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Abstract

Despite current advancement in the field of biomedical image processing, propelled by the

deep learning revolution, multimodal image registration, due to its several challenges, is still

often performed manually by specialists. The recent success of image-to-image (I2I) trans-

lation in computer vision applications and its growing use in biomedical areas provide a

tempting possibility of transforming the multimodal registration problem into a, potentially

easier, monomodal one. We conduct an empirical study of the applicability of modern I2I

translation methods for the task of rigid registration of multimodal biomedical and medical

2D and 3D images. We compare the performance of four Generative Adversarial Network

(GAN)-based I2I translation methods and one contrastive representation learning method,

subsequently combined with two representative monomodal registration methods, to judge

the effectiveness of modality translation for multimodal image registration. We evaluate

these method combinations on four publicly available multimodal (2D and 3D) datasets and

compare with the performance of registration achieved by several well-known approaches

acting directly on multimodal image data. Our results suggest that, although I2I translation

may be helpful when the modalities to register are clearly correlated, registration of modali-

ties which express distinctly different properties of the sample are not well handled by the I2I

translation approach. The evaluated representation learning method, which aims to find

abstract image-like representations of the information shared between the modalities, man-

ages better, and so does the Mutual Information maximisation approach, acting directly on

the original multimodal images. We share our complete experimental setup as open-source

(https://github.com/MIDA-group/MultiRegEval), including method implementations, evalua-

tion code, and all datasets, for further reproducing and benchmarking.

1 Introduction

We are witnessing a growing popularity of approaches which combine information from dif-

ferent imaging modalities [1] to maximise extracted information about an object of interest,

particularly within life sciences. Different imaging techniques offer complementary
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information about structure, function, dynamics, and molecular composition of a sample. To

efficiently utilise and fuse such heterogeneous information, acquired images have to be spa-

tially aligned, a process known as image registration.

Numerous methods have been proposed for automatic monomodal (intramodal) registra-

tion [2–4], typically based on comparison of intensity patterns in images (intensity-based

approaches), or on finding correspondence between characteristic details in the images (fea-

ture-based methods). However, multimodal (intermodal) image registration is much more

challenging. In cases when image appearances differ significantly between modalities, e.g., due

to different underlying physical principles of imaging, assessing image similarity and finding

correspondences across modalities are, in general, very difficult tasks.

Multimodal registration is often required and performed in medical and satellite imagery,

where valuable information is in many situations acquired using several different sensors [5].

Due to the inherent discrepancy in intensity values in images acquired by different modalities,

it is difficult to define generally applicable methods. Existing approaches are, therefore, often

specific to a particular application (e.g., relying on anatomical properties of specific organs),

and typically restricted to only a few combinations of modalities. Applications in biomedical

image analysis bring in further challenges: (i) there exists a much greater variety of modalities

(e.g., tens of different types of microscopies), (ii) specimens exhibit much wider variety, (iii)

imaged objects (e.g., tissue) often lack distinctive structures (as opposed to, e.g., organs) which

could be used for establishing correspondences, (iv) acquired data often consist of very large

images (easily reaching TB-size), necessitating fast methods with low memory requirements

and also limiting the feasibility of high-quality manual annotation. Direct application of

conventional methods is most often not sufficient, even in relatively simple scenarios. As a

consequence, biomedical image registration is nowadays still often performed manually by

specialists [6].

Deep learning-based methods have, since their renaissance, revolutionised the field of com-

puter vision. Significant results with this type of methods have also been reached in the field of

medical image registration, as summarised in recent surveys [6–9]. The main considered

approaches include learning of similarity measures, direct prediction of the transformation,

and image-to-image (I2I) translation approaches. Methods based on direct prediction of the

transformation have so far mostly provided an improvement of the run-time, while exhibiting

registration performance that is (at best) on par with traditional methods [10, 11]. A related,

but different recent method for multimodal rigid registration [12] uses a large neural network

as a feature extractor, training a network to recover a transformation from a single image. This

method, however, fails in case a canonical space does not exist, which holds for a majority of

the imaging scenarios considered in this study. Generative Adversarial Network (GAN)-based

methods have shown impressive performance in I2I translation tasks, primarily on natural

images, [13–17]. They are offering the possibility of converting multimodal registration into a,

presumably less challenging, monomodal problem which can be addressed by a wide range of

monomodal registration methods; this idea is illustrated in Fig 1. This concept has been shown

promising in many multimodal registration tasks, even before the GAN-based methods

became a standard tool [18–20]. GAN-based approaches are receiving increasing attention in

medical image registration [7, 8, 21], and the progression to bioimage analysis seems to be a

natural step. A recent survey [22] overviews several usage scenarios of GANs in the field of bio-

medical image analysis, primarily targeting data generation aiming to overcome challenges of

annotation in digital pathology. However, quantitative results related to image registration,

and particularly, in multimodal settings on multiple datasets, are still lacking. The potential of

GANs in these scenarios is still to be explored, as pointed out in a recent overview of the appli-

cation of deep learning in bioimage analysis [23].
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To fill this gap, and to facilitate knowledge transfer from the domain of multimodal natural

image registration, we present an empirical study of the applicability of modern I2I translation

methods for the task of multimodal medical and biomedical image registration. We compare

the performance of four GAN-based methods, combined subsequently with two representative

monomodal registration methods, to judge the effectiveness of modality translation on rigid

registration of medical and biomedical images. We evaluate these method combinations on

four publicly available multimodal datasets. To explore the effects of different types of data and

their complexity, w.r.t. the task of registration, we include one relatively easy non-biomedical

dataset, one Cytological dataset of medium difficulty, and one more challenging Histological

dataset, all in 2D. Furthermore, we observe a 3D medical Radiological dataset containing T1-

and T2-weighted MR images of brains. To establish reference performance, we include one

classic intensity-based multimodal registration method, Mutual Information (MI) maximisa-

tion [24, 25], as well as two popular more recent multimodal approaches, Modality Indepen-

dent Neighbourhood Descriptor (MIND) [26] and maximisation of similarity of Normalised

Gradient Fields (NGF) [27]. On the Histological dataset, we also compare with a recent task-

specific method [28] developed particularly for that type of data. In addition, we evaluate one

recently proposed deep learning-based method for multimodal registration which uses a dif-

ferent approach to transform multimodal registration into a monomodal case [29]. We apply

and evaluate this method on 3D (medical) data, which has not been done previously. We share

our complete experimental setup as open-source, including method implementations, evalua-

tion code, and all datasets to facilitate further reproducing and benchmarking. The framework

can easily be extended by including additional methods, and can support further development

and evaluation of approaches for registration of 2D and 3D medical and biomedical images.

2 Background and related work

Image registration methodologies can roughly be classified into intensity-based and feature-

based methods, however with no strict border between the two; several modern approaches

estimate and align more or less dense feature fields, aiming to capture good properties of both

intensity- and feature-based methods. Learning-based approaches may, to different extents, be

Fig 1. Method overview. Direct multimodal registration of distinctly different modalities is a challenging task (middle path). In this study, we evaluate

if, instead, performing I2I translation of one modality to another may lead to a simpler monomodal registration problem (either of the two peripheral

paths).

https://doi.org/10.1371/journal.pone.0276196.g001
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utilised for directly solving the overall registration task (end-to-end), or for addressing differ-

ent sub-tasks.

Intensity-based approaches typically formulate image registration as an optimisation prob-

lem, for which an image similarity measure (or inversely stated, a distance measure) is used to

assess the quality of the alignment. Common similarity measures include negative Sum of

Squared Differences (SSD) and Cross-Correlation (CC) for monomodal registration; Mutual

Information (MI) [24] and Normalised Mutual Information [30] for both monomodal and

multimodal registration; as well as measures which incorporate relevant additional informa-

tion (e.g., gradient information or spatial displacement) extracted from the images [31, 32].

Several approaches for learning a suitable similarity measure from data have been proposed.

A method to implicitly learn a multimodal similarity measure for the relatively easy multi-

modal scenario of registering T1 and T2-weighted Magnetic Resonance (MR) images is pre-

sented in [33], whereas [34] suggests training a Deep Convolutional Neural Network (DCNN)

to predict correspondence of Computed Tomography and MR image patches and then use the

classification score as a similarity measure.

Intensity-based approaches, which rely on iterative local optimisation of an image similarity

measure, are often relatively slow [8], and the existence of many local optima in the search

space reduces applicability when the displacement between images to be registered is large

[32]. Several learning-based approaches have been proposed to speed up the optimisation task;

representative examples include VoxelMorph [35], where an encoder-decoder network is used

to directly predict a deformation field which maximises an image similarity measure, and

Quicksilver [33], where a deep encoder-decoder network is used for patch-wise prediction of

the momentum-parameterisation of a Large Deformation Diffeomorphic Metric Mapping

model.

Feature-based methods detect salient structures in the images and find correspondence

between them, to guide the registration. Popular methods for feature point detection and

description include SIFT [36] and ORB [37]. Learning may be utilised to suitably adapt fea-

ture-based registration to data. Pioneering unsupervised approaches for learning features for

image registration are presented in [38] (for MR data) and [39] (for natural scenes).

Compared to the iterative optimisation process of intensity-based methods, the feature-

based approaches can be much faster and also more robust to variations in brightness and con-

trast, making this type of methods popular for computer vision and video tracking tasks. How-

ever, in multimodal setting, images typically convey complementary information; features that

are present in one modality may be absent in another. Additionally, feature-based methods

struggle with the general lack of salient structures in biomedical datasets. These shortcomings

reduce the applicability of feature-based registration methods in multimodal biomedical

scenarios.

Modality Independent Neighbourhood Descriptor (MIND) [26] combines feature- and

intensity-based notions and extracts a dense set of multi-dimensional descriptors of each of

the images of different modalities, utilising the concept of self-similarity. A standard similar-

ity-based (monomodal) registration framework is then used with a standard monomodal simi-

larity measure to establish correspondence between the generated representations.

Common representation of the images acquired by different modalities can also be learned;

successful approaches include contrastive representation learning [29] and representation

disentanglement [21]. Monomodal registration methods can then be applied to the resulting

representations, as a suitable “common ground” between the modalities.

I2I translation (also known as image style transfer) refers to mapping images from a source

domain to a target domain, while preserving important content properties of the source

image. I2I translation can be used to translate images from one modality into images
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appearing as if acquired in another modality. This enables to transform the multimodal regis-

tration problem into a, possibly easier, monomodal one, as illustrated in Fig 1. Prior to the tide

of deep learning, I2I, also referred to as image synthesis, has been applied tentatively to multi-

modal registration problems [18, 40]. Despite the potential demonstrated in their promising

performance, the full capability of this approach was still limited by the synthesising algo-

rithms [19, 20]. I2I translation methods based on GANs [41] have, in recent years, shown

impressive results [13–17].

I2I translation has found broad usage in biomedical areas [22], including virtual staining

[42], stain style transfer [43], immunofluorescence marker inference [44], medical diagnosis

[45, 46], and surgical training [47]. Usage for 3D medical images is reported for 3D brain

tumour segmentation [48], and MRI modality generation [49] (which is conducted on the 2D

slices of 3D volumes). In the recent CrossMoDA 2021 challenge, which involved domain adap-

tation of different MR modalities for tumour segmentation, methods based on I2I translation

were the top performers [50]. A recent review [51], however, concludes that there is still a lack

of 3D I2I translation methods and datasets suitable for their training. Even though studies uti-

lising I2I translation in multimodal registration exist, proposing to either directly align the

translated images [52–54] or indirectly incorporate the dissimilarity of modalities as a loss

term in GANs [55, 56], these works are mostly application dependent due to the high variabil-

ity of GANs’ output. The full potential of I2I translation methods, and in particular their appli-

cation in biomedical multimodal image registration, is yet to be explored, as also pointed out

by recent overviews [57, 58].

Unlike registration of medical images, e.g., brain [21, 59], cardiac [60], or whole-body [61],

where methods can rely on the outline of shapes (organs), biomedical images rarely convey

shape outlines, making automatic registration much more difficult. One recent example where

the biological structural content has been used to align microscopy images is presented in [28];

this highly specialised method for registration of Second Harmonic Generation (SHG) and

Brightfield (BF) images relies on a priori knowledge of the sample properties and the seg-

mented image content.

3 Considered methods

We select four state-of-the-art GAN-based I2I translation methods and one representation

learning method designed specifically for the task of multimodal image registration. We

subsequently combine these five methods with two monomodal registration approaches

(one feature-based and one intensity-based). We compare the performance of these combi-

nations with four selected reference registration methods, applicable directly to multimodal

data.

3.1 Reference methods

To provide reference performance, we include three general multimodal image registration

methods, as well as one special-purpose approach in our evaluation.

3.1.1 Maximisation of Mutual Information. The Mutual Information between images A
and B is defined as

IðA;BÞ ¼
X

a2A

X

b2B

pABða; bÞlog
pABða; bÞ

pAðaÞpBðbÞ

� �

ð1Þ

where A and B denote the range of image A and B respectively, pA(a) denotes the marginal

probability of value a occurring in image A, and pAB(a, b) denotes the joint probability of val-

ues a and b co-occurring in overlapping points of A and B. The probability mass functions pA,
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pB, and pAB can be estimated empirically as the normalised frequencies of image intensities

and pairwise image intensities.

Intuitively, MI measures the information that is (pixelwise) shared between the images, and

is high when the images A and B are well aligned. Maximisation of MI is widely used and has

shown good performance in a number of multimodal registration tasks.

3.1.2 Maximisation of Similarity of Normalised Gradient Fields [27]. Registration

based on Normalised Gradient Fields (NGF) relies on the assumption that parts of images are

in correspondence (i.e., similar) if the orientation of changes (gradients) of the intensities at

the corresponding locations in the two images is the same. Furthermore, in multimodal sce-

narios, the sign of the orientation is rarely of interest, since a single part of a specimen may

have e.g. inverted intensities in two modalities. NGF-based registration is performed through

maximisation of the squared dot-product of the normalised gradients of overlapping pixels.

This optimisation problem can be solved by gradient-based optimisation, can be computed

very efficiently, and has shown to perform well on medical images.

3.1.3 MIND [26]. Modality Independent Neighbourhood Descriptors (MIND) are multi-

spectral structural similarity representations based on self-similarity of small patches in a sin-

gle image, computed in local neighbourhoods around the centre of each patch. The main

assumption behind MIND is that the degree of self-similarity is similar across modalities,

implying that the descriptors are similar as well, enabling the usage of optimisation methods

suitable mainly for monomodal scenarios. The number of dimensions of the descriptors is

equal to the number of displacements considered for each local patch; this number is selected

by the user. The sizes of the local patches are determined by the standard deviation of the

Gaussian kernel, σ, used to assign weights to the voxels of each patch.

3.1.4 CurveAlign. CurveAlign is the first automatic registration method designed specifi-

cally to register BF and SHG images of whole tissue micro-array (TMA) cores [28]. The regis-

tration is based on the segmentation of the collagen structures in BF images, which are then

utilised to guide the alignment with the corresponding structures in the SHG images, by maxi-

mising MI between the modalities. We include this method in the evaluation performed on

the considered Histological dataset (Sec. 4.3).

3.1.5 VoxelMorph. VoxelMorph is a recently proposed learning-based framework for

deformable registration [35], which provides fast end-to-end transformation prediction. In

our considered rigid multimodal registration scenario, its output deformation field is replaced

by a transformation matrix and its smoothing term used to penalise local spatial variations is

set to 0. MI is used as the loss function. However, VoxelMorph consistently under-performed

in our rigid registration task (similar is also observed by [62]) and we decided to not include

the related results, for clarity.

3.2 Modality translation methods

We introduce four I2I-translation methods and one representation learning approach, which

are in focus of this study. The methods are selected considering their popularity in the commu-

nity, generalisability to different applications, performance in general, diversity in terms of

supervision, scalability to more modalities, and ease of usage.

3.2.1 pix2pix [13]. pix2pix provides a general-purpose solution for I2I translation utilis-

ing conditional GANs (cGANs) [63], which use aligned image pairs during training. pix2pix

consists of a generator G and a discriminator D which are trained in an adversarial manner:

the generator G is trained to generate fake images that cannot be distinguished from real

ones by D, and D is trained to best separate the fake and the real images. The objective

PLOS ONE Image-to-image translation for multimodal image registration

PLOS ONE | https://doi.org/10.1371/journal.pone.0276196 November 28, 2022 6 / 33

https://doi.org/10.1371/journal.pone.0276196


function is:

G� ¼ argmin
G

max
D

LcGANðG;DÞ þ lLL1ðGÞ ; ð2Þ

where the cGAN loss LcGAN is to be minimised by G and maximised by D during training,

and the pixel-wise regression loss LL1 aims to make the output images closer to the ground

truth. Based on the assumption that the structures in one image should be roughly aligned

between the input and output, the architecture of the generator G is designed in a “U-Net”

style [64].

pix2pix is included in our evaluation not only because of its pioneering role in the field, but

also because it is regarded as a strong baseline framework [65, 66].

3.2.2 CycleGAN [14]. Using cycle-consistency constraint has been shown to be an effec-

tive approach to overcome the need for aligned image pairs during training [67]. Cycle-consis-

tent adversarial network (CycleGAN) is a well-known representative of this approach [68, 69].

Its modified version has demonstrated satisfying performance on the biomedical task of robust

tissue segmentation [70] through stain transformation. Further modifications have also shown

successes in other biomedical applications [46, 47]. The option of unsupervised training of

CycleGANs makes them very attractive in biomedical applications.

The main idea behind CycleGANs is to enforce the image translation to be “cycle-consis-

tent”, i.e., if an image is translated from domain X to Y and then inversely translated from Y
to X , the output should be the same as the original image. To achieve this property, another

generator F : Y ! X is introduced to couple with G such that G and F should be inverse map-

pings of each other. The used loss function combines two kinds of loss terms: the adversarial

loss LGAN to encourage the mapped domain to be close enough to the target [41], and the

cycle-consistency loss Lcyc to enforce the invertibility of the mapping.

3.2.3 DRIT++ [17]. Aiming for more diverse output from a single input, DRIT++ is a

recently proposed GAN of higher complexity, that performs unsupervised I2I translation via

disentangled representations. More specifically, DRIT++ learns to encode the input image into

a domain-invariant content representation and a domain-specific attribute representation in

latent spaces. The domain-invariant content representation captures the information that the

two domains have in common, while the domain-specific attribute representation captures the

typical features in each domain. The output images are then synthesised by combining the dis-

entangled representations, where feature-wise transformation provides an option to enable

larger shape variation.

For an I2I translation task across domains X and Y, the framework of DRIT++ is com-

prised of a content encoder Ec, an attribute encoder Ea, a generator G and a domain discrimi-

nator D for each domain respectively, and a content discriminator Dc. To achieve the intended

disentanglement of information, the weights between the last layer of Ec
X and Ec

Y and the first

layer of GX and GY are shared, following the assumption that the two images share some infor-

mation in a common latent space [71]. The content encoders fEc
X ;E

c
Yg are trained to make the

encoded contents of the two domains indistinguishable from each other by the adversarial

content discriminator Dc. DRIT++ also uses cross-cycle consistency loss, domain adversarial

loss, self-reconstruction loss, and latent regression loss to encourage better quality of the gen-

erated images.

DRIT++ is included in this study because of its explicit extraction of shared information

from the domains into a common latent space; notwithstanding its different purpose for out-

put diversity, it is highly in accord with what is required for image registration and may there-

fore conceptually be likely to lead to good performance.
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3.2.4 StarGANv2 [15]. StarGANv2 is recently proposed to not only generate diverse out-

put images, but also address the scalability to multiple domains. StarGANv2 comprises four

modules: a style encoder Ey to extract the style code s = Ey(xref) from a reference image xref, or

alternatively, a mapping network Fy to generate a style code s = Fy(z) from an arbitrarily sam-

pled vector z in the latent space; a generator G to translate an input image x and a domain-

specific style s into an output image G(x, s); and a multi-task discriminator D with multiple

output branches Dy to classify whether an output image is real or fake for each domain y. In

addition to the diversity loss Lds that enforces G to discover meaningful style features from the

image space, it also uses cycle-consistency loss Lcyc to preserve the content of the input image,

style reconstruction loss Lsty and adversarial loss Ladv to ensure the output quality.

StarGANv2 is of specific interest due to the reported remarkably good visual quality of the

generated images compared to the baseline models [17, 72], as well as the framework’s increas-

ing popularity in the community. Its ability to inject domain-specific style into a given input

image could potentially simplify the registration problem when more than two modalities are

considered.

3.2.5 CoMIR [29]. CoMIR is a recently proposed representation learning method that

produces (approximately) rotation equivariant image representations (typically of the same

size as the input images), using an objective function based on noise-contrastive estimation

(InfoNCE) [73].

For an arbitrary pair of images (x1, x2) in the dataset D, the InfoNCE loss is given by

Lopt
ðDÞ ¼ � Eðx1 ;x2Þ�D log

pðx1 ;x2Þ

pðx1Þpðx2Þ

pðx1 ;x2Þ

pðx1Þpðx2Þ
þ
P

xi2Dnfxg
pðx1

i ;x
2
i Þ

pðx1
i Þpðx

2
i Þ

2

4

3

5: ð3Þ

The unknown ratio
pðx1 ;x2Þ

pðx1Þpðx2Þ
is approximated with the exponential ehðy1

i ;y
2
i Þ=t, where y1 ¼ fθ1

ðx1Þ

and y2 ¼ fθ2
ðx2Þ are the resp. modality translated images, and where h(y1, y2) is a positive,

symmetric ‘critic’ with a global maximum for y1 = y2 (e.g., negative mean squared difference

(MSD), or cosine similarity) and τ is a scaling parameter. To equip the model with rotational

equivariance, a loss term that implicitly enforces equivariance on C4 (the finite, cyclic, symme-

try group of multiples of 90˚ rotations) is used:

hðT � 1
1
ðfθ1
ðT1ðx1

i ÞÞÞ;T
� 1
2
ðfθ2
ðT2ðx2

i ÞÞÞÞ ; ð4Þ

where T1;T2 2 C4 are randomly sampled during training.

Given a batch of image pairs, the images of each modality are transformed using DCNNs

(fθ1
and fθ2

, one model per modality without weight-sharing) to a learned embedding space.

The objective function serves to train the models to generate similar mappings for the paired

images, while generating dissimilar mappings compared to all the other images in the batch.

CoMIR requires pairs of aligned images for its training procedure, similarly to pix2pix. One

advantage of the approach taken by CoMIR is that the requirement is not to learn to reproduce

the appearance of either modality, but rather to learn a representation of the content (signal)

present in both modalities, mapping corresponding image pairs into images with similar struc-

ture and appearance.

Combined with a monomodal registration framework which is applied to the learned repre-

sentations, CoMIR has shown to exhibit good performance in the registration of (2D) multi-

modal images [29]. It is included in this study as a reference method based on a modality

translation approach alternative to I2I, and its application is extended to 3D (medical) data.
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3.3 Monomodal registration

We select two monomodal registration methods which have exhibited excellent performance

in a range of applications: (i) SIFT—a feature-based approach which has for a long time domi-

nated the field, demonstrating versatility and robustness in a large number of studies, and (ii)

a recent method based on minimisation of a distance between images (α-AMD), which has

shown to constitute a top choice for medical and biomedical data. The selection of these gener-

ally applicable and well performing monomodal registration methods, to be combined with

the modality translation approaches, enables to put focus particularly on the performance of

the I2I translation methods in registration.

3.3.1 SIFT-based registration. Scale-invariant feature transform (SIFT) [36], is a 2D fea-

ture detector and descriptor which is invariant to image scaling, translation, rotation, and par-

tially invariant to illumination changes and affine or 3D projection. It has found wide usage in

a range of image matching and object recognition applications. Due to its popularity and gen-

erally good performance, SIFT is included in this study and evaluated on the 2D registration

task (in combination with a suitable feature point matching and transformation estimation)

on the original and generated images and their representations. The primary interest is in its

performance in the (generated) monomodal scenarios.

3.3.2 Registration based on α-AMD. A monomodal image registration method based on

iterative gradient descent optimisation of α-AMD has shown very good and robust perfor-

mance [32, 74]. α-AMD is a symmetric distance measure between images, which combines

intensity and spatial information. Its properties enable to achieve a larger convergence region

around the global optimum, compared to commonly used similarity measures that are based

on statistics or intensity differences of overlapping points. Registration based on minimisation

of α-AMD has been successfully applied in a variety of monomodal scenarios [29, 32, 75],

which motivates our decision to include it in this study for the registration of the generated

monomodal image pairs.

4 Data

We use three publicly available 2D datasets and one 3D dataset in this study, to illustrate differ-

ent applications (remote sensing, cytological, histological, and radiological imaging), combin-

ing different imaging modalities (Near-Infrared and RGB, Quantitative Phase Imaging and

Fluorescence Microscopy, Second Harmonic Generation Microscopy and Bright Field Micros-

copy, and finally T1- and T2-weighted Magnetic Resonance Imaging) and introducing differ-

ent levels of difficulty of image registration.

4.1 Zurich data

The Zurich dataset comprises 20 QuickBird-acquired images (with side lengths ranging from

622 to 1830 px) of the city of Zurich [76, 77]. Each image is composed of 4 channels, Near-

Infrared (NIR), and three colour channels (R,G,B). Each channel is globally re-scaled to the

range [0, 255]. The NIR channel is extracted as Modality A (Fig 2A), and the R-G-B channels

are extracted jointly as Modality B (Fig 2B).

4.2 Cytological data

The Cytological dataset is composed of correlative time-lapse Quantitative Phase Images

(QPI) and Fluorescence Images of prostatic cell lines acquired by the multimodal holographic

microscope Q-PHASE (TESCAN, Brno, Czech Republic) [78, 79]. Three cell lines (DU-145,

PNT1A, LNCaP) are exposed to cell death-inducing compounds (staurosporine, doxorubicin,
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Fig 2. Examples of pairs of original (2D) images acquired by different modalities considered in this study

(contrast enhanced for visualisation). Zurich (remote sensing) dataset: (A) modality A: NIR, (B) modality B: RGB.

Cytological data: (C) modality A: Fluorescence microscopy, (D) modality B: QPI. Histological data: (E) modality A:

SHG, (F) modality B: BF.

https://doi.org/10.1371/journal.pone.0276196.g002
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and black phosphorus) and captured at 7 different fields of view. The data consist of time-lapse

stacks of several hundred 600 × 600 px frames. Pixel values represent cell dry mass density in

pg/μ2 in QPI images, and the amount of caspase-3/7 product accumulation in the fluorescence

images (visualised using FITC 488 nm filter) [80]. For each time-lapse stack, the intensity val-

ues are globally re-scaled to the range [0, 255]. We visually inspected the image frames and

confirmed that the signals of most cells are visible in the last 60 frames in each stack. We

sparsely and evenly sample these frames such that the selected images are different enough

from each other. Frames with indices 0, 15, 30, 45, 60 backwards from the last are extracted.

We use the fluorescence images indicating the caspase-3/7 level as Modality A (Fig 2C) and

corresponding QPI images as Modality B (Fig 2D).

4.3 Histological data

The Histological dataset comprises 206 aligned Second Harmonic Generation (SHG) and

Bright-Field (BF) tissue micro-array (TMA) image pairs of size 2048 × 2048 px [81]. The tissue

sections are from patients with breast cancer, pancreatic cancer, and kidney cancer. BF images

are acquired using an Aperio CS2 Digital Pathology Scanner (Leica Biosystems, Wetzlar, Ger-

many) at 40× magnification. SHG images are acquired using a custom-built integrated SHG/

BF imaging system described in [28]. Each SHG-BF image pair is registered by aligning manu-

ally marked landmark pairs. SHG and BF images are referred to as Modality A (Fig 2E) and B

(Fig 2F) of the Histological dataset, respectively.

4.4 Radiological data

The Radiological dataset contains 3D magnetic resonance (MR) images of healthy brains, and

is derived from the publicly available Retrospective Image Registration Evaluation (RIRE)-

dataset [82]. The RIRE dataset includes CT, MR, and PET images of 18 patients in total [83].

We have focused on the provided pairs of T1- and T2-weighted MR images, due to non-avail-

able ground truth alignments of other combinations of modalities. After inspecting the align-

ments, we discarded 6 poorly aligned pairs. Therefore, here considered Radiological dataset

includes 12 T1- and T2-weighted volume pairs, acquired using a Siemens SP 1.5 Tesla scanner.

The volumes consist of 20–52 slices of 256 × 256 px in x- and y-directions. Voxel sizes are

0.78–1.25 mm in x and y, and 3–4 mm in z-directions. Further details about image acquisition

and subsequent processing, performed to prepare the data for evaluation of registration, can

be found in [82]. In our study, the intensity values are re-scaled within each volume to the

range [0, 255]. The T1 modality is referred to as Modality A (Fig 3A), and the T2 modality is

referred to as Modality B (Fig 3B).

4.5 Ground truth alignment of the image pairs

Alignment of multimodal image pairs is, in general, a very difficult task, for a human, as

well as for an automated system, which makes it challenging to create ground truth data

required for benchmarking, as well as for training the registration algorithms. Hybrid imag-

ing—simultaneous acquisition of images of a sample (or a scene) by more than one modal-

ity—may provide such aligned pairs directly. Hybrid imaging is, however, available only to

a limited extent. The Zurich, Cytological, and Radiological datasets are acquired by hybrid

imaging, while aligned pairs of the Histological images are, as mentioned, generated semi-

automatically.
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5 Experiments

5.1 Implementation of learning-based modality transfer methods

Aiming for a fair comparison, we use the same data augmentation for all the learning-based

methods. For each 2D dataset, 5120 square non-rotated patches of size 362 × 362 px are ran-

domly cropped from the training set. All models are trained with on-the-fly augmentation on

top of the sampled patches. The augmentation includes, in a sequence: random horizontal flip

(p = 0.5); random rotation (p = 1, θ 2 [−180, 180˚)) using either (p = 0.33) nearest neighbour,

linear, or cubic interpolation; random Gaussian blur (p = 0.5) with a standard deviation σ 2 [0,

2.0]; and centre-crop (p = 1) to size 256 × 256 px (thus, no padding required).

Apart from the shared augmentation, we make as few changes as possible compared to the

default settings of the respective official released codes. After limited exploration of the param-

eter values close to the default ones, we have applied the following minor changes to the origi-

nal implementations: (i) mini-batch sizes are (for reasons of processing speed) maximised

under the limitation of 12 GB GPU memory, i.e., 8 for CoMIR, 64 for pix2pix and DRIT++, 4

for CycleGAN and StarGANv2; (ii) DRIT++ is set to use feature-wise transformation in the

I2I translation of the Cytological, Histological and Radiological data, to enable the needed

shape variation; this is not used on the Zurich dataset, where the shapes present in the images

vary comparably little. (iii) For CoMIR, MSD is selected as the critic function. Its default scal-

ing parameter τ = 0.5 is used for all 2D datasets, while τ = 0.1 is used for the 3D Radiological

data.

Trainings are terminated after a certain number of iterations following the default settings

of the models’ official implementations, i.e., 200 epochs for pix2pix and CycleGAN, 1200

epochs for DRIT++, 100000 iterations for StarGANv2, 12800 iterations for CoMIR. All models

are converged when training terminated.

During inference, to fit the network architectures of pix2pix, CycleGAN and StarGANv2,

input image sizes are padded to minimum multiples of 256 pixels using “reflect” mode to

reduce artefacts, e.g., the input image size 834 × 834 px of Histological data is padded to

1024 × 1024 px. The padded areas of the images resulting from I2I translation are cropped off

before further processing. For DRIT++, to better fit the image registration context, a modified

Fig 3. Example of pair of (slices of) original 3D radiological images from the RIRE dataset acquired by different

modalities considered in this study. (A) Modality A: T1 MR image, (B) modality B: T2 MR image.

https://doi.org/10.1371/journal.pone.0276196.g003
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version of the guided translation is used; instead of using the disentangled attribute representa-

tion of a random image from the other modality, the generator uses the disentangled attribute

representation of the image that the current image is to be registered with. Similarly for Star-

GANv2, the style code of the reference image guiding the translation is taken from the corre-

sponding image in the target modality. Due to the restriction imposed by StarGANv2’s

architecture that the reference image can only be of size 256 × 256 px, only the central areas of

reference images are used to extract style code, to avoid resolution mismatch with training.

For the 3D Radiological data, all the modality transfer methods are trained with, and infer-

ence is performed on, axial slices along the z-axis. Each volume slice is resampled (B-spline

interpolation) to physical space with 1 mm2 square pixels (since the original volumes have dif-

ferent resolution). For training, each resampled slice is padded to size 362 × 362 px with the

edge values. All models are trained with the same on-the-fly augmentation setting as for the

2D datasets, except for CoMIR where the final centre-crop (p = 1) was reduced to size

128 × 128 px so that the internal structures of the brains are better weighted against the skull

outlines during training. After inference, the modality-transferred slices of the same volume

are stacked back together to form a modality-transferred volume.

5.2 Implementation of image registration methods

Four of the six used registration methods—those based on MI, NGF, SIFT and α-AMD—

expect greyscale data. RGB images (Modality B of Zurich and the Histological dataset) are

therefore converted to greyscale, using L = 0.299R + 0.587G + 0.114, before registration. The

Euler angle rotation model (angles represented as radians) is used for all the registration meth-

ods. The parameters of each method are selected based on the values suggested in the original

publications, suitably adjusted to account for differences in image sizes, general contrast levels,

as well as level of detail of the image contents, relying on previous experience with the involved

methods. For MI, NGF, MIND, and α-AMD we employ a multi-start approach for the 2D reg-

istrations; three rotations, 0 and ±0.4 radians, are used as starting points, and the transforma-

tion reaching the lowest final distance is selected as the final registration output. For the 3D

registrations, single-start is used throughout.

5.2.1 Iterative registration by Mutual Information maximisation. MI-based registration

is performed using SimpleElastix—an industry-standard image registration library [84]. Adap-

tive stochastic gradient descent (ASGD) [85] is used as the optimiser and the maximum num-

ber of iterations is set to 1024. To avoid local minima, a multi-resolution strategy with a 4-level

Gaussian scale space is used for Zurich, Cytological and Radiology data, while 6 levels are used

for Histological data, considering the larger image size. In all experiments 32 histogram bins

and bilinear/trilinear interpolation are used.

5.2.2 Iterative registration by maximisation of similarity of Normalised Gradient

Fields. For optimisation of similarity of NGF we use the Autograd Image Registration Labo-

ratory (AIRLab) framework [86], which supports a large number of objective functions

(including similarity of NGF) and optimisation methods, multi-channel images, and multi-

start optimisation. We use the ADAM optimizer, 4 pyramid levels with downsampling (8, 4, 2,

1) and smoothing with σ = (15, 9, 5, 1), the iteration count was selected to be (2000, 1000, 500,

200). The step-size was chosen to be 0.01. Bilinear/trilinear interpolation is used.

5.2.3 Iterative registration by MIND. We evaluate optimisation of MIND both using

MSD objective function (as is commonly done), and, in a novel combination of techniques,

using the α-AMD measure, where each channel is treated independently and the results are

aggregated by summation. The standard deviation of the weighting Gaussian kernel is set to

σ = 0.5. Local 4 neighborhoods are selected for 2D data, and local 6 neighborhoods are selected
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for 3D data. For the MSD optimisation, the AIRLab framework is used with the same settings

as for NGF concerning the number of pyramid levels, smoothing, iteration counts and starts.

Bilinear/trilinear interpolation is used.

5.2.4 CurveAlign. The used implementation of CurveAlign follows the default settings in

its V4.0 Beta version, except for restricting its default affine transformation to rigid.

5.2.5 SIFT feature detection and matching. SIFT feature detector is implemented using

OpenCV [87]. The maximal number of retained feature points is limited to 500. Brute-force

matching with cross-check is used to produce the best matches with the minimal number of

outliers when there are enough matches. Other parameters remain at default settings. The

rigid transformation between the two sets of matched coordinates is estimated using RANdom

SAmple Consensus (RANSAC) algorithm [88] via the implementation in scikit-image [89]. A

data point is considered an inlier if its residuals calculated for the estimated model is smaller

than 2 px. For each image pair, the random sample selection procedure is iterated 100 times,

and the final model is estimated using all inliers of the best model resulting from the per-

formed iterations.

5.2.6 α-AMD. α-AMD is implemented based on the Py-Alpha-AMD Registration Frame-
work (https://github.com/MIDA-group/py_alpha_amd_release). The following modifications

are made compared to the settings in the example script: (i) Three resolution levels are used in

a pyramid (coarse-to-fine) registration strategy for the 2D datasets, and four resolution levels

for the 3D Radiological dataset, with sub-sampling factors set to (4, 2, 1), (for 2D data) and (8,

4, 2, 1) (for 3D data); Gaussian blur σ is set to (12.0, 5.0, 1.0) for the 2D datasets and (5.0, 1.0,

1.0, 0.0) for the 3D Radiological data. The numbers of iterations per level are set to (900, 300,

60) for Zurich and Cytological data, to (3000, 1000, 200) for the larger Histological data, and

(3000, 3000, 1000, 20) for the 3D Radiological data; (ii) Stochastic gradient descent (SGD) with

momentum α = 0.9 and a sampling fraction 0.01 is used. Step sizes for the first two resolution

levels are set to 2 for the 2D datasets, while decreasing linearly from 2 to 0.2 for the last resolu-

tion level, and set to 1 for the first three resolution levels for the 3D dataset, while decreasing

linearly from 1 to 0.1 for the last resolution level.

5.3 Evaluation

Our main objective is to evaluate the success of registration of multimodal images, utilising

images translated from one modality to another as an intermediate result (to which monomo-

dal registration is applied). We find it relevant to also evaluate the performance of the I2I

translation methods on the observed datasets, and explore the effect of the quality of modality

translation on the success of subsequent registration.

5.3.1 Evaluation sets. The Zurich dataset is divided into three sub-groups, enabling

3-folded cross-validation. The three groups are formed of the images with IDs: {7, 9, 20, 3, 15,

18}, {10, 1, 13, 4, 11, 6, 16}, {14, 8, 17, 5, 19, 12, 2}. Since the images vary in size, each image is

subdivided into the maximal number of equal-sized non-overlapping regions such that each

region can contain exactly one 300 × 300 px image patch. Then one 300 × 300 px image patch

is extracted from the centre of each region. The particular 3-folded grouping followed by split-

ting leads to that each evaluation fold contains 72 test samples.

The Cytological data contain images from three different cell lines; we use all images from

one cell line as one fold in 3-folded cross-validation. Each image in the dataset is subdivided

from 600 × 600 px into 2 × 2 patches of size 300 × 300 px, so that there are 420 test samples in

each evaluation fold.

For the Histological data, to avoid too easy registration relying on the circular border of the

TMA cores, the evaluation images are created by cutting 834 × 834 px patches from the centres
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of the original 134 TMA image pairs. This dataset has a defined split into training and test sets

which we adhere to in our evaluation.

The evaluation set created from each of the three observed 2D image datasets consists of

images undergone uniformly-distributed rigid transformations of increasing sizes of displace-

ment. Each image patch is randomly rotated by an angle θ 2 [−20, 20] degrees (with bi-linear

interpolation), followed by translations in x and y directions by tx and ty pixels respectively,

where tx and ty are randomly sampled within [−28, 28] for Zurich and Cytological data, and

within [−80, 80] for the Histological data. To minimise border artefacts, the transformed

patches are, for Zurich and Cytological data, padded using “reflect” mode, or, for Histological

data, cropped at the appropriate position directly from the original larger images.

The 3D Radiological dataset is divided into three sub-groups, enabling 3-folded cross-vali-

dation. The groups are formed of the patients with IDs: {109, 106, 003, 006}, {108, 105, 007,

001}, {107, 102, 005, 009}. Since the Radiological dataset is non-isotropic (and also of varying

resolution), we resample it using B-spline interpolation to 1 mm3 cubic voxels before perform-

ing registration, taking explicit care to not resample twice; displaced volumes are transformed

and resampled in one step. Reference sub-volumes of size 210 × 210 × 70 voxels are cropped

directly from centres of the (non-displaced) resampled volumes. Similarly as for the aforemen-

tioned 2D datasets, random (uniformly-distributed) transformations are composed of rota-

tions θx, θy 2 [−4, 4] degrees around the x- and y-axes, rotation θz 2 [−20, 20] degrees around

the z-axis, translations tx, ty 2 [−19.6, 19.6] voxels in x and y directions and translation tz 2
[−6.5, 6.5] voxels in z direction. 40 rigid transformations of increasing sizes of displacement

are applied to each volume. Transformed sub-volumes, of size 210 × 210 × 70 voxels, are

cropped from centres of the transformed and resampled volumes.

5.3.2 Metrics. Modality translation. Fréchet Inception Distance (FID) [90], a measure of

similarity between two sets of images, has been widely used as an objective metric to assess the

quality of GAN-generated images and has shown a high correlation with the subjective human

judgement [15, 17, 58]. Lower FID (being a distance measure) indicates higher similarity of

the images, corresponding to higher quality of the image translation. We use a PyTorch imple-

mentation of FID [91] to evaluate the quality of images generated by the considered modality

translation methods.

Registration. We evaluate the performance of the considered registration approaches in

terms of their success in recovering rigid transformations of varying size (amount of displace-

ment) applied to one of the images in each of the aligned pairs. To quantify the success of reg-

istration, we define the spatial distance D(I1, I2) between two image patches I1 and I2 as

DðI1; I2Þ ¼
1

n

Xn

i¼1

kC2

i � C1

i k2 ; ð5Þ

where C1
i and C2

i respectively denote positions of the n corner points of I1 and I2 (n = 4 for 2D

datasets and n = 8 for the 3D dataset), when mapped into a common coordinate system.

The initial displacement dInit of a synthetic rigid transformation is the distance between a

reference patch IRef and its corresponding initially transformed patch IInit: dInit = D(IRef, IInit).

The absolute registration error � is the (residual) distance between the reference patch IRef and

the transformed patch after registration IReg: � = D(IRef, IReg). The relative registration error δ is

calculated as the percentage of absolute error to the width and height of the image patches: δ =

(�/w) × 100%, with w = 300 px for Zurich and Cytological data, w = 834 px for Histological

data, and w ¼ 1

3
ð210þ 210þ 70Þ voxel for Radiological data. To summarise the competence

of the registration of a sample, it is considered successful when the relative registration error δ
< 2%. The success rate λ is calculated as the ratio of succeed cases to total cases.
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5.4 A framework for evaluation of multimodal registration methods

We share our complete experimental setup, including method implementations, evaluation

code, and all datasets in order to facilitate further reproducing and benchmarking (https://

github.com/MIDA-group/MultiRegEval).

Our created Datasets for Evaluation of Multimodal Image Registration is released on Zenodo

with open access [92]. In total, it contains 864 image pairs created from the Zurich dataset,

5040 image pairs created from the Cytological dataset, 536 image pairs created from the Histo-

logical dataset, and metadata with scripts to create the 480 volume pairs from the Radiological

dataset. Each image/volume pair consists of a reference patch IRef and its corresponding ini-

tially transformed patch IInit, in two modalities, along with the ground truth transformation

parameters to recover the transformation. Scripts to compute the registration performance, to

plot the overall results, and to generate more evaluation data with different setting are also

included.

The framework can easily be extended by including additional methods, and can support

further development and evaluation of approaches for registration of 2D and 3D medical and

biomedical images. The provided datasets are large enough to enable training of deep learning

based approaches, both those which require aligned image pairs and those which do not. Con-

sidering the observed lack of suitable benchmarks particularly designed for biomedical and

medical applications and, at the same time, the increasing number of newly proposed registra-

tion methods, an option to perform comparative analysis under standardised conditions is

highly beneficial and is expected to contribute to promotion of generally applicable and robust

solutions.

6 Results

6.1 Performance of the modality translation methods

To summarise the modality translation performance, we present in Table 1, the computed FID

values measured on the four datasets, for modality translations performed by each of the four

I2I translation methods, in two directions (A to B, and B to A). The values in a row meth-
od_A indicate the distance between the distribution of images in the method-generated

Modality A, and of those in the real Modality A.

We observe that the FID values reflect: (i) different levels of asymmetry of the I2I transla-

tion methods in treating translations in one, or the other directions (e.g., cyc, compared to

p2p on Zurich dataset); (ii) rather varying stability of the results for the different methods,

and the different datasets, as indicated by the large spread of standard deviations.

FID is also computed for CoMIR, indicating the difference between the distributions of the

representations generated from Modality A and B. Although not directly comparable with the

other values (computed on a rather different type of representation), these FID values, increas-

ing from Zurich to the Histological dataset, are still informative in reflecting an increase in

dataset difficulty.

The FID values in the row B2A indicate the difference between the original acquired multi-

modal images, for each of the four datasets. They can be seen as a reference value of the dissim-

ilarity (FID) of the original images that, ultimately, are to be registered. We note that in some

cases FID becomes higher after modality translation, compared to the initial B2A value.

Finally, the FID values computed within each of the modalities (between training and test

splits), A2A and B2B, indicate the general scale of FID values for the respective modality. In

most cases FID values for modalities A and B are rather similar (indicating that observed
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asymmetries are due to the I2I translations) except for the Cytological dataset, where FID val-

ues for modality A are considerably lower than for modality B.

To complement these quantitative results, we show in Figs 4–7 a few examples of modality-

translated images, by the evaluated methods, for each of the observed datasets. The examples

illustrate some of the above-commented behaviours of the different methods.

Fig 4 shows examples from the Zurich dataset, with a clear correlation between the

observed modalities. All the observed I2I translation methods reach reasonable to very good

results. pix2pix generates the most realistic images, in both directions; it not only preserves the

structural information but also maps the local intensities as desired. This is also reflected in the

low FID values in Table 1. Other examples point out some issues: CycleGAN is successful in

translating Modality A to B, but not the other way around. DRIT++ preserves structures, but

is less successful regarding intensity mapping, whereas StarGANv2 fails to preserve geometry

(straight lines) and generates a number of (colourful) noise pixels.

As can be seen in Figs 5–7, all the I2I translation methods exhibit more or less degraded

performance when applied to the biomedical and medical datasets. Results on the Cytological

dataset (Fig 5) indicate that the performance depends a lot on the “direction” (as indicated by

FID as well); while all the methods give reasonably good output when translating from Modal-

ity B to A, the quality when translating Modality A to B tends to be much lower. This is partic-

ularly visible for pix2pix.

The Histological dataset (Fig 6), with distinctly different imaging modalities, elevates fur-

ther issues and differences in the performance of the observed methods. Translated images

exhibit non-realistic intensities and structures as well as “invented” details, particularly in

translations from Modality A to B, where pix2pix completely fails. However, when instead

translating from Modality B to A, pix2pix surprisingly captures the most structures, which is

matched with the lowest FID value among the I2I translation methods on the Histological

data.

On the 3D Radiological dataset (Fig 7), CycleGAN and StarGANv2 generate the most visu-

ally realistic output slices. This is also in accord with their low FID values in Table 1. pix2pix,

Table 1. Success of modality translation methods expressed in terms of Fréchet Inception Distance (FID). Smaller is better. Standard deviations are taken over the 3

folds for Zurich, Cytological and Radiological data. cyc, drit, p2p, star, comir denote the methods CycleGAN, DRIT++, pix2pix, StarGANv2, and CoMIR, respec-

tively. Suffix _A (resp. _B) denotes generated Modality A (resp. B). The best result achieved by an I2I translation method on each of the datasets is bolded. FID values

between the initial considered multimodal image datasets (B2A), as well as between the training and testing splits within each modality (A2A and B2B) for each dataset,

are included as references. FID values between the generated CoMIR representations are not directly comparable to those of the I2I translations, since the method gener-

ates a different (artificial) modality. Comparison with the values for the original multimodal data (B2A) confirms considerable reduction of FID.

Method

Dataset Zurich Data Cytological Data Histological Data Radiological Data

cyc_A 232.4±69.7 35.1±11.9 433.4 110.5±4.6

cyc_B 91.5±27.0 65.4±16.9 156.1 105.0±7.5

drit_A 182.9±3.3 63.1±17.4 125.3 244.8±16.0

drit_B 144.1±9.1 192.3±50.4 123.7 233.9±23.5

p2p_A 93.7±4.6 61.8±18.5 116.8 251.3±10.6

p2p_B 94.4±3.3 169.3±6.9 153.0 206.3±6.1

star_A 165.5±10.6 99.1±53.5 174.2 108.8±5.7

star_B 135.6±21.5 140.6±24.4 142.7 110.7±3.9

comir 17.7±8.0 61.5±11.1 91.0 89.9±20.7

B2A 155.3±15.4 145.0±17.6 341.0 134.4±8.7

A2A 113.7±0.9 48.8±27.1 99.1 76.9±2.2

B2B 104.3±3.7 82.8±20.4 102.6 86.4±4.0

https://doi.org/10.1371/journal.pone.0276196.t001
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Fig 4. Modality-translated image samples of the Zurich dataset by different evaluated methods (contrast-enhanced for visualisation).

Each row shows the results on one random image from each fold. Images in Columns 2–6 are generated from the images in (the

corresponding row of) Column 1. Top block: Translations generated from Modality B. Bottom block: Translations generated from

Modality A. The arrows indicate what to compare for visual inspection of the level of achieved similarity (pointing from generated images

to the corresponding target of the learning process).

https://doi.org/10.1371/journal.pone.0276196.g004
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Fig 5. Modality-translated image samples of the Cytological dataset by different evaluated methods (contrast-enhanced for

visualisation). Each row shows the results on one random image from each fold. Images in Columns 2–6 are generated from the images in

(the corresponding row of) Column 1. Top block: Translations generated from Modality B. Bottom block: Translations generated from

Modality A. The arrows indicate what to compare for visual inspection of the level of achieved similarity (pointing from generated images

to the corresponding target of the learning process).

https://doi.org/10.1371/journal.pone.0276196.g005
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Fig 6. Modality-translated image samples of the Histological dataset by different evaluated methods (contrast-enhanced for

visualisation). Each row shows the results on one random image from each fold. Images in Columns 2–6 are generated from the images in

(the corresponding row of) Column 1. Top block: Translations generated from Modality B. Bottom block: Translations generated from

Modality A. The arrows indicate what to compare for visual inspection of the level of achieved similarity (pointing from generated images

to the corresponding target of the learning process).

https://doi.org/10.1371/journal.pone.0276196.g006
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Fig 7. Modality-translated image samples of the Radiological dataset by different evaluated methods. Each row shows the results on

one random slice from each fold. Images in Columns 2–6 are generated from the images in the corresponding row of Column 1. Top

block: Translations generated from Modality B. Bottom block: Translations generated from Modality A. The arrows indicate what to

compare for visual inspection of the level of achieved similarity (pointing from generated images to the corresponding target of the

learning process).

https://doi.org/10.1371/journal.pone.0276196.g007
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although exhibiting unnatural artefacts and distortions, best captures the relative intensity of

the eyeballs. CoMIR generates representations with a good balance of the extracted dominant

structures (corresponding to the skull) and textural details (corresponding to soft tissue), while

(similar to pix2pix) occasionally expressing artefacts in the surrounding background area.

We conclude that the visual assessment of the generated images most often supports the

quantitative evaluation by FID, and clearly shows that none of the observed I2I translation

methods exhibits stable performance, nor consistently outperforms the others. Even though

we can not exclude the possibility that individually exploring the hyperparameter space and

designing data augmentation schemes for each I2I translation method could lead to its slightly

improved performance, we believe that such changes would not affect our main conclusion.

Performance of CoMIR, the non-I2I (but rather representation learning) modality transla-

tion method, is visually evaluated by assessing the similarity of the corresponding learned

representations. We observe relatively high similarity for all four datasets, while slightly

decreasing with increasing modality differentiation exhibited from Zurich to Histological data-

set, as also observed in the FID values. Interestingly, despite relatively low intermodal diversity

of the Radiological dataset (expressed by low B2A FID in Table 1), the different modality trans-

lation methods perform comparably poorly in the task of reducing it further; also here the best

result is reached by CoMIR.

6.2 Registration performance

Plots showing registration success rate λ for increasing initial displacement dInit for the differ-

ent evaluated combinations of methods are presented in Figs 8 and 9. The reference methods

(MI, NGF, MIND, and CurveAlign) are included in both left and right columns of Fig 8 to

facilitate easier comparison. We evaluated MIND both in combination with MSD and with α-

AMD minimisation and concluded that the novel combination of MIND and α-AMD consis-

tently performs better than the standard combination of MIND and MSD. For sake of visual

clarity we therefore omit the latter from the graph. As already commented, we also exclude

results obtained by VoxelMorph [35] due to its demonstrated consistently poor performance,

which we attribute to the constraint of rigid registration (as also observed by [62]). In Table 2,

we summarise the aggregated performance, over all the considered displacements. Here, we

include the results obtained by MIND optimised both by MSD and α-AMD.

A number of observations can be made from these results. Reference performance is estab-

lished by iterative MI maximisation (black dashed line MI). We observe that, for smaller initial

displacements, MI maximisation delivers outstanding performance on all four datasets. How-

ever, it is also apparent that the performance of MI (optimised by adaptive stochastic gradient

descent) decreases fast as the initial displacement increases on the structure-rich Zurich and

Histological datasets. This is not surprising, since MI is known to have a small region of attrac-

tion. On the other hand, its performance on the other two datasets is less impaired by the

increasing initial displacement.

The yellow-green dotted curve B2A indicates the performance of monomodal registration

approaches (SIFT and α-AMD, in the respective subplots), applied directly to multimodal

images. As expected, these methods underperform MI maximisation in all cases except for

SIFT with relatively large transformations on the Zurich dataset.

MIND combined with α-AMD minimisation shows better performance than MI on the

structure-rich Zurich data, while falling behind on the other datasets. NGF performs compara-

bly to MIND (combined with α-AMD) on the Cytological data, while less favourably on the

other datasets. MI consistently outperforms NGF.
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Fig 8. Success rate of the observed registration approaches. (A) SIFT on Zurich data, (B) α-AMD on Zurich data, (C) SIFT on Cytological data, (D)

α-AMD on Cytological data, (E) SIFT on Histological data, (F) α-AMD on Histological data. x-axis: initial displacement dInit between moving and fixed

images, discretised into 10 equally sized bins (marked by vertical dotted lines). y-axis: success rate λ within each bin (averaged over 3 folds for Zurich

and Cytological data). In the legend, cyc, drit, p2p, star and comir denote CycleGAN, DRIT++, pix2pix, StarGANv2, and CoMIR methods

respectively. Suffix _A (resp. _B) denotes that generated Modality A (resp. B) is used for the (monomodal) registration. B2A denotes registration of the
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The main focus of this study is to analyse the positioning of the remaining curves (with

markers) presented in Figs 8 and 9, in comparison with the reference methods. First, we

observe that, for each of the four datasets, there are a number of solid-line curves above the yel-

low-green dotted curve B2A, for all observed displacements. This demonstrates that some I2I

translation methods indeed can help to approach a “monomodal case”, and make the registra-

tion task easier when using the observed (monomodal) registration methods, SIFT and α-

AMD.

We also note that, similar as for the modality translation, the performances of the different

registration methods show significant data-dependency. On the structure-rich Zurich data,

SIFT performs rather well on modality translated images (and even on the original multimodal

pairs). One exception is the StarGANv2 generated Zurich data, star_A and star_B in Fig

8A, where SIFT is completely failing. On the biomedical data, where features are less salient, α-

AMD, being an intensity-based method, tends to come out ahead. Fig 8E particularly indicates

very poor performance of SIFT-based registration on the Histological data.

In general, the I2I translation methods followed by either SIFT (on 2D data) or α-AMD (on

2D and 3D data) registration appear as far less sensitive to the initial displacement, compared

to MI; in particular, several of them outperform MI on Zurich dataset for larger displacements.

What stands out in both Table 2 and in Figs 8 and 9, is the CoMIR (representation learn-

ing-based) modality translation method, which consistently outperforms the I2I translation

original multimodal images, without using any modality translation. MI, MIND, NGF and CA represent using MI maximisation, MIND, NGF and

CurveAlign for registration, respectively.

https://doi.org/10.1371/journal.pone.0276196.g008

Fig 9. Success rate of the observed 3D registration approaches on Radiological data. x-axis: initial displacement dInit between moving and fixed images, discretised

into 10 equally sized bins (marked by vertical dotted lines). y-axis: success rate λ within each bin (averaged over 3 folds). In the legend, cyc, drit, p2p, star and

comir denote CycleGAN, DRIT++, pix2pix, StarGANv2, and CoMIR methods respectively. Suffix _A (resp. _B) denotes that generated Modality A (resp. B) is used

for the (monomodal) registration. B2A denotes registration of the original multimodal images, without using any modality translation. MI, MIND and NGF represent

using MI maximisation, MIND and maximisation of the similarity of NGF for registration, respectively.

https://doi.org/10.1371/journal.pone.0276196.g009
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approaches. In combination with SIFT, only CoMIR manages on the Histological data (Fig

8E), while at the same time clearly outperforming the baseline for medium and large displace-

ments. (Note that MI, MIND and NGF are not combined with SIFT, but are included in all the

plots as reference methods.) On the Histological dataset, CoMIR combined with α-AMD is the

clear winner, while on the Cytological data MI is taking the top position, followed by CoMIR

combined with either SIFT or α-AMD, or CycleGAN combined with α-AMD. On the Zurich

dataset, CoMIR again performs best when combined with SIFT, and similarly well as MIND

when combined with α-AMD. On the 3D Radiological dataset, CoMIR (combined with α-

AMD) outperforms all I2I translation methods and demonstrates robustness to initial dis-

placement, confirming to be a reliable approach to multimodal registration in 3D as well.

While performing on par with MIND for smaller displacements, it better handles the task of

recovering large transformations. However, MI maximisation is the top performing approach

for this dataset.

Fig 8E and 8F also include the performance of the CurveAlign method, specially designed

for registration of BF and SHG images in our Histological dataset. We observe that this

method shows some limited success only for relatively small displacements, and falls behind

MI, MIND and CoMIR, as well as several I2I translation methods when combined with α-

AMD.

6.3 Correlation between modality translation and registration

Intuitively, the more successful the modality translation is, the more accurate subsequent regis-

tration will be. Our results to a high extent confirm this: the observed performance of most

Table 2. Overall registration success rate (in percent) for the evaluated methods on four datasets. Larger is better. The success rate λ is aggregated over all transforma-

tion levels for each dataset. Standard deviations are taken over the 3 folds for Zurich, Cytological and Radiological data. cyc, drit, p2p, star, comir, MIND(α-
AMD),MIND(MSD), NGF, MI and CA denote the methods CycleGAN, DRIT++, pix2pix, StarGANv2, CoMIR, MIND+α-AMD-based registr., MIND+MSD-based

registr., NGF, MI maximisation and CurveAlign, respectively. _A (resp. _B) denotes using generated Modality A (resp. B) for registration. B2A refers to the multimodal

registration performance on the acquired images without modality translation. MI, MIND and NGF provide reference performance of good conventional multimodal regis-

tration methods. For each dataset, the best I2I-based approach, as well as the overall best performing (multimodal) approach, are bolded.

Dataset Zurich Data Cytological Data Histological Data Radiological Data

Method α-AMD SIFT α-AMD SIFT α-AMD SIFT α-AMD

Registration with modality translation

I2I-based approaches cyc_A 4.9±2.1 66.4±18.8 71.1±5.8 24.4±6.2 0 0 6.2±3.9

bcyc_B 65.0±8.4 83.2±3.1 19.2±2.8 17.6±2.5 13.8 0 0.6±0.0

drit_A 34.8±5.4 38.0±7.9 61.6±16.2 21.6±3.6 1.7 0 0.0±0.0

drit_B 18.1±3.1 35.4±3.5 21.0±9.0 4.6±1.3 4.7 0 0.0±0.0

p2p_A 80.2±3.9 98.3±0.5 57.9±7.4 8.6±1.2 28.4 0 26.2±5.3

p2p_B 61.5±4.7 85.0±5.0 0.1±0.1 3.8±2.0 0.4 0 24.2±5.7

star_A 64.0±7.5 6.5±2.7 57.4±13.0 10.9±2.2 2.6 0 0.6±0.9

star_B 41.1±3.6 5.9±0.5 17.8±4.9 5.8±0.6 19.6 0 19.2±12.5

comir 91.8±7.7 100.0±0.0 68.0±14.0 72.5±7.1 81.3 59.3 95.8±5.0

Baseline without modality translation

B2A 12.8±3.5 72.5±4.8 21.9±10.5 20.8±2.0 0 0 3.1±4.4

Reference direct multimodal registration methods

MIND(α-AMD) 93.2±2.8 33.8±5.2 29.1 91.0±3.6

MIND(MSD) 41.4±1.6 30.6±0.5 9.5 15.0±0.5

NGF 47.3±7.4 30.7±5.2 2.6 38.3±0.8

MI 80.9±3.5 98.1±0.8 56.5 100.0±0.0

CA - - 3.7 -

https://doi.org/10.1371/journal.pone.0276196.t002
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combinations of methods is consistent with the appearance of the image samples in Figs 4–7.

To visualise this consistency, we plot, in Fig 10, the relation between overall success rate λ, for

each of the observed combinations of modality translation and registration, and the average

quality of the used modality translation, as quantified by FID, for the four observed datasets.

In Fig 10A, 10B and 10D, the error-bars show the standard deviations over the three folds of

Zurich, Cytological and Radiological datasets.

The results show a clear common trend that lower FID (higher quality of the generated

image) generally correlates with higher registration success rate. The large error-bars, in par-

ticular for cyc_A in Fig 10A and drit_B and star_A in Fig 10B, indicate that the corre-

sponding GAN-based methods are highly unstable in modality translation. In spite of the

relatively large error-bar of comir in Fig 10D, possibly caused by the artefacts visible in Fig 7,

CoMIR still reaches the lowest average FID value and highest registration success rate (among

Fig 10. Relation between average FID reached by a modality translation method and the success rate λ of the subsequent registration. (A) On

Zurich data, (B) on Cytological data, (C) on Histological data, (D) on Radiological data. In the legend, cyc, drit, p2p, star and comir denote the

methods CycleGAN, DRIT++, pix2pix, StarGANv2 and CoMIR, respectively. Suffix _A (resp. _B) denotes that generated Modality A (resp. B) is used

in (monomodal) registration. The marker style indicates whether α-AMD (aAMD) or SIFT (SIFT) is used for the registration. The error-bars

correspond to standard deviation computed over 3 folds for Zurich, Cytological and Radiological data.

https://doi.org/10.1371/journal.pone.0276196.g010
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the modality translation based approaches) on the Radiological dataset. Also here we observe

that the difference in performance between the two directions of modality translation may be

rather high. Whereas the two modalities in the Cytological dataset visually differ less than

those in Zurich and the Histological datasets, our results (summarised in Fig 10B) clearly show

that all the four observed I2I translation methods have much more success in generating

Modality A, than Modality B. This difference further propagates to registration, which is evi-

dently more successful if based on generated Modality A, for both SIFT and α-AMD.

6.4 Overview of the results

The presented results allow for the following summary:

• The observed I2I translation methods, followed by monomodal registration approaches,

show to be applicable in less challenging multimodal registration scenarios, such as on the

remote sensing (Zurich) dataset where the modalities display a relatively high degree of simi-

larity in structure and appearance. However, the methods exhibit high instability and data

dependence. The four observed I2I translation methods, with different properties and of dif-

ferent complexity, show varying performance on the observed datasets, including asymmetry

w.r.t. to the direction of translation, without any of the methods standing out as a generally

preferred choice.

• The unstable performance of I2I translation methods could be attributed to the images’

geometry not being well preserved in the translated output. This problem is observed to be

alleviated by utilising alignment information (such as pix2pix) or contrastive training (such

as CoMIR).

• Among the observed modality translation methods, pix2pix and CoMIR require aligned

image pairs during training. These methods also show superior performance, in particular

on the highly structured Zurich dataset, compared to the remaining three.

• FID, as a measure of performance of I2I translation methods, shows to be a reasonably reli-

able predictor of the success of subsequent monomodal registration; I2I translation methods

which manage to reach lower FID measured between the originally acquired and modality

translated images can be expected to provide a better basis for a successful registration. I2I

translation methods which are trained on non-aligned image pairs.

• The traditional registration approach based on MI maximisation exhibits very good perfor-

mance, leaving behind all the observed I2I methods for sufficiently small displacements and

excels on the Cytological and Radiological data, where there are more distinct objects to be

registered. The combination of modality translation and monomodal registration, on the

other hand, shows better stability w.r.t. size of displacement on the more structure rich

Zurich and Histology datasets.

• Several I2I translation methods followed by α-AMD outperform CurveAlign, a highly spe-

cialised method developed for registration of here observed Histological dataset.

• The novel combination of MIND and minimisation of α-AMD as an objective function out-

performed the original combination of MIND and minimisation of MSD in all observed

scenarios.

• CoMIR, a representation-learning method developed for multimodal registration, here

extended also to 3D data, exhibits overall best performance among the modality translation

approaches, showing stability w.r.t. data, size of displacement, as well as the choice of subse-

quent monomodal registration method.
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7 Conclusion

In this study, we investigate whether and to what extent I2I translation methods may facilitate

multimodal biomedical image registration. We focus on 2D and 3D rigid transformations,

finding the task challenging enough, while highly relevant, in particular for biomedical multi-

modal image data. We have selected four popular and widely used I2I translation methods

with diverse properties and complexity. We believe that this selection gives a good insight into

the potential of modality translation as a general approach to aid multimodal registration.

Openly available multimodal biomedical datasets suitable for the evaluation of registration

methods are very scarce. We use three 2D datasets (two of them published in connection with

this study) and one 3D dataset, of varying complexity and different combinations of modali-

ties, introducing a range of challenges relevant for performance evaluation.

From our experiments, we observe that I2I translation methods appear less successful in the

context of multimodal registration than in some other relevant biomedical use-case scenarios

(such as virtual staining, or image segmentation). However, a representation-learning

approach (CoMIR), which maps the modalities to their established (learned) “common

ground” instead of mapping one of them all the way to the other, shows to be a highly promis-

ing approach. We expect that its demonstrated successful debut on 3D medical data will inspire

further development and applications. We also note that maximisation of Mutual Information

still provides good multimodal registration performance in many situations under our experi-

ment settings. However, other studies have shown that the effectiveness of such traditional

multimodal registration methods degrades under real-world situations [21, 61].

This comparative study adds to the understanding of multimodal biomedical image regis-

tration methods from an empirical perspective. Last but not least, it establishes an open-source

quantitative evaluation framework for multimodal biomedical registration based on publicly

available datasets, which can be easily utilised for benchmarking, whereby we also hope to con-

tribute to the openness and reproducibility of future scientific research.
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for Unsupervised Affine and Deformable Image Registration. Medical Image Analysis. 2019; 52:128–

143. https://doi.org/10.1016/j.media.2018.11.010 PMID: 30579222

61. Jiang H, Yu H, Zhou X, Kang H, Wang Z, Hara T, et al. Learning 3D Non-Rigid Deformation Based on

an Unsupervised Deep Learning for PET/CT Image Registration. In: Medical Imaging 2019: Biomedical

Applications in Molecular, Structural, and Functional Imaging. San Diego, United States: SPIE; 2019.

p. 67.

62. Bastiaansen WA, Rousian M, Steegers-Theunissen RP, Niessen WJ, Koning A, Klein S. Towards seg-

mentation and spatial alignment of the human embryonic brain using deep learning for atlas-based reg-

istration. In: International Workshop on Biomedical Image Registration. Springer; 2020. p. 34–43.

63. Mirza M, Osindero S. Conditional Generative Adversarial Nets. arXiv preprint arXiv:14111784. 2014.

64. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation.

In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015. Lecture Notes in

Computer Science. Springer International Publishing; 2015. p. 234–241.

65. Wang TC, Liu MY, Zhu JY, Tao A, Kautz J, Catanzaro B. High-Resolution Image Synthesis and Seman-

tic Manipulation with Conditional GANs. In: 2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition. Salt Lake City, UT, USA: IEEE; 2018. p. 8798–8807.

66. Zhang P, Zhang B, Chen D, Yuan L, Wen F. Cross-Domain Correspondence Learning for Exemplar-

Based Image Translation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). Seattle, WA, USA: IEEE; 2020. p. 5142–5152.

67. Taigman Y, Polyak A, Wolf L. Unsupervised Cross-Domain Image Generation. arXiv:161102200 [cs].

2016.

68. Kim T, Cha M, Kim H, Lee JK, Kim J. Learning to Discover Cross-Domain Relations with Generative

Adversarial Networks. In: International Conference on Machine Learning. PMLR; 2017. p. 1857–1865.

69. Yi Z, Zhang H, Tan P, Gong M. DualGAN: Unsupervised Dual Learning for Image-to-Image Translation.

In: 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE; 2017. p. 2868–

2876.

70. de Bel T, Bokhorst JM, van der Laak J, Litjens G. Residual Cyclegan for Robust Domain Transformation

of Histopathological Tissue Slides. Medical Image Analysis. 2021; 70:102004. https://doi.org/10.1016/j.

media.2021.102004 PMID: 33647784

71. Liu MY, Breuel T, Kautz J. Unsupervised Image-to-Image Translation Networks. In: Proceedings of the

31st International Conference on Neural Information Processing Systems. NIPS’17. Long Beach, Cali-

fornia, USA: Curran Associates Inc.; 2017. p. 700–708.

72. Mao Q, Lee HY, Tseng HY, Ma S, Yang MH. Mode Seeking Generative Adversarial Networks for

Diverse Image Synthesis. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR). Long Beach, CA, USA: IEEE; 2019. p. 1429–1437.

73. Hjelm RD, Fedorov A, Lavoie-Marchildon S, Grewal K, Bachman P, Trischler A, et al. Learning Deep

Representations by Mutual Information Estimation and Maximization. In: International Conference on

Learning Representations; 2018.

74. Lindblad J, Sladoje N. Linear Time Distances Between Fuzzy Sets With Applications to Pattern Match-

ing and Classification. IEEE Trans on Image Process. 2014; 23(1):126–136. https://doi.org/10.1109/

TIP.2013.2286904 PMID: 24158476

PLOS ONE Image-to-image translation for multimodal image registration

PLOS ONE | https://doi.org/10.1371/journal.pone.0276196 November 28, 2022 32 / 33

https://doi.org/10.1007/s12194-019-00520-y
http://www.ncbi.nlm.nih.gov/pubmed/31222562
https://doi.org/10.1016/j.media.2018.11.010
http://www.ncbi.nlm.nih.gov/pubmed/30579222
https://doi.org/10.1016/j.media.2021.102004
https://doi.org/10.1016/j.media.2021.102004
http://www.ncbi.nlm.nih.gov/pubmed/33647784
https://doi.org/10.1109/TIP.2013.2286904
https://doi.org/10.1109/TIP.2013.2286904
http://www.ncbi.nlm.nih.gov/pubmed/24158476
https://doi.org/10.1371/journal.pone.0276196


75. Solorzano L, Pereira C, Martins D, Almeida R, Carneiro F, Almeida GM, et al. Towards Automatic Pro-

tein Co-Expression Quantification in Immunohistochemical TMA Slides. IEEE J Biomed Health Inform.

2021; 25(2):393–402. https://doi.org/10.1109/JBHI.2020.3008821 PMID: 32750958

76. Volpi M, Ferrari V. Semantic Segmentation of Urban Scenes by Learning Local Class Interactions. In:

2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 2015.

p. 1–9.

77. Michele Volpi VF. Zurich Summer Dataset; 2022. Available from: https://doi.org/10.5281/zenodo.

5914759.

78. Vicar T, Raudenska M, Gumulec J, Masarik M, Balvan J. Quantitative Phase Microscopy Timelapse

Dataset of PNT1A, DU-145 and LNCaP Cells with Annotated Caspase 3,7-Dependent and Independent

Cell Death; 2019. Available from: https://doi.org/10.5281/zenodo.2601562.

79. Vicar T, Raudenska M, Gumulec J, Masarik M, Balvan J. Fluorescence Microscopy Timelapse Dataset

of PNT1A, DU-145 and LNCaP Cells with Annotated Caspase 3,7-Dependent and Independent Cell

Death; 2021. Available from: https://doi.org/10.5281/zenodo.4531900.

80. Vicar T, Raudenska M, Gumulec J, Balvan J. The Quantitative-Phase Dynamics of Apoptosis and Lytic

Cell Death. Scientific Reports. 2020; 10(1):1–12. https://doi.org/10.1038/s41598-020-58474-w PMID:

32005874

81. Eliceiri K, Li B, Keikhosravi A. Multimodal Biomedical Dataset for Evaluating Registration Methods (Full-

Size TMA Cores); 2021. Available from: https://doi.org/10.5281/zenodo.4550300.

82. West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR Jr, Kessler RM, et al. Comparison and evalu-

ation of retrospective intermodality brain image registration techniques. Journal of computer assisted

tomography. 1997; 21(4):554–568. https://doi.org/10.1097/00004728-199707000-00007 PMID:

9216759

83. Fitzpatrick JM. The RIRE Dataset;. Available from: https://www.insight-journal.org/rire/download_data.

php.

84. Marstal K, Berendsen F, Staring M, Klein S. SimpleElastix: A User-Friendly, Multi-Lingual Library for

Medical Image Registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops; 2016. p. 134–142.

85. Klein S, Pluim JPW, Staring M, Viergever MA. Adaptive Stochastic Gradient Descent Optimisation for

Image Registration. Int J Comput Vis. 2008; 81(3):227. https://doi.org/10.1007/s11263-008-0168-y

86. Sandkühler R, Jud C, Andermatt S, Cattin PC. Airlab: Autograd image registration laboratory. arXiv pre-

print arXiv:180609907. 2018.

87. Bradski G. The OpenCV Library. Dr Dobb’s Journal of Software Tools. 2000.

88. Fischler MA, Bolles RC. Random Sample Consensus: A Paradigm for Model Fitting with Applications to

Image Analysis and Automated Cartography. Commun ACM. 1981; 24(6):381–395. https://doi.org/10.

1145/358669.358692

89. van der Walt S, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, et al. Scikit-

Image: Image Processing in Python. PeerJ. 2014; 2:e453. https://doi.org/10.7717/peerj.453 PMID:

25024921

90. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. GANs Trained by a Two Time-Scale

Update Rule Converge to a Local Nash Equilibrium. In: Advances in Neural Information Processing

Systems. vol. 30; 2017. p. 6626–6637.

91. Seitzer M. pytorch-fid: FID Score for PyTorch; 2020. https://github.com/mseitzer/pytorch-fid.
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