 June 28.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

http://epa.gov/iris


while the BPACs calculated in this study successfully approximate the respective TLVs, 

these findings are not intended to be predictive of any specific adverse health outcomes. 

The most sensitive gene sets are broad groupings of genes with similar activities that may 

help guide follow-up studies but should not be viewed as definitive mechanisms of action. 

Limitations also exist in determining dose equivalency between ALI in vitro CCES and 

in vivo studies. Methods to determine dosimetric uptake in vitro in comparison to in vivo 
is being developed and important to assess dose equivalency across studies. Despite these 

challenges, the preliminary evidence that BMD analysis and PoD calculation in an ALI in 
vitro system provides an early marker of exposure is of scientific importance.

For the purposes of this study, change to viability concentration-response was not a primary 

endpoint and was reserved as only a cut-off for consideration in the transcriptomics data. 

Despite the 50% average viability threshold to be considered for TempO-Seq, our average 

response at the highest concentration was below 20% change in BEAS-2B and little to no 

change was observed in the pHBECs. In our study, preliminary dose response testing was 

conducted only in the BEAS-2B cells and may have represented concentrations that did not 

have as strong an effect on the pHBECs. Future studies should utilize cell model specific 

range finding to ensure an observable dose response. Even known respiratory toxicants 

formaldehyde and acetaldehyde did not significantly change BEAS-2B cell viability at 

the concentrations they were exposed. In the case of formaldehyde, the lower tested 

concentrations skewed both LDH and ATP measurements above those of the sham control 

cells. This finding indicates the challenges behind exposing airway cells to these chemicals 

in a humidified system under flow at such low concentrations. Future studies should 

endeavor to examine the possible conversion of parent chemical species within the exposure 

system.

It should be noted that we did attempt to quantitate a BMD for the cell viability endpoints. 

Ultimately, the magnitude of response in our measurements of cytotoxicity/viability were 

not great enough to meet the 10% relative deviation cutoff for BMD modeling as outlined 

in the NTP dose response modeling approach (NTP 2018). These results support the strong 

ability for transcriptional BMD analysis to identify adverse effects in exposures that did 

not result in significant changes to cell metabolism or viability, providing a more sensitive 

endpoint in screening level exposure endpoints. The lack of dynamic range in our tested 

concentrations undoubtedly contributed to the non-viable BMD models for the viability 

endpoints, as well as the lack of probe and gene sets assigned BMDs. A wider range 

of tested concentrations and viability BMD modeling should be utilized and examined in 

future studies. The observed probe level assigned BMDs in Figure 4 are heavily weighted 

toward the highest concentration tested for most of the tested VOCs. Altering the test 

agent concentration range and time course in future experiments could lead to tissue 

remodeling, uncover different expression profiles and likely reveal gene set level changes 

with differential BPACs for the VOCs tested. Subsequent studies are planned to evaluate 

6 and 24 h post-exposure time points and repeat exposures to simulate 14-day in vivo 
inhalation study designs.

In summary, the communicated study utilized a novel inhalation exposure system to 

investigate VOCs which were previously incapable of being tested in traditional in vitro 
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direct-dosing methods. Second, we implemented transcriptome-based analytical techniques 

to describe portal of entry impacts of inhaled VOCs with many of the most sensitive gene 

sets correlating to known adverse effects from previous in vivo experiments. The findings 

outlined above serve as a primer to inform future in vitro inhalation exposure study design 

and risk assessment. Foremost, the BMD analysis and comparison to known LOAEL and 

NOAEL data, as well as ACGIH TLVs, provide a proof of concept that transcriptome-based 

PoD analysis can be used as a predictive tool for adverse outcomes in human exposure.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of CCES dilution manifold and exposure plates. A) Dynamic headspace generator 

design used for chemical generation and transport to the exposure manifold. B) The cell 

culture exposure system (CCES) includes a diffusion humidifier designed to regulate relative 

humidity levels in the dilution air before being passed through a dilution manifold. Each 

diluted chemical concentration is transported to a sampling port which allows real-time 

concentration analysis before being delivered to four wells containing inserts (n=4 per dose). 

For visual clarity, only tubing for the first three doses are shown. A separate control plate 

receives only humidified dilution air for the duration of the exposure. Both the VOC and 

sham exposure plates are enclosed in a warmed, humidified enclosure, while the incubator 

control remains in the 37°C 5% CO2 cell culture incubator.
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Figure 2. 
Dose response of each respective chemical as measured by LDH release presented 

as % Change in Cytotoxicity compared to the filtered air control and 100% lysed 

control. BEAS-2B and pHBEC cells exposed to chemicals A. Acrolein, B. 1,3-Butadiene, 

C. Acetaldehyde, D. Formaldehyde, E. 1-Bromopropane, F. Dichloromethane, G. 

Trichloroethylene, H. Carbon Tetrachloride. Mean±SEM, n=3, *p≤0.05.
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Figure 3. 
Dose response of each respective chemical as measured by CellTiter-Glo ATP availability 

and presented as % Cell Viability compared to the filtered air control. BEAS-2B and 

pHBEC cells exposed to chemicals A. Acrolein, B. 1,3-Butadiene, C. Acetaldehyde, D. 

Formaldehyde, E. 1-Bromopropane, F. Dichloromethane, G. Trichloroethylene, H. Carbon 

Tetrachloride. Mean±SEM, n=3, *p≤0.05.
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Figure 4: 
Bar plot of Gene and Gene Set level accumulation as a function of VOC test concentration 

for each cell type and chemical combination tested. Each bar represents the number of genes 

or gene sets that had a BMD less than or equal to the test concentration. Light grey and 

black shaded bars represent genes or gene sets (respectively) which meet all criteria and 

were analyzed while the dark grey portion of the bar represents those gene targets which 

were not annotated in the MSigDB gene set collection and did not contribute to gene set 

level BMDs. Sample size n=3 per test condition.
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Figure 5. 
Accumulation plots for the best BMD values for enriched gene sets for BEAS-2B cells 

(black squares) and pHBEC cells (grey circles). Each point represents the Median BMD for 

a gene set. Black dashed lines indicate the range of concentrations tested and the dotted line 

indicates the ACGIH TLV.
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