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Abstract

A large family of prototoxin-like molecules endogenous to mammals, Ly6 proteins have

been implicated in the regulation of cell signaling processes across multiple species. Previ-

ous work has shown that certain members of the Ly6 family are expressed in the brain and

target nicotinic acetylcholine receptor and potassium channel function. Structural similarities

between Ly6 proteins and alpha-neurotoxins suggest the possibility of additional ionotropic

receptor targets. Here, we investigated the possibility of lypd2 as a novel regulator of AMPA

receptor (AMPAR) function. In particular, we focused on potential interactions with the Q/R

isoforms of the GluR2 subunit, which have profound impacts on AMPAR permeability to cal-

cium during neuronal stimulation. We find that although lypd2 and GluR2 share overlapping

expression patterns in the mouse hippocampus, there was no interaction between lypd2

and either GluR2Q or GluR2R isoform. These results underscore the importance of continu-

ing to investigate novel targets for Ly6 interaction and regulation.

Introduction

Regulation of cellular signaling processes often begins at the plasma membrane, in which regu-

latory proteins interact with transmembrane receptors to modulate their response following

an extracellular signal. Dysregulation of these processes has significant negative consequences

for cellular and organismal function, with aberrant signaling processes implicated in dozens of

human disease states [1], underscoring the need for the identification and characterization of

novel regulators of cell signaling. The Ly6 protein family has been shown to be a prolific source

of potential regulators for cell signaling, with recent work in the last few decades implicating

Ly6 proteins in the modulation of cell-cell communication across multiple systems [2–13].

However, the number of characterized Ly6 proteins remains low, despite the large number of

candidates in the family (40+ genes in mammalian systems) [14]. Averaging 15-20kDa in size,

Ly6 proteins are generally found within the extracellular space, either as a secreted protein or
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(in the majority of cases) by being physically tethered to the outer leaflet of the plasma mem-

brane by a post-translational C-terminal GPI anchor modification [6, 14–16]. The Ly6 proteins

adopt a three-finger fold, comprised of three variable sequence loops stabilized by a “crown” of

5–6 highly conserved disulfide bonds [13, 17]. This three-finger fold is also found in α-neuro-

toxins commonly found in elapid snake venoms, such as α-bungarotoxin [16, 18]. These α-

neurotoxins primarily exert their effects by binding to orthosteric sites on their target receptor

and inhibiting the conformational changes necessary for receptor function. Given their struc-

tural similarities, early explorations of Ly6 function hypothesized that Ly6 proteins may also

target ionotropic receptors in a similar fashion as α-neurotoxins [19, 20]. Indeed, the first stud-

ies done on lynx1 and lynx2 demonstrated that these Ly6 proteins also target nicotinic acetyl-

choline receptors (nAChRs)—α-bungarotoxin targets the α7 nAChR while lynx1 and lynx2

target both α4β2 and α7 nAChRs—by altering the kinetics of receptor desensitization and

receptor stochiometry, with implications for learning and memory [19–22]. Recent work has

shown that Ly6h also modulates nicotinic acetylcholine receptor function via a different mech-

anism—by lowering levels of receptor found at the plasma membrane and thus altering the

maximal response of these receptors to agonist [23–25]. Outside of nicotinic acetylcholine

receptors, these α-neurotoxins can also interact with other ionotropic receptors, such as L-

type calcium channels and voltage-gated potassium channels [26]. Could Ly6 proteins also

modulate the function of such a diverse array of receptors? Current work has identified only a

few non-nicotinic acetylcholine receptor targets for Ly6 proteins, including the Shaker-type

potassium channels [27], CD3z chains of the T cell receptor signaling complex (TCR) [28],

TBK1 [29], and EGFR/PDGFR heterodimer [30]. This work demonstrates that Ly6 proteins

can modulate the function of non-nicotinic acetylcholine receptors, opening up possibilities of

identifying other novel targets of Ly6-mediated regulation. Moreover, the role of Ly6 proteins

in regulating neuronal excitability is conserved across multiple organisms (sss (sleepless) regu-

lates sleep in Drosophila [27, 31] and odr-2 mediates odor sensing in C. elegans [32, 33]), sug-

gesting other Ly6 proteins may also be involved in similar processes.

In mammalian systems, the majority of excitatory neurotransmission is mediated by iono-

tropic glutamate receptors. Specifically, AMPA receptors (AMPARs) are highly expressed in

the brain, particularly in the hippocampal region [34]. AMPARs are synthesized, folded, and

assembled in the endoplasmic reticulum, where they must undergo stringent quality control

prior to export to the Golgi and ultimately to the cell surface [35–37]. Several auxiliary proteins

(such as TARPs, including stargazin, and CNIHs) and small interacting regulatory proteins

(such as GRIP2/ABP and PICK1) have already been identified as playing key roles in AMPAR

trafficking to the cell surface [38–41]. In particular, TARPs and CNIHs are both large families

of AMPAR auxiliary proteins that are localized to the plasma membrane; recent structures of

AMPARs in complex with these transmembrane auxiliary proteins reveal that due to their

small size and proximity to the plasma membrane, many of the functional interactions with

the AMPAR are with the linker regions between the ligand binding domain (LBD) and trans-

membrane domain (TMD) or the LBD and the N-terminal domain (NBD) [39, 40, 42–48].

Given the importance of AMPARs in modulating excitatory neurotransmission in mammalian

brains and the significant number of the mammalian Ly6 proteins that also play roles in regu-

lating neuronal excitability and neuronal function, this led us to hypothesize: could Ly6 pro-

teins also be regulators of AMPA receptor function?

As the first step for considering that question, we investigated the possibility of whether

lypd2, a Ly6 protein predicted to be GPI-anchored and reported to be expressed in the hippo-

campus, could interact with GluR2 AMPA receptors using co-immunoprecipitation in HEK-

293 cells [51]. AMPA receptors are tetrameric and can exist as heteromeric combinations of

predominantly GluR1/GluR2, GluR2/GluR3, or GluR1/GluR2/GluR3/GluR2 or as homomers
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of either GluR1 or GluR2 [52]. Receptor composition has significant implications for receptor

function and regulation, with each receptor combination showing differences in calcium per-

meability, receptor trafficking and assembly [53, 54]. Given this varied molecular landscape of

AMPA receptor function and the lack of information regarding potential for regulation by Ly6

proteins, we chose to focus our study on homomeric GluR2R or Glu2RQ receptors, which dif-

fer in a single amino acid at position 607 located in the pore region of the receptor (Fig 1A). As

a simpler system, homomeric assemblies allow us to directly assess interactions between just

two proteins (the homomer and lypd2) and limits the number of possible interacting combina-

tions that could occur with heteromeric systems. Moreover, both isoforms have been shown to

have unique biochemical properties of their own. Receptors containing GluR2R remain cal-

cium impermeable, while incorporation of GluR2Q in either heteromeric or homomeric forms

retains calcium permeability; alternative splicing events during GluR2 maturation result in the

Q607R conversion in the pore region to render ‘mature’ GluR2 calcium-impermeable [55–57].

In addition to effects on the mature receptor, previous work has also shown that the R607Q

conversion has impacts on immature receptor folding and assembly, with changes in ER

export kinetics for each isoform [57]. Moreover, both isoforms are differentially regulated by

auxiliary proteins, including type II TARPs [53, 56–61]. In comparisons between GluR2R and

GluR2Q isoforms that differ in sequence only at the 607 position, γ-5 lowered glutamate affin-

ity and accelerated desensitization of only the GluR2R isoform, while γ-7 enhanced steady state

currents in the presence of CTZ and glutamate for GluR2R and not GluR2Q [61]. As noted ear-

lier, structures of γ-5 in complex with GluR2Q suggest the effects of this type II TARP on

AMPAR function are mediated by interactions between its extracellular loops with the LBD

and/or LBD-TMD linker [48]. Given this isoform-specific regulation of GluR2R vs GluR2Q by

small regulatory proteins in close proximity to the linker/LBD regions of the receptor and the

Fig 1. Model for potential Ly6 interaction with GluR2. A) Structures of GluR2 (3KG2) and lynx1 (2L03) shown as

cartoon relative to outer leaflet of the plasma membrane [17, 49]. Each GluR2 subunit of the tetramer is shown in a

different color; R607Q editing site on GluR2 is shown as spheres (in 3KG2 it has been edited to Q, as indicated), C-

terminal GPI anchor on lynx1 is shown as a black curved line. B) Alphafold prediction of structure of mouse lypd2

(resides 21–100, omitting predicted N- and C-terminal signal sequences) [50]. Disulfide bonds are shown as gold

sticks.

https://doi.org/10.1371/journal.pone.0278278.g001
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biochemical simplicity of working with a homomeric system, we chose to focus our efforts on

whether lypd2 could interact with homomeric GluR2R or GluR2Q. As shown in Fig 1A, the rel-

ative sizes and positioning of the GluR2 tetramer relative to lynx1 (one of the few Ly6 proteins

with an experimentally determined structure, shown here for accuracy in scale and structure;

Fig 1B shows a predicted structure of lypd2 as modeled in AlphaFold, with significant struc-

tural similarities with lynx1) suggest that a Ly6 protein is within reach of the LBD and/or the

linker regions between the LBD and the TMD (potentially the NTD as well, depending on con-

formational flexibility of the receptor) [50]. This physical range of functional impact is quite

similar to the contact regions seen for structures of the GluR2-TARP γ-2, GluR2-TARP γ-5,

and GluR2-CNIH3 complexes [42, 43, 48]. Given the internal positioning of Q607 (which is

buried in the transmembrane domain and directly faces the inside of the pore), it is unlikely

that any mechanism of regulatory protein interaction (either by auxiliary or Ly6 proteins)

would be through direct contacts with that residue. The results of our experiments showed

that lypd2 does not interact with homomeric GluR2R or GluR2Q AMPA receptors. Although

we were unable to identify an interaction between these Ly6 proteins and AMPA receptors, we

hope this work will prompt the field to consider investigating alternative targets of Ly6

regulation.

Materials and methods

DNA constructs

Rat cacng2 (stargazin; NM_053351.1) was synthesized and subcloned into pcDNA3.1+/C-(K)-

DYK using CloneEZ strategy (Genscript). Rat lypd2 (NM_001130545.1) and mouse lypd2

(NM_026671.1) were synthesized and subcloned into pcDNA3.1(+)-myc-His A using Hin-

dIII/EcoRV sites (Genscript). The FLAG epitope is located immediately N-terminal to the pre-

dicted GPI attachment residue (as predicted using http://mendel.imp.ac.at/gpi/gpi_server.

html [62]). GFP-GluR2R plasmid was a kind gift from R. Malinow. GFP-GluR2Q plasmid was

generated from GFP-GluR2R plasmid using site-directed mutagenesis using the indicated

primers: R607Q_f: CCT TGG GTG CCT TTA TGC AAC AAG GAT GCG ATA TTT CGC;

R607Q_r: GCG AAA TAT CGC ATC CTT GTT GCA TAA AGG CAC CCA AGG.

RT-PCR

Mouse whole brain and hippocampal cDNA were purchased from Zyagen (Mouse C57 Brain

and Hippocampus cDNA). RT-PCR was carried out for GAPDH and lypd2 using the indi-

cated primers: mGAPDH-QF: 5’-GTTGTCTCCTGCGACTTCA-3’; mGAPDH-QR:

5’-GGTGGTCCAGGGTTTCTTA-3’; mlypd2 QF: 5’-GCATCCAACTGTGTCACCAC-3’;

mlypd2 QR: 5’-GTCAGAATTGCAGCAGGACA-3’. Anticipated sizes for GAPDH and lypd2

products were 184bp and 192bp, respectively.

Cell culture

HEK-293T cells (ATCC, CRL-1573) were maintained at 37˚C and 5% CO2 in culture medium

consisting of 10% fetal bovine serum (Omega), 1% penicillin/streptomycin (Corning), and 1%

l-glutamine (Sigma) in low-glucose DMEM with 2mM l-glutamine (Corning). Cells were

grown to 60–80% confluence for transfection with X-tremeGENE HP reagent (Roche) at a 2:1

ratio of transfection reagent to DNA in Opti-MEM (Thermofisher). Transfection mixture was

removed 24h after transfection and replaced with normal growth medium. Cells were allowed

to recover for 24h in normal grown medium prior to immunostaining or immunoprecipita-

tion protocols below.
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Immunostaining

HEK-293T cells were plated on glass coverslips coated with poly-D-lysine (Sigma) and cul-

tured for 24h before transfection. Transfection was done as described above. Cells were rinsed

with ice-cold PBS and fixed in 4% formaldehyde/PBS for 10min at room temperature. Cells

were blocked for 1h at room temperature in 10% normal goat serum (Thermofisher) and then

sequentially incubated in primary antibodies (overnight at 4C with rabbit α-GFP (Thermo-

fisher, A11122) or mouse α-FLAG (Thermofisher, MA191878)). Labeled cells were washed

three times with ice-cold PBS and incubated in secondary antibody for 1h at room tempera-

ture and DAPI (Sigma) for 1min at room temperature. Cells were mounted onto glass slides in

ProLong Glass Anti-fade mountant (Thermofisher). Fluorescently conjugated secondary anti-

bodies used were Alexa Fluor goat anti-mouse 568 and Alexa Fluor goat anti-rabbit 488 (Ther-

mofisher). Cells were imaged on a Zeiss AxioImager at 40X magnification. Figures show

representative imaged from at least three independent experiments for each set of transfected

conditions.

Co-immunoprecipitation (Co-IP)

Proteins were extracted with “+SDS” lysis buffer (10mM Tris pH 7.5, 100mM NaCl, 5mM

EDTA, 1% Triton X-100, 0.05% SDS, Complete protease inhibitor (Roche)). Protein concen-

trations were quantified via BCA Protein Assay (Thermofisher). 75 μg of total protein was

reserved for input and 750μg for Co-IP. Co-IP samples were rocked for a minimum of 4 hours

with 12.5 μl Protein G magnetic beads (NEB) at 4˚C. Samples were washed 3X with a Co-IP

+SDS wash buffer (10mM Tris pH 7.5, 100mM NaCl, 5mM EDTA, 0.05% Triton X-100,

0.05% SDS, Complete protease inhibitor (Roche)), then stored at -20C in 1X SDS Sample

Buffer. “-SDS” lysis and wash buffers were the same as above except they were made without

SDS; “PBS” lysis and wash buffers were phosphate buffered saline (PBS) purchased from

Corning.

Western blotting

Samples were heated for 10 minutes at> 90˚C. Proteins were run on 4–20% gels (Bio-Rad

Mini-PROTEAN1 TGX Stain-Free™ Protein Gels) in 1X TGS buffer (Bio-Rad) and trans-

ferred using a semi-dry transfer (Bio-Rad Trans-Blot1 Turbo Transfer System) to a 0.2μm

nitrocellulose membranes (Bio-Rad). Blocking was done in a 5% skim milk in 1X TBST. Mem-

branes were blotted using primary antibodies against the mouse α-FLAG antibody (Thermo-

fisher, MA191878), rabbit α-actin (Thermofisher, MA5-32479), or rabbit α-GFP antibody

(Thermofisher, A11122). Figures show representative immunoblots from at least three inde-

pendent experiments for each set of transfected conditions.

Results

AMPA receptors are highly expressed throughout the brain, particularly in the hippocampus.

We reasoned that Ly6 proteins that are also highly expressed in the brain would have a higher

likelihood of interacting with AMPA receptors. Using RT-PCR analysis, we confirmed expres-

sion of lypd2 in mouse whole brain and hippocampal cDNA samples (Fig 2A). HEK 293 cells

have been extensively demonstrated to be suitable for the expression of functional AMPA

receptors in a heterologous system. In order to assess if they were a suitable heterologous

expression system for lypd2, we performed a series of expression tests using constructs gener-

ated from mouse and rat genomes. We found that mouse and rat lypd2 expressed well and

showed punctate expression at the cell surface, which is in agreement with previously
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established cellular localization patterns for other Ly6 proteins (Fig 2B and 2C) [23, 63]. Hav-

ing established expression conditions for lypd2, all remaining experiments were conducted

using the rat isoforms for these Ly6 proteins. As shown in Fig 3A, co-immunoprecipitation

experiments with GluR2 homomeric AMPA receptors did not show any interaction with

lypd2. These results were consistent for both GluR2R and GluR2Q isoforms.

In order to determine if our buffer conditions were appropriate for detecting protein-pro-

tein interactions with GluR2, we performed a pulldown using GluR2 and stargazin. Stargazin

has been previously shown to interact with and regulate the activity of GluR2, and served as a

positive control for our pulldown conditions [64, 65]. As shown in Fig 3B, we were able to suc-

cessfully pulldown stargazin using GluR2Q. Having established that our initial buffer condi-

tions were suitable for pulling down GluR2-interactors, we considered the possibility that

these buffer conditions were too stringent for detecting potentially weaker interactions

between GluR2 and lypd2. We repeated our lypd2 GluR2Q pulldown with alternative buffers

(-SDS from ours; PBS) under less stringent conditions [66]. As shown in Fig 3C, less stringent

buffers continued to result in no pulldown, indicating that the lack of interaction seen is not

due to our buffer conditions.

Fig 2. Expression of rodent lypd2 in whole brain, hippocampus, and HEK-293T cells. (A) RT-PCR showing

expression of lypd2 in mouse whole brain and hippocampal cDNA (n = 3). (B) Expression of FLAG-tagged M.

musculus lypd2 and R. norvegicus lypd2 in HEK-293T cells as measured by Western Blot (n = 3). Cells were transfected

with indicated amounts of DNA for each construct and blotted for presence of C-terminal FLAG epitope. Empty

vector (pCDNA) was used as a control. (C) Representative images of cell surface expression of lypd2 constructs

visualized using immunofluorescence under non-permeabilizing conditions (n = 3). HEK-293T cells were transfected

with the indicated amounts of each construct and stained for presence of C-terminal FLAG epitope. Blue: DAPI, white:

FLAG.

https://doi.org/10.1371/journal.pone.0278278.g002
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Discussion

The Ly6 protein family has been implicated in the regulation of cell-cell communication path-

ways across multiple model systems. In several examples, the molecular mechanism underly-

ing this regulatory function is due to alterations in the trafficking and function of ionotropic

receptors such as nicotinic acetylcholine receptors and potassium channels. Here, we explored

an alternative approach towards identifying potential new ionotropic receptor targets of Ly6

regulation. We focused on AMPA receptors as a possible target due to their role in mediating

neuronal communication, the well-established precedence for regulation of AMPA receptor

function via small regulatory proteins, and their highly dense expression in particular regions

of the brain (including the hippocampus) where lypd2 is also expressed [34, 35, 37, 38, 54].

As noted in the introduction, we focused our efforts on the R/Q isoforms of GluR2 due to

previously established work indicating isoform-specific regulation by auxiliary and/or small

regulatory proteins [61]. Although our experiments indicate that we were unable to isolate

Fig 3. Lypd2 does not interact with GluR2Q or GluR2R. (A) Representative Western Blots of lypd2-FLAG co-

immunoprecipitated with GFP-GluR2Q or GFP-GluR2R (n = 4). (B) Representative Western Blots of stargazin co-

immunoprecipitated with GFP-GluR2Q (n = 4). (C) Representative Western Blots of lypd2-FLAG co-immunoprecipitated with

GFP-GluR2Q prepared with different lysis and wash buffers (see Materials and Methods; n = 3). Top panels show 10% input

blotted with the indicated primary antibodies; bottom panels show pulldown samples blotted with the indicated primary

antibodies. HEK-293T cells were transfected with the indicated μg of DNA for each construct; cells were transfected with 0.5 μg of

receptor DNA and the indicated amounts of stargazin or lypd2-FLAG DNA.

https://doi.org/10.1371/journal.pone.0278278.g003
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stable complexes between either GluR2Q or GluR2R homomeric receptors with lypd2, they do

not rule out the possibility of a Ly6-AMPAR interaction with other receptor combinations

(GluR1 homomers, GluR1/GluR2, GluR2/GluR3, for example), with other GluR2 isoforms

that vary in the intracellular or extracellular regions (flip/flop, R/G editing, differences in gly-

cosylation patterns, etc), or in the presence of an additional binding partner in a trimeric com-

plex [35, 52, 58, 67, 68]. In particular, previous work has demonstrated that native AMPARs in

the brain are almost always associated with auxiliary subunits (such as γ-8 and CNIH2); there-

fore, if lypd2 were interacting with native AMPARs in the hippocampus it would likely be

doing so in the context of a pre-existing complex of AMPAR with auxiliary subunits [52].

Future explorations of potential Ly6-AMPAR interactions could account for this complexity

by including these additional auxiliary subunits in the transfection system. Moreover, addi-

tional work is also necessary to determine whether the observed overlaps in hippocampal

expression for AMPARs and lypd2 (previous studies and this work, respectively) correlate

with physical co-localization between lypd2 and AMPARs, a biological feature characteristic of

interacting partners.

Although we were unsuccessful in identifying new targets for Ly6 regulation in this study,

the importance of considering alternative strategies for studying the targets of this large and

diverse protein family remains. Many of these Ly6 proteins and their associated molecular tar-

gets were identified as outcomes of phenotype-based screens; however, we posit that perhaps a

biochemical approach may provide valuable information towards identifying the regulatory

network of Ly6 interactors beyond the current few (such as using Ly6 proteins as bait to pull

down novel prey interacting proteins that could be identified using mass spectrometry analy-

sis) [69, 70]. The large size of this protein family suggests there could be additional Ly6 regula-

tory targets waiting to be identified.
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